2.4正态分布(第二课时)
【知识学习】2.4正态分布教案(新人教A版选修2-3)

2.4正态分布教案(新人教A版选修2-3)本资料为woRD文档,请点击下载地址下载全文下载地址2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用。
过程与方法:结合正态曲线,加深对正态密度函数的理理。
情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。
教学重点:正态分布曲线的性质、标准正态曲线N。
教学难点:通过正态分布的图形特征,归纳正态曲线的性质。
教具准备:多媒体、实物投影仪。
教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。
内容分析:.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程:学生探究过程:复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:式中的实数、是参数,分别表示总体的平均数与标准差,的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数,随机变量X满足,则称X的分布为正态分布(normaldistribution).正态分布完全由参数和确定,因此正态分布常记作.如果随机变量X服从正态分布,则记为X~.经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在1733年,法国数学家棣莫弗就用n!的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布)是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x轴的上方,与x轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l时,正态总体称为标准正态总体,其相应的函数表示式是,(-∞<x<+∞)其相应的曲线称为标准正态曲线标准正态总体N(0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ(1)(2)(3)答案:0,1;1,2;-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式有==0.9772+0.8413-1=0.8151..标准正态总体的概率问题:对于标准正态总体N(0,1),是总体取值小于的概率,即,其中,图中阴影部分的面积表示为概率只要有标准正态分布表即可查表解决.从图中不难发现:当时,;而当时,Φ(0)=0.52.标准正态分布表标准正态总体在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于的值是指总体取值小于的概率,即,.若,则.利用标准正态分布表,可以求出标准正态总体在任意区间内取值的概率,即直线,与正态曲线、x轴所围成的曲边梯形的面积.3.非标准正态总体在某区间内取值的概率:可以通过转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a值是否落入;三是作出判断讲解范例:例1.若x~N,求P;P.解:P=F-F=F-[1-F]=0.8849-=0.8747.P=1-P=1-F=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:在N下,求(2)在N(μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2F(μ-3σ,μ+3σ)解:(1)==Φ(1)=0.8413(2)F(μ+σ)==Φ(1)=0.8413F(μ-σ)==Φ(-1)=1-Φ(1)=1-0.8413=0.1587F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体取值的概率:在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是,它是偶函数,说明μ=0,的最大值为=,所以σ=1,这个正态分布就是标准正态分布巩固练习:书本第74页,2,3课后作业:书本第75页习题2.4A组1,2B组1,2教学反思:.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
高中数学选修2-3教学案:2.4正态分布含解析

_2.4正态分布1.正态曲线正态变量概率密度曲线的函数表达式为f(x)=12π·σ22e2xμσ()--,x∈R,其中参数μ为正态分布变量的数学期望,μ∈(-∞,+∞);σ为正态分布变量的标准差,σ∈(0,+∞).正态变量的概率密度函数(即f(x))的图象叫做正态曲线.期望为μ,标准差为σ的正态分布通常记作N(μ,σ2),μ=0,σ=1的正态分布叫标准正态分布.2.正态曲线的性质(1)曲线在x轴的上方,并且关于直线x=μ对称;(2)曲线在x=μ时处于最高点,并由此处向左右两边延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状;(3)曲线的形状由参数σ确定,σ越大,曲线“矮胖”;σ越小,曲线越“高瘦”.3.正态分布的3σ原则P(μ-σ<X<μ+σ)=68.3%;P(μ-2σ<X<μ+2σ)=95.4%;P(μ-3σ<X<μ+2σ)=99.7%.可知正态变量的取值几乎都在距x=μ三倍标准差之内,这就是正态分布的3σ原则.1.正态分布密度函数及正态曲线完全由变量μ和σ确定.参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.2.对于正态曲线的性质,应结合正态曲线的特点去理解、记忆.[对应学生用书P40][例1]析式,求出总体随机变量的期望和方差.[思路点拨] 给出了一个正态曲线,就给出了该曲线的对称轴和最大值,从而就能求出总体随机变量的期望、标准差及解析式.[精解详析] 从给出的正态曲线可知,该正态曲线关于直线x =20对称,最大值是12π,所以μ=20.由12π·σ=12π,得σ= 2. 于是概率密度函数的解析式是 f (x )=12π·e x 2204()--,x ∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2. [一点通]利用正态曲线的性质可以求参数μ,σ,具体方法如下:(1)正态曲线是单峰的,它关于直线x =μ对称,由此性质结合图象求μ. (2)正态曲线在x =μ处达到峰值,由此性质结合图象可求σ.1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe x 2108()--,则这个正态总体的均值与标准差分别是( )A .10与8B .10与2C .8与10D .2与10解析:由正态曲线f (x )=12πσx 22e 2()σ--μ知,⎩⎪⎨⎪⎧2πσ=8π,μ=10,即μ=10,σ=2. 答案:B2.如图是正态分布N (μ,σ21),N (μ,σ22),N (μ,σ23)(σ1,σ2,σ3>0)相应的曲线,那么σ1,σ2,σ3的大小关系是( )A .σ1>σ2>σ3B .σ3>σ2>σ1C .σ1>σ3>σ2D .σ2>σ1>σ3解析:由σ的意义可知,图象越瘦高,数据越集中,σ2越小,故有σ1>σ2>σ3. 答案:A[例2] X 在(-1,1)内取值的概率.[思路点拨] 解答本题可先求出X 在(-1,3)内取值的概率,然后由正态曲线关于x =1对称知,X 在(-1,1)内取值的概率就等于在(-1,3)内取值的概率的一半.[精解详析] 由题意得μ=1,σ=2, 所以P (-1<X <3)=P (1-2<X <1+2)=0.682 6. 又因为正态曲线关于x =1对称,所以P (-1<X <1)=P (1<X <3)=12P (-1<X <3)=0.341 3.[一点通]解答此类问题的关键在于充分利用正态曲线的对称性,把待求区间内的概率向已知区间内的概率进行转化,在此过程中注意数形结合思想的运用.3.若随机变量X ~N (μ,σ2),则P (X ≤μ)=________.解析:若随机变量X ~N (μ,σ2),则其正态密度曲线关于x =μ对称,故P (X ≤μ)=12.答案:124.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c =________. 解析:∵μ=2,P (X >c +1)=P (X <c -1), ∴c +1+c -12=2,解得c =2.答案:25.若X ~N (5,1),求P (5<X <7). 解:∵X ~N (5,1),∴μ=5,σ=1.因为该正态曲线关于x =5对称,所以P (5<X <7)=12P (3<X <7)=12×0.954 4=0.477 2.[例3] 服从正态分布N (174,9).若该市共有高二男生3 000人,试估计该市高二男生身高在(174,180)范围内的人数.[思路点拨] 因为μ=174,σ=3,所以可利用正态分布的性质可以求解. [精解详析] 因为身高X ~N (174,9), 所以μ=174,σ=3,所以μ-2σ=174-2×3=168, μ+2σ=174+2×3=180,所以身高在(168,180]范围内的概率为0.954 4. 又因为μ=174.所以身高在(168,174)和(174,180)范围内的概率相等,均为0.477 2, 故该市高二男生身高在(174,180)范围内的人数是 3 000×0.477 2≈1 432(人). [一点通]解决此类问题一定要灵活把握3σ原则,将所求概率向P (μ-σ<X <μ+σ),P (μ-2σ<X <μ+2σ),P (μ-3σ<X <μ+3σ)进行转化,然后利用特定值求出相应的概率.同时要充分利用好曲线的对称性和曲线与x 轴之间的面积为1这一特殊性质.6.某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间(单位:分)服从X ~N (50,102),则他在时间段(30,70)内赶到火车站的概率为________.解析:∵X ~N (50,102),∴μ=50,σ=10. ∴P (30<X <70)=P (μ-2σ<X <μ+2σ)=0.954 4. 答案:0.954 47.灯泡厂生产的白炽灯泡的寿命为X (单位:小时),已知X ~N (1 000,302),要使灯泡的平均寿命为1000小时的概率约为99.7%,则灯泡的最低寿命应控制在多少小时以上?解:因为灯泡的使用寿命X ~N (1 000,302),故X 在(1 000-3×30,1 000+3×30)的概率为99.7%,即X在(910,1 090)内取值的概率约为99.7%,故灯泡的最低使用寿命应控制在910小时以上.根据正态曲线的对称性求解概率的关键要把握三点:(1)正态曲线与x轴围成的图形面积为1;(2)正态曲线关于直线x=μ对称,则正态曲线在对称轴x=μ的左右两侧与x轴围成的面积都为0.5;(3)可以利用等式P(X≥μ+c)=P(X≤μ-c)(c>0)对目标概率进行转化求解.[对应课时跟踪训练(十七)]1.正态曲线关于y轴对称,当且仅当它所对应的正态总体的期望为()A.1B.-1C.0 D.不确定解析:因为X=μ为其对称轴,所以μ=0.答案:C2.设X~N(10,0.64),则D(X)等于()A.0.8 B.0.64C.0.642D.6.4解析:∵X~N(10,0.64),∴D(X)=0.64.答案:B3.已知随机变量X~N(0,σ2).若P(X>2)=0.023,则P(-2≤X≤2)=()A.0.477 B.0.628C.0.954 D.0.977解析:因为随机变量X~N(0,σ2),所以正态曲线关于直线x=0对称.又P(X>2)=0.023,所以P(X<-2)=0.023,所以P(-2≤X≤2)=1-P(X>2)-P(X<-2)=1-2×0.023=0.954.答案:C4.设随机变量X服从正态分布N(2,σ2),若P(X>c)=a,则P(X>4-c)等于() A.a B.1-aC .2aD .1-2a解析:因为X 服从正态分布N (2,σ2), 所以正态曲线关于直线x =2对称, 所以P (X >4-c )=P (X <c )=1-P (X >c )=1-a . 答案:B5.己知正态分布落在区间(0.2,+∞)内的概率为0.5,那么相应的正态曲线f (x )在x =________时达到最高点.解析:由正态曲线关于直线x =μ对称和其落在区间(0.2,+∞)内的概率为0.5,得μ=0.2.答案:0.26.如果随机变量X ~N (μ,σ2),且E (X )=3,D (X )=1,且P (2≤X ≤4)=0.682 6,则P (X >4)=________.解析:因为X ~N (μ,σ2),E (X )=3, D (X )=1,故μ=3,σ2=1.又P (2≤X ≤4)=P (μ-σ≤X ≤μ+σ)=0.682 6, 故P (X >4)=1-0.682 62=0.158 7.答案:0.158 77.已知一个正态分布密度曲线对应的函数是一个偶函数,且该函数的最大值为14 2π.(1)求该正态分布密度曲线对应的函数解析式; (2)求正态总体在(-4,4]上的概率.解:(1)因为该正态分布密度曲线对应的函数是一个偶函数,所以其图象关于y 轴对称,即μ=0,由14 2π=12πσ,解得σ=4, 所以该函数的解析式为 f (x )=14 2πx 2e 32-,x ∈(-∞,+∞).(2)P (-4<X <4)=P (0-4<X <0+4)=P(μ-σ<X<μ+σ)=0.682 6.8.某糖厂用自动打包机打包,每包重量X(kg)服从正态分布N(100,1.22).一公司从该糖厂进货1 500包,试估计重量在下列范围内的糖包数量.(1)(100-1.2,100+1.2);(2)(100-3×1.2,100+3×1.2).解:(1)由正态分布N(100,1.22),知P(100-1.2<X≤100+1.2)=0.682 6.所以糖包重量在(100-1.2,100+1.2)内的包数为1 500×0.682 6≈1 024.(2)糖包重量在(100-3×1.2,100+3×1.2)内的包数为1 500×0.997 4≈1 496.。
2.4正态分布

总之,正态分布广泛存在于自然界、生 产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
的意义
总体平均数反映总体随机变量的 平均水平
x= μ
x3
x4
x1
平均数
x2
产品 尺寸 (mm)
的意义
总体平均数反映总体随机变量的 平均水平 总体标准差反映总体随机变量的 集中与分散的程度
对称.
(-∞,μ] 时f ( x)为增函数. (4)当 x∈ (μ,+∞) 时f ( x)为减函数. 当 x∈
标准正态曲线
例1、下列函数是正态密度函数的是( B )
A.
1 f ( x) e 2
2 f ( x) e 2
( x )2 2 2
, , ( 0)都是实数
( x )dx
, a
x=μ
特别地有
P( X ) 0.6826, P( 2 X 2 ) 0.9544, P( 3 X 3 ) 0.9974.
+a
-a
P( X ) 0.6826, P( 2 X 2 ) 0.9544, P( 3 X 3 ) 0.9974.
-3 -2 -1 0
1 2
x
-3 -2 -1 0
1 2 3 x
(1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点) (4)曲线与x轴之间的面积为1
1 σ 2π
方差相等、均数不等的正态分布图示
μ=0 μ= -1 μ= 1
2.4正态分布

解答
引申探究
本例条件不变,若P(X>c+1)=P(X<c-1),求c的值.
解 因为X服从正态分布N(1,22), 所以对应的正态曲线关于x=1对称. 又P(X>c+1)=P(X<c-1),
c+1+c-1 因此 =1,即 c=1. 2
解答
反思与感 悟
利用正态分布求概率的两个方法 (1)对称法:由于正态曲线是关于直线x=μ对称的,且概率的
2
1 2 3 4 5
解析
答案
3.已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ), (μ - 2σ , μ + 2σ) 和 (μ - 3σ , μ + 3σ) 内 取 值 的 概 率 分 别 为
68.3%,95.4% 和99.7%.若某校高一年级 1 000名学生的某次考试
成绩X服从正态分布N(90,152),则此次考试成绩在区间 (60,120) 内的学生大约有 A.997人 B.972人
解析 答案
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
正态曲线下的面积规律
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
3、特殊区间的概率:
特别地有
解析
由正态曲线的性质知,曲线的形状由参数σ确定,σ越大,
曲线越矮胖;σ越小,曲线越瘦高,且σ是标准差,故选A.
1 2 3 4 5
解析
答案
2.设随机变量ξ服从正态分布N(μ,σ2),且二次方程x2+4x+ξ =0无实数根的概率为 ,则μ等于 1
高二数学《正态分布》课件

例2、标准正态总体的函数为
1
x2
f (x) e 2 , x (, ).
2
(1)证明f(x)是偶函数;
(2)求f(x)的最大值;
(3)利用指数函数的性质说明f(x)的增减性。
我们从上图看到,正态总体在 2 , 2 以外取值的概率只有4.6%,在 3 , 3 以外
取值的概率只有0.3 %。 际通( 运常 用3由称当中,于这a就这些只33些情考)时概况之虑正率发内这态,值个 生其总区很为他体间小小区的,(概称 间取一为 取率值值般事3几几不件乎原乎超。总则不取过. 可值5能%于.区 在)实间,
等于( D )
A.0.9544 B.0.0456 C.0.9772 D.0.0228 2、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
P(2 X 2) = 0.9544 .
例4、在某次数学考试中,考生的成绩 x 服从一个 正态分布,即 x ~N(90,100). (1)试求考试成绩 x 位于区间(70,110)上的概率是
具有两头低、中间高、左右对称的基本特征
3、正态曲线的性质
( x)
1
2
e
( x )2 2 2
y
y
μ= -1
σ=0.5
μ=0
, x (, )
y μ=1
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
(1)曲线在x轴的上方,与x轴不相交.
b
P(a X b) a , (x)dx
2.正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
b
P(a X b) a , (x)dx
高中数学 2.4正态分布教案 新人教版选修2-3最新修正版

§2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用 。
过程与方法:结合正态曲线,加深对正态密度函数的理理。
情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。
教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。
教学难点:通过正态分布的图形特征,归纳正态曲线的性质。
授课类型:新授课课时安排:1课时教学过程:一、复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b)内取值的概率等于总体密度曲线,直线x=a ,x=b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,(),(,)x x x μσμσϕ--=∈-∞+∞式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.二、讲解新课:1、一般地,如果对于任何实数a b <,随机变量X 满足,()()ba P a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normaldistribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题三、讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.四、课后作业: 习题2. 4 A 组 1 , 2 B 组1 , 2五、教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布。
高中数学第二章2.4正态分布
1 2 π e
( x- )2 20 4
,x∈R,
总体随机变量的期望是 μ=20,方差是 σ2=( 2)2=2.
小结 利用图象求正态密度函数的解析式,应抓住图象实质性的两 1 点:一是对称轴 x=μ,另一个是最值 .这两点确定以后,相应参 2πσ 数 μ,σ 便确定了,代入 f(x)中便可求出相应的解析式.
练一练·当堂检测、目标达成落实处
§2.4
1.理解正态分布的概念和正态曲线的性质. 2.正态总体在某个区间内取值的概率求法:
本 课 时 栏 目 开 关
(1)熟记 P(μ-σ<X<μ+σ),P(μ-2σ<X<μ+2σ),P(μ-3σ<X<μ +3σ)的值. (2)充分利用正态曲线的对称性和曲线与 x 轴之间的面积为 1. ①正态曲线关于直线 x=μ 对称,从而在关于 x=μ 对称的区 间上概率相等. ②P(X<a)=1-P(X≥a),P(X<μ-a)=P(X≥μ+a), 1-Pμ-b<X<μ+b 若 b<μ,则 P(X<μ-b)= . 2
1 = [P(μ-2σ< X< μ+2σ)-P(μ-σ< X< μ+σ)] 2 1 = (0.954-0.683)=0.135 5. 2
研一研·问题探究、课堂更高效
§2.4
小结 为 1;
本 课 时 栏 目 开 关
(1)充分利用正态曲线的对称性和曲线与 x 轴之间面积
(2)正态曲线关于直线 x=μ 对称,从而在关于 x=μ 对称的区 间上概率相等.
(1)P(-1<X<3)=P(1-2<X<1+2) =P(μ-σ<X<μ+σ)=0.683. (2)因为 P(3<X<5)=P(-3<X<-1),
教学:高中数学 2.4正态分布教案 新人教版选修2-3
§2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用 。
过程与方法:结合正态曲线,加深对正态密度函数的理理。
情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。
教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。
教学难点:通过正态分布的图形特征,归纳正态曲线的性质。
授课类型:新授课课时安排:1课时教学过程:一、复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b)内取值的概率等于总体密度曲线,直线x=a ,x=b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,(),(,)2x x e x μσμσϕπσ--=∈-∞+∞式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.二、讲解新课:1、一般地,如果对于任何实数a b <,随机变量X 满足,()()ba P a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normaldistribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题三、讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)x f x x -+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.四、课后作业: 习题2. 4 A 组 1 , 2 B 组1 , 2五、教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布以下为赠送文档:选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质目的要求:重点难点:教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。
高中数学 2.4正态分布教案 新人教版选修2-3
§2.4正态分布教学目标:知识与技能:掌握正态分布在实际生活中的意义和作用 。
过程与方法:结合正态曲线,加深对正态密度函数的理理。
情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。
教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。
教学难点:通过正态分布的图形特征,归纳正态曲线的性质。
授课类型:新授课课时安排:1课时教学过程:一、复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b)内取值的概率等于总体密度曲线,直线x=a ,x=b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,(),(,)2x x e x μσμσϕπσ--=∈-∞+∞式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.二、讲解新课:1、一般地,如果对于任何实数a b <,随机变量X 满足,()()ba P a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题三、讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)(),(,)2x f x x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.四、课后作业: 习题2. 4 A 组 1 , 2 B 组1 , 2五、教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布。
2.4 正态分布
跟踪训练已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023, 则P(-2≤ξ≤2)=( )
A.0.477 B.0.954 C.0.628 D.0.977 解析:画出正态曲线如图所示,结合图象知,P(-2≤ξ≤2)=1-
P(ξ>2)-P(ξ<-2)=1-2×0.023=0.954.
答案:B
解:∵X~N(110,202),∴μ=110,σ=20.
P(110-20<X≤110+20)=0.682 7.
∴X>130的概率为 12×(1-0.682 7)≈0.158 7. ∴X≥90的概率为0.682 7+0.158 7=0.841 4. ∴及格的人数为54×0.841 4≈45(人), 130分以上的人数为54×0.158 7≈9(人).
②.
图②
【思考3】 如果X1~N(μ,0.52),X2~N(μ,12),X3~N(μ,22),那么P(1≤X1≤1)、P(-1≤X2≤1)、P(-1≤X3≤1)的大小如何?
提示:因σ1=0.5<σ2=1<σ3=2,那么,X1的分布最集中,X3的分布最分 散.
∴P(-1≤X1≤1)>P(-1≤X2≤1)>P(-1≤X3≤1).
2����
我们称 φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.
(2)如图,随机变量X落在区间(a,b]的概率为
P(a<X≤b)≈
������ ������
φμ,σ(x)dx.
2.正态分布 一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=
������
������ φμ,σ(x)dx,则称随机变量X服从正态分布.正态分布完全由参数μ,σ 确定,因此正态分布常记作 N(μ,σ2).如果随机变量X服从正态分布, 那么记为 X~N(μ,σ2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正态分布(第二课时)
假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率
事件几乎不可能在一次试验中发生的原理对试验结果进行分析 .
假设检验方法的操作程序,即“三步曲”
一是提出统计假设,教科书中的统计假设总体是正态总体;
二是确定一次试验中的a值是否落入(μ-3σ,μ+3σ);
三是作出判断 .
教学反思
1.在实际遇到的许多随机现象都服从或近似服从正态分布 .在上一节课我们研究了当
样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科
学地反映了总体分布 .但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分
布研究中我们选择正态分布作为研究的突破口 .正态分布在统计学中是最基本、最重要的一
种分布 .
2.正态分布是可以用函数形式来表述的 .其密度函数可写成:
2
2
()21(),(,)2xfxex
, (σ>0)
由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 .常把它记为),(2N .
3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=
μ时取最大值 .从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x
轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 .
4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有
好多好多,这给我们深入研究带来一定的困难 .但我们也发现,许多正态分布中,重点研究
N(0,1),其他的正态分布都可以通过)()(xxF转化为N(0,1),我们把N(0,
1)称为标准正态分布,其密度函数为22121)(xexF,x∈(-∞,+∞),从而使正态分
布的研究得以简化。结合正态曲线的图形特征,归纳正态曲线的性质 .正态曲线的作图较难,
教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是
能通过正态曲线,引导学生归纳其性质。
内容分析:
1.在实际遇到的许多随机现象都服从或近似服从正态分布 .在上一节课我们研究了当
样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科
学地反映了总体分布 .但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分
布研究中我们选择正态分布作为研究的突破口 .正态分布在统计学中是最基本、最重要的一
种分布 .
2.正态分布是可以用函数形式来表述的 .其密度函数可写成:
2
2
()21(),(,)2xfxex
, (σ>0)
由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2N .
3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=
μ时取最大值 .从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x
轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 .
4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特
征 .
5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布
就有好多好多,这给我们深入研究带来一定的困难 .但我们也发现,许多正态分布中,重点
研究N(0,1),其他的正态分布都可以通过)()(xxF转化为N(0,1),我们把N
(0,1)称为标准正态分布,其密度函数为22121)(xexF,x∈(-∞,+∞),从而使
正态分布的研究得以简化 .
6.结合正态曲线的图形特征,归纳正态曲线的性质 .正态曲线的作图较难,教科书没做要
求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态
曲线,引导学生归纳其性质 .