高等数学教学设计一等奖5篇
2024年高等数学教案

高等数学教案一、教学目标1.知识与技能:(1)理解极限、导数、积分等基本概念,掌握它们的计算方法。
(2)熟练运用导数和积分解决实际问题,如最值问题、曲线拟合等。
(3)了解多元函数的极限、连续性、可导性,掌握偏导数、全微分、方向导数等概念。
(4)掌握多元函数的极值问题,了解条件极值和拉格朗日乘数法。
2.过程与方法:(1)通过实际问题,培养学生运用数学知识解决实际问题的能力。
(2)通过探究式学习,培养学生的创新精神和合作意识。
(3)通过数学软件的应用,提高学生的数学建模和计算能力。
3.情感、态度与价值观:(1)培养学生对数学的兴趣和热情,增强学生的自信心。
(2)培养学生严谨、求实的科学态度,提高学生的逻辑思维能力。
(3)培养学生团结协作的精神,增强学生的集体荣誉感。
二、教学内容1.极限与连续(1)数列极限的定义及性质(2)函数极限的定义及性质(3)无穷小量与无穷大量(4)极限的运算法则(5)夹逼定理与单调有界定理(6)连续函数的定义及性质2.导数与微分(1)导数的定义及几何意义(2)导数的运算法则(3)高阶导数(4)隐函数及参数方程求导(5)微分中值定理(6)泰勒公式3.不定积分与定积分(1)不定积分的概念及性质(2)基本积分公式(3)换元积分法与分部积分法(4)定积分的概念及性质(5)定积分的计算(6)定积分的应用4.多元函数微分学(1)多元函数的极限与连续(2)偏导数与全微分(3)复合函数求导法则(4)隐函数求导法则(5)方向导数与梯度(6)多元函数的极值问题5.多元函数积分学(1)二重积分的概念及性质(2)二重积分的计算(3)三重积分的概念及性质(4)三重积分的计算(5)线积分与面积分三、教学安排1.总学时:64学时2.教学进度安排:(1)极限与连续:12学时(2)导数与微分:18学时(3)不定积分与定积分:18学时(4)多元函数微分学:8学时(5)多元函数积分学:8学时四、教学方法1.讲授法:讲解基本概念、性质、定理等。
2024年度-高等数学(高职)教案

08
多元函数微积分学初步
38
多元函数概念及其性质
多元函数定义
设D为一个非空的n元有序数 组的集合,f为某一确定的对 应规则。若对于每一个有序 数组(x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确定的 实数y与之对应,则称对应规 则f为定义在D上的n元函数。
多元函数的性质
包括有界性、单调性、周期 性、连续性等。
应用
在近似计算、函数性质研究、微分方程求解等方面有广泛应用。
26
07
空间解析几何与向量代数
27
空间直角坐标系和向量概念
02
01
03
空间直角坐标系的概念和性质 定义空间直角坐标系 阐述坐标轴、坐标平面和坐标原点的概念
28
空间直角坐标系和向量概念
01
介绍右手坐标系和左手坐标系的区别和应用
02
向量的概念和性质
函数的分类
03
根据函数的性质,可以将函数分为基本初等函数、初等函数和
非初等函数等类型。
8
极限概念及运算法则
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势的重要工具。
极限的性质
包括唯一性、有界性、保号性等,这些性质是求解极限问题的基 础。
极限的运算法则
包括四则运算法则、复合函数的极限运算法则、洛必达法则等, 这些法则是求解复杂极限问题的有效手段。
高等数学(高职)教案
1
目
CONTENCT
录
• 课程介绍与教学目标 • 函数、极限与连续 • 导数与微分 • 积分学 • 微分方程初步 • 无穷级数初步 • 空间解析几何与向量代数 • 多元函数微积分学初步
2
01
课程介绍与教学目标
《三角形的特性》教学设计(优秀5篇)

《三角形的特性》教学设计(优秀5篇)《三角形的特性》教学设计篇一教学内容义务教育课程标准实验教科书(西南师大版)四年级(下)第5154页主题图、例1、例2及课堂活动第13题,练习十第1~5题。
教学目标1、通过实验,使学生知道三角形的稳定性及其在生活中的应用2、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
3、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点:掌握三角形的特性。
教学难点:三角形的`稳定性在实际生活中的应用。
教具准备:木条制作的长方形和三角形、不条、三角板等教学过程一、游戏导入1.请两位学生到黑板前学交警指挥交通车时的各种动作姿势。
2.指名两位学生在黑板上画出刚才所观察交警的手与手、手与身躯构成的角。
3.指名学生将角的两边上取两点,再将两点连接起来得到第三条线段,并说出是一个什么图形?多媒体出示生活中形状是三角形的物体,让学生观察后,你想探索三角形的哪些问题?学生自由提问。
板书:意义、特征、特性二、探究新知(一)理解三角形的意义1.学生用小棒任意摆出一个三角形。
学生讨论三个图形,是不是都是三角形?为什么?刚才大家在判断上述三个图形是不是三角形时,都注意到三条线段,围成等这些重要条件(板书:三条段、围成),谁能说说什么是三角形吗?(由三条线段围成的图形叫三角形)2.练习举出日常生活中见到的三角形。
(二)探索三角形的特征(1)虽然三角形的形状各不相同,但也有相同的地方,谁能说说有哪些地方相同呢?(分组讨论)(2)小组指定代表说说讨论的结果。
板书:边——3条角——3个顶点——3个(3)让学生用自己的话说说三角形的特征。
学生阅读教材上的内容。
多媒体出示三角形,让学生指出三角形的边、角、顶点。
(4)学生指出三角板上的边、角、顶点。
(三)探索三角形的特性多媒体出示电线杆、自行车、货柜架等实物图,让学生指出其中的三角形。
提问:为什么这些部位要做成三角形?(分组讨论后,指定学生回答)学生操作:用木条钉成平行四边形和三角形,然后用力拉、推,让学生观察,大家会发现什么?这说明三角形具有什么特性?(稳定性)举出生活中见到哪些物体的哪些部位是做成三角形的。
高等数学教学设计导数

3.1导数概念单元教学设计
一、教案头
二、教学设计
3.2求导法则单元教学设计
一、教案头
二、教学设计
3.3微分单元教学设计
一、教案头
二、教学设计
3(任务2)微分的近似计算
学生总结近似计算
(1)首先要搞清晰设计的关系式,自变量和
因变量
(2)x
x
f
y∆
'
=
∆)
(
)
-
)(
(
)
(
(x)
x
x
x
f
x
f
f'
+
≈
例假设一机械正方形薄片,边长是x厘米,
现在机械薄片边长从2
=
x增加到2.2
=
x,求
薄片面积的增加。
设2x是薄片面积,则
s∆2.0)2(s'0.8平方厘米
例(膨胀问题)设一个铜质正方体,边长是
20厘米,因为热胀冷缩,到了夏天,经测量
他的边长有20厘米增加了0.1厘米,试问这
个铜质正方体的体积膨胀了多少?
老师
启发
讲解
板书
师生
研讨
40分钟。
高数网络授课教案模板(3篇)

第1篇 一、课程名称: 高等数学 二、授课教师: [教师姓名] 三、授课班级: [班级名称] 四、授课时间: [具体日期] 五、教学目标: 1. 知识目标:使学生掌握本节课所涉及的高数知识点,包括概念、性质、公式、定理等。
2. 能力目标:培养学生分析问题、解决问题的能力,提高学生的逻辑思维和计算能力。
3. 情感目标:激发学生学习高等数学的兴趣,培养学生严谨、求实的科学态度。 六、教学重点与难点: 1. 教学重点: - 本节课的核心概念和性质; - 关键公式和定理; - 应用这些知识解决实际问题的能力。 2. 教学难点: - 复杂公式的推导和应用; - 理解并掌握定理的证明过程; - 将理论知识与实际问题相结合。 七、教学准备: 1. 教师准备: - 教学课件; - 相关教学视频; - 典型例题和习题。 2. 学生准备: - 预习本节课相关内容; - 准备笔记本和笔。 八、教学过程: (一)导入 1. 结合生活实例,引入本节课的主题; 2. 简要回顾上一节课的内容,帮助学生建立知识体系。 (二)新课讲授 1. 介绍本节课的核心概念和性质,通过多媒体展示,使学生对知识有直观的认识; 2. 讲解关键公式和定理,强调重点和难点,并结合实例进行分析; 3. 引导学生进行课堂练习,巩固所学知识。 (三)例题讲解 1. 选择具有代表性的例题,详细讲解解题思路和步骤; 2. 分析解题过程中可能遇到的问题,引导学生学会总结和归纳; 3. 鼓励学生提问,及时解答学生的疑惑。 (四)课堂小结 1. 总结本节课所学内容,帮助学生梳理知识体系; 2. 强调重点和难点,提醒学生在课后进行巩固。 (五)课后作业 1. 布置适量的课后作业,巩固所学知识; 2. 要求学生在规定时间内完成作业,并提交至网络平台。 九、教学评价: 1. 课堂表现:观察学生在课堂上的学习态度、参与度、互动情况等; 2. 作业完成情况:检查学生课后作业的完成质量,了解学生对知识的掌握程度; 3. 考试成绩:通过期中、期末考试等方式,全面评估学生的学习成果。 十、教学反思: 1. 教师反思:总结本节课的教学效果,分析教学中存在的问题,为今后的教学提供借鉴;
高职高专高等数学教案

高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,如单调性、奇偶性、周期性等。
教学内容:介绍函数的定义,讨论函数的性质,举例说明。
教学方法:通过讲解和示例,让学生掌握函数的基本概念和性质。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,如保号性、夹逼性等。
教学内容:介绍极限的定义,讨论极限的性质,举例说明。
教学方法:通过讲解和示例,让学生理解极限的概念和性质。
第二章:导数与微分2.1 导数的定义与计算教学目标:理解导数的定义,掌握基本函数的导数计算。
教学内容:介绍导数的定义,讲解基本函数的导数计算法则。
教学方法:通过讲解和练习,让学生掌握导数的定义和计算方法。
2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。
教学内容:介绍微分的定义,讲解微分的计算法则。
教学方法:通过讲解和练习,让学生理解微分的概念和计算方法。
第三章:积分与微分方程3.1 定积分的定义与计算教学目标:理解定积分的概念,掌握定积分的计算方法。
教学内容:介绍定积分的定义,讲解定积分的计算法则。
教学方法:通过讲解和练习,让学生掌握定积分的概念和计算方法。
3.2 微分方程的基本概念与解法教学目标:理解微分方程的概念,掌握基本的微分方程解法。
教学内容:介绍微分方程的定义,讲解常见的微分方程解法。
教学方法:通过讲解和练习,让学生理解微分方程的概念和解法。
第四章:级数与常微分方程4.1 数项级数的概念与收敛性教学目标:理解数项级数的概念,掌握级数的收敛性判断。
教学内容:介绍数项级数的定义,讲解级数的收敛性判断方法。
教学方法:通过讲解和练习,让学生掌握数项级数的概念和收敛性判断。
4.2 常微分方程的解法与应用教学目标:理解常微分方程的概念,掌握常见的解法及其应用。
教学内容:介绍常微分方程的定义,讲解常见的解法及其应用。
教学方法:通过讲解和练习,让学生理解常微分方程的概念和解法及其应用。
高数教学教案设计案例模板
---一、教学目标1. 知识与技能目标:- 使学生理解函数单调性的概念,能够从形与数两方面判断和证明函数的单调性。
- 培养学生利用函数图象和单调性定义进行问题分析和解决的能力。
2. 过程与方法目标:- 通过探究函数单调性定义,渗透数形结合的思想方法。
- 培养学生观察、归纳、抽象的能力和语言表达能力。
- 通过证明函数单调性的过程,提高学生的推理论证能力。
3. 情感态度与价值观目标:- 通过知识的探究过程,培养学生细心观察、认真分析、严谨论证的良好思维习惯。
- 让学生在具体到抽象、从特殊到一般、从感性到理性的认知过程中,体会数学的严谨性和逻辑性。
二、教学重难点1. 教学重点:- 函数单调性的概念、判断及证明。
2. 教学难点:- 归纳抽象函数单调性的定义以及根据定义证明函数的单调性。
三、教学方法- 教师启发讲授- 学生探究学习四、教学手段- 计算机- 投影仪- 教学资源(如PPT、视频等)五、教学过程1. 创设情境,引入课题:- 通过现实生活中的实例(如气温变化、股价波动等),引导学生思考函数的单调性问题,激发学生的学习兴趣。
2. 讲授新课:- 讲解函数单调性的概念,并通过实例分析说明单调性在现实生活中的应用。
- 利用函数图象展示函数的单调性,引导学生观察和分析。
- 介绍单调性定义,并讲解如何利用定义判断和证明函数的单调性。
3. 课堂练习:- 通过练习题,让学生巩固对单调性的理解,并学会运用单调性定义进行判断和证明。
4. 课堂讨论:- 引导学生讨论函数单调性的性质,如连续函数的单调性、可导函数的单调性等。
- 鼓励学生提出问题,并引导学生共同解决。
5. 总结与反思:- 对本节课所学内容进行总结,强调重点和难点。
- 引导学生反思自己的学习过程,提出改进措施。
六、教学评价- 通过课堂练习和课后作业,评价学生对单调性的理解和掌握程度。
- 通过课堂讨论和提问,评价学生的思考能力和表达能力。
- 通过学生对教学过程的反馈,评价教学效果。
高等数学教案
高等数学教案一、课程的性质与任务高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。
要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。
在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。
第一章:函数与极限教学目的与要求18学时1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第一节:映射与函数一、集合1、 集合概念具有某种特定性质的事物的总体叫做集合。
组成这个集合的事物称为该集合的元素表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素1)},,,{321 a a a A = 2)}{P x x A 的性质=元素与集合的关系:A a ∉ A a ∈一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
常见的数集:N ,Z ,Q ,R ,N +元素与集合的关系: A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊂。
高中数学优质课一等奖作品:数学建模教学设计
《函数模型的应用实例》教学设计 ——数学建模一、教学内容解析数学建模是高中数学新课程中新增的研究性学习的内容,《课程标准》中没有对数学建模的内容做具体安排,只是建议将数学建模穿插在相关模块的教学中,要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.而以函数为模型的应用题是中学数学中最重要的内容之一,从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,综合分析对比一次函数、二次函数、指数函数、对数函数、幂函数在实际生活中应用的优缺点,为以后的数学建模打基础,但未能使学生全面认识数学建模的全过程,于是又在本题的基础上有所改编,从实际问题出发,通过分析探究、交流合作、小组展示、总结归纳、深化反思等数学活动引导学生建立完整的数学模型解决实际问题,从而深化数学建模思想.因此本节课是从函数出发,综合运用数学知识、思想和方法,尝试数学建模,让学生从不同的角度理解数学的魅力. 二、学习目标设置《课程标准》中关于本节课的描述有:1.通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系.2.每个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识.3.学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息;学生在数学建模中应采取各种合作方式解决问题,养成与人交流的好习惯,并获得良好的情感体验.在本节课中,根据布鲁姆教育目标分类标准,从知识分类、认知水平、学科内涵三个维度对课标的分解为:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:知识分类:数学建模过程认知水平:了解行为动词有经历、归纳、探索、学会、发现、体验、提出、发挥学科内涵:通过生活实例,归纳数学建模的全过程,体验数学与生活的联系,体会归纳思想、建模思想.根据《课程标准》,依据教材内容和学生情况,确定本节课的学习目标为:1.通过将实际问题提炼成理想的数学问题,借助图形计算器,能找出合适的数学模型,初步总结出数学建模的过程.2.能根据实际情况检验数学模型,完善数学建模的过程,深化数学建模的思想.3.经历数学建模解决实际问题全过程,从实际生活出发,思考数学建模的意义,体会数学来源于生活又服务于生活的魅力.三、评价任务针对目标1的评价任务一:学生通过自主解决应用题、组内交流合作,借助图形计算器,通过小组讨论、交流合作,能找出合适的数学模型并初步总结出数学建模的过程.针对目标2的评价任务二:通过对进一步变形的问题的探究,能说出选用模型的优缺点,能用实际情况检验数学模型,完善数学建模的过程,深化数学建模的思想.针对目标3的评价任务三:经历数学建模解决实际问题全过程,能选用合适的数学模型解决跟踪训练一,通过小组交流合作举出生活中数学建模的例子,体会数学来源于生活又服务于生活的魅力.四、学生学情分析1、学生已有的基础:高一下学期的学生学习过一次函数、二次函数、指数函数、对数函数、幂函数各自的函数特点,基于学校的支持,学生对于图形计算器已经有一定的基础,知道数形结合、转化化归、由特殊到一般的思想方法,但对于如何建立数学模型尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动.2、学生面临的问题:本节课是数学建模的基础课,对学生来说是一个全新的认识,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在建立数学模型及优化数学模型的过程中会比较困难.重点:数学建模的过程形成.难点:数学建模在实际生活中的应用.了解、经历通过实际例子,引出课题.数学建模的过程经小组讨论、合作交流,借助图形计算器得出数学建模的过程体验数学建模的实际应用探索体验数学建模实际生活中的应用五、教学策略分析从主导思想上:本节课依据“教评学一致性”的理念进行课堂教学设计,实施目标导引教学.基于学习目标创设学习问题,激发学生的学习兴趣,基于目标设计与之匹配的评价设计和教学方案,引导学生主动参与学习过程,动手动脑动口,在学习过程中逐步锻炼分析问题、抽象概括的能力.从内容上:本节课是数学建模的基础课,数学建模是高中数学新课程中研究性学习的内容,《课程标准》中要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,对于选择数学模型这一难点,通过分析探究、交流合作、小组展示、师生释疑等环节,设计一系列环环相扣的问题,引导学生思考、讨论、对比各自函数的特点,得出符合题意的数学模型,从而突出本节课的重点.但在实际生活中,符合题意的数学模型不一定符合实际情况,于是在题目的基础上加以修改,用实际问题去检验数学模型,不断拟合出最优的数学模型,让学生体会数学建模的优化思想,引导学生建立完整的数学建模过程,深化数学建模思想,突破本节课的难点.同时在本节课的学习中,在学习环节中渗透归纳、数形结合、建模等思想,注重培养学生的理性精神.六、教学过程本节课我采取“目标、评价、教学一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,将学生分成八人小组,每组由一名组长负责,借助五个环节实现本节课的学习目标.具体内容如下:合适的数学模型.讨论时间5分钟,讨论完进行小组展示,展示时间3分钟,小组间车轮式评价,老师完善补充.通过组内交流会找到符合题意的函数模型1log7+=xy活动3:学生独立思考,回答问题3在数学结果与可用结果之间缺少一个环节,通过设置问题引导学生继续思考.实际问题提出问题数学模型数学结果?可用结果NY能否选择合适的数学模型关注学生能否举出恰当的数学建模及真正理解数学建模的定义和过程(Ⅰ)根据散点图判断,bxay+=与xdcy+=哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)xdcy+=2.你能举例说明身边的数学建模实例吗?设计意图1.学习了数学建模的过程和定义,检验学生掌握情况,通过小组合作的形式,探究出函数模型,并且结合图象找出合适的数学模型.2.通过让学生举例说明身边的数学建模实例,让学生更加明白数学的实际意义,体会数学来源于生活又服务于生活的魅力.五、师生交流、深化反思目标3关注学生能否从学习方法上和态度上进行自我反思和总结在这一环节中,我会给学生2分钟的时间进行小组交流,然后谈谈这节课的收获,最后给学生2分钟时间进行反思,把反思内容写到学历案上,引导学生不仅从知识上总结,还要从学习方法和学习态度上进行自我评价和反思.由此引出总结语“生活并不缺少美,而是缺少发现美的眼睛。
《高等数学》(1-3章)教学教案(全)
高等数学教学教案第1章函数、极限与连续授课序号01(是一个给定的非空数集.若对任意的授课序号02的左邻域有定义,如果自变量为当0x x →时函数授课序号032n n ++)(1,2,n x =授课序号04授课序号05授课序号06高等数学教学教案第2章导数与微分授课序号01授课序号02授课序号03授课序号04高等数学教学教案第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos (x θ+=21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5篇教学设计学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.2. 结合已学过的数学实例,了解类比推理的含义;3. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用.学习过程一、课前准备问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是所以n边形的内角和是新知1:从以上事例可一发现:叫做合情推理。
归纳推理和类比推理是数学中常用的.合情推理。
新知2:类比推理就是根据两类不同事物之间具有推测其中一类事物具有与另一类事物的性质的推理.简言之,类比推理是由的推理.新知3归纳推理就是根据一些事物的,推出该类事物的的推理. 归纳是的过程例子:哥德巴赫猜想:观察6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,16=13+3, 18=11+7, 20=13+7, ,50=13+37, , 100=3+97,猜想:归纳推理的一般步骤1 通过观察个别情况发现某些相同的性质。
2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※典型例题例1用推理的形式表示等差数列1,3,5,72n-1,的前n项和Sn的归纳过程。
变式1 观察下列等式:1+3=4= ,1+3+5=9= ,1+3+5+7=16= ,1+3+5+7+9=25= ,你能猜想到一个怎样的结论?变式2观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,你能猜想到一个怎样的结论?例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质.圆的概念和性质球的类似概念和性质圆的周长圆的面积圆心与弦(非直径)中点的连线垂直于弦与圆心距离相等的弦长相等,※动手试试1. 观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?2 如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3 如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
二、总结提升※学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).3. 合情推理仅是合乎情理的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法※当堂检测(时量:5分钟满分:10分)计分:1.下列关于归纳推理的说法错误的是( ).A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能2. 已知,猜想的表达式为( ).A. B.C. D.3. ,经计算得猜测当时,有_________________________4.下列说法中正确的是( ).A.合情推理是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理D.类比推理是从特殊到特殊的推理5. 下面使用类比推理正确的是( ).A.若,则类推出若,则B.若类推出C.若类推出(c0)D. 类推出课后作业1. 设,,nN,则( ).A. B.-C. D.-2. 一同学在电脑中打出如下若干个圆若将此若干个圆按此规律继续下去,得到一系列的圆,那么在前2006个圆中有个黑圆.3. 在数列1,1,2,3,5,8,13,x,34,55中的x的值是4.已知1+2=3,1+2+3=6,1+2+3+4=10,1+2+3++n= ,观察下列立方和:13,13+23,13+23+33,13+23+33+43,试归纳出上述求和的一般公式。
第6篇教学设计【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。
2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。
3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。
【教学重点】函数单调性的概念、判断。
【教学难点】根据定义证明函数的单调性。
【教学方法】教师启发讲授,学生探究学习。
【教学工具】教学多媒体。
【教学过程】一、创设情境,引入课题师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。
生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。
师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。
师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。
观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的`专题研究之一──函数单调性的研究。
同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。
1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。
师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。
生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。
2.抽象思维,形成概念函数的性质离不开函数的定义域,在研究函数单调性时,我们也必须充分考虑到这一点,在函数的定义区间上描述随着自变量值的变化,函数值的变化情况。
师:思考,如何利用函数解析式来描述函数随着自变量值的变化,函数值的变化情况?(注意函数的定义区间)生:在上,随着自变量值的增大,函数值逐渐减小;在上,随着自变量值的增大,函数值逐渐增大。
师:如果给出函数,你能用准确的数学符号语言表述出函数单调性的定义吗? 生:(师生共同探究,得出增函数严格的定义)一般地,设函数的定义域为:①如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数;②如果对于定义域上某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是减函数。
三、掌握证法,适当延展【例1】下图是定义在区间上的函数,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【例2】物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大。
试用函数的单调性证明之。
师:在解决完成这个例题后,根据解题步骤归纳总结用定义证明函数单调性的一般性算法步骤:设元、作差、变形、断号、定论。
四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,共同完成小结。
(1) 利用图象判断函数单调性;(2) 利用定义判断函数单调性;(3) 证明方法和步骤:设元、作差、变形、断号、定论。
五、布置作业,拓展探究课后探究:研究函数的单调性。
六、板书设计函数的单调性一、创设情境,引入课题二、归纳探索,形成概念三、掌握证法,适当延展四、归纳小结,提高认识七、教学反思在有限的课堂时间,使学生掌握利用数形结合的思想方法准确理解函数单调性的有关概念,加深对基本概念的认识。
首先,展示一个学生都熟悉无比的情境,在这个情境中让学生直观地理解上升(递增)或下降(递减)的现象,然后针对课本所给的三个图象,结合情境中的直观现象,让学生描述这三个函数图象的特征。
学生在描述函数图象特征(上升或下降)的时候较为顺利,但总觉得有错误,可又说不清理由。
此时,教师指出:在叙述函数图像特征时要按照一定的标准,即观察的顺序应沿x轴正方向,自变量从左向右变化时,函数值(图像)的变化趋势,这样即可得到正确答案。
学生在理解错误原因过程中亦得到了正确的研究方法。
接下来,单刀直入地提出函数的单调性这个函数的性质。
在直观上承认这一性质以后,由学生按学习小组,仿照刚才的分析去研究一次函数和二次函数的单调性。
继而提出:图象特征如何转化为数学语言?经过学生探究思考,教师启发,学生归纳总结函数单调性的定义。
结合图像,学生通过自主合作探索,自己给出了函数单调性的定义。
然后让学生打开书本,与书上的表述比较,肯定他们的成果,并提示注意书本叙述的精确用语。
本课学生印象深刻,理解深入,合作探究激发了学生的内驱力与自信心。
第7篇教学设计教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程Ⅰ.提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的.2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.Ⅱ.导入新课将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.议一议:各图中的`两个三角形全等吗?不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.问题:△OCA≌△OBD,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,•所以C和B重合,A和D重合.∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.解:对应角为∠BAE和∠CAD.对应边为AB与AC、AE与AD、BE与CD.[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)借鉴例2的方法,可以发现∠A=∠A,•在两个三角形中∠A的对边分别是BC和DE,所以BC 和DE是一组对应边.而AB与AE显然不重合,所以AB•与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B 与∠D、∠ACB与∠AED.做法二:沿A与BC、DE交点O的连线将△ABC•翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB 与∠AED.Ⅲ.课堂练习课本练习1.Ⅳ.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.Ⅴ.作业课本习题1课后作业:《新课堂》板书设计13.1全等三角形一、概念二、全等三角形的性质三、性质应用例1运动角度看问题)例2根据位置来推理)例3:(根据位置和运动角度两种办法来推理)四、小结:找对应元素的方法运动法:翻折、旋转、平移.第8篇教学设计一、设计构思1、设计理念注重发展学生的创新意识。