离散数学第二版答案(6-7章)
离散数学(第二版)最全课后习题答案详解

离散数学(第⼆版)最全课后习题答案详解习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5是⽆理数.答:此命题是简单命题,其真值为 1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为 1.(4)2x+ <3 5答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π .答:此命题是简单命题,其真值为 1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p:是⽆理数.(7)p:刘红与魏新是同学.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是⽆理数. p:5是有理数.q:5是⽆理数.其否定式q的真值为 1.(2)25不是⽆理数.答:否定式:25是有理数. p:25不是⽆理数. q:25是有理数.其否定式q的真值为1.(3)2.5是⾃然数.答:否定式:2.5不是⾃然数. p:2.5是⾃然数. q:2.5不是⾃然数.其否定式q的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数.其否定式q的真值为1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5是素数,符号化为p q∧,其真值为1.(2)不但π是⽆理数,⽽且⾃然对数的底e也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e是⽆理数,符号化为p q∧,其真值为 1.(3)虽然2是最⼩的素数,但2不是最⼩的⾃然数.答:p:2是最⼩的素数,q:2是最⼩的⾃然数,符号化为p q∧?,其真值为1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是答: p:2是偶数,q:3是偶数,r:3是素数,s:4是偶数, t:5是偶数偶数.(1)符号化: p q∨,其真值为 1.(2)符号化:p r∨,其真值为1. (3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为 1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p :刘晓⽉选学英语,q :刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q )(p q ) . 7.设 p :王冬⽣于 1971年,q :王冬⽣于1972年,说明命题“王冬⽣于1971年或 1972年”既可以化答:列出两种符号化的真值表: p q 0 0 1 10 1 0 10 1 1 00 1 1 1根据真值表,可以判断出,只有当 p 与 q 同时为真时两种符号化的表⽰才会有不同的真值,但结合命题可以发现,p 与 q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值.,就有(1)只要(2)如果(3)只有(4)除⾮(5)除⾮(6),则:;设 q:,则:答:设 p: .符号化真值(1)(2)(3)(4)(5)1 1 0 0 0(6) 19.设p:俄罗斯位于南半球,q:亚洲⼈⼝最多,将下⾯命题⽤⾃然语⾔表述,并指出其真值:(1)(2);;;(3)(4);;(5)(6)(7);;.答:根据题意,p为假命题,q为真命题.⾃然语⾔真值(1)(2)(3)(4)(5)(6)(7)只要俄罗斯位于南半球,亚洲⼈⼝就最多只要亚洲⼈⼝最多,俄罗斯就位于南半球11111 只要俄罗斯不位于南半球,亚洲⼈⼝就最多只要俄罗斯位于南半球,亚洲⼈⼝就不是最多只要亚洲⼈⼝不是最多,俄罗斯就位于南半球只要俄罗斯不位于南半球,亚洲⼈⼝就不是最多只要亚洲⼈⼝不是最多,俄罗斯就不位于南半球10.设p:9是3的倍数,q:英国与⼟⽿其相邻,将下⾯命题⽤⾃然语⾔表述,并指出真值:.答:根据题意,p为真命题,q为假命题.⾃然语⾔真值(1)(2)(3)9是3的倍数当且仅当英语与⼟⽿其相邻9是3的倍数当且仅当英语与⼟⽿其不相邻9不是3的倍数当且仅当英语与⼟⽿其相邻11(4)9不是 3的倍数当且仅当英语与⼟⽿其不相邻 011.将下列命题符号化,并给出各命题的真值:(1)若 2+2=4,则地球是静⽌不动的;(2)若 2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数. 答:命题 1命题 2符号化真值(1)(2)(3)(4)p:2+2=4 q:地球是静⽌不动的 q:地球是静⽌不动的 q:⼈类能⽣存0 p:2+2=4 1 1 1p:地球上有树⽊ p:地球上有树⽊q:⼈类能⽣存12.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当 3+3=6;(2)2+2=4的充要条件是 3+36;(3)2+2 4与 3+3=6互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然. 答:设p:2+2=4,q:3+3=6. 符号化真值 (1) (2) (3) (4)(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.符号化真值讨论(1)(2)(3)(4)不会出现前句为真,后句为假的情况不会出现前句为真,后句为假的情况必然为1若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答: 命题1 命题2命题3符号化(1)(2)p:刘晓⽉跑得快q:刘晓⽉跳得⾼-p:⽼王是⼭东⼈p:天⽓冷q:⽼王是河北⼈----q:我穿⽻绒服p:王欢与李乐组成p:王欢与李乐组成⼀个--⼀个⼩组⼩组p:李⾟与李末是兄p:李⾟与李末是兄弟弟(6)(7) p:王强学过法语p:他吃饭q:刘威学过法语q:他听⾳乐q:他乘车上班q:他乘车上班q:他乘车上班q:路滑--(8) p:天下⼤⾬p:天下⼤⾬p:天下⼤⾬p:下雪-(9) -(10)(11)r:他迟到了p:2是素数p:2是素数q:4是素数--q:4是素数15.设p:2+3=5.q:⼤熊猫产在中国.r:太阳从西⽅升起.求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“是⽆理数.并且,如果3是⽆理数,则外,只有6能被2整除,6才能被4整除.”也是⽆理数.另解:p:是⽆理数q: 3是⽆理数r:是⽆理数s: 6能被2整除18.在什么情况下,下⾯⼀段论述是真的:“说⼩王不会唱歌或⼩李不会跳舞是正确的,⽽说如果⼩王会唱歌,⼩李就会跳舞是不正确的.”解:p:⼩王会唱歌。
离散数学-第六章集合代数课后练习习题及答案

离散数学-第六章集合代数课后练习习题及答案第六章作业评分要求:1. 合计57分2. 给出每小题得分(注意: 写出扣分理由).3. 总得分在采分点1处正确设置.一有限集合计数问题(合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解定义集合: 设E={x|x是调查对象},A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》}由条件得|E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8,|E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C|=|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|) =(60-8)-(25+26+26)+(11+9+8)=3(2) 只阅读《每周新闻》的人数=|A-B∪C|=|A-A∩(B∪C)|=|A-(A∩B)∪(A∩C)|=|A|-(|A∩B|+|A∩C|-|A∩B∩C|)=25-(11+9-3)=8同理可得只阅读《时代》的人数为10, 只阅读《财富》的人数为12.2 使用容斥原理求不超过120的素数个数.分析: 本题有一定难度, 难在如何定义集合. 考虑到素数只有1和其自身两个素因子, 而不超过120的合数的最小素因子一定是2,3,5或7(比120开方小的素数), 也就是说,不超过120的合数一定是2,3,5或7的倍数. 因此, 可定义4条性质分别为2,3,5或7的倍数, 先求出不超过120的所有的合数, 再得出素数的个数.解定义集合: 设全集E={x|x∈Z∧1≤x∧x≤120} A={2k|k∈Z∧k≥1∧2k≤120},B={3k|k∈Z∧k≥1∧3k≤120}, C={5k|k∈Z∧k≥1∧5k≤120},D={7k|k∈Z∧k≥1∧7k≤120}.则不超过120的合数的个数=|A∪B∪C∪D|-4 (因为2,3,5,7不是合数)=(|A|+|B|+|C|+|D|)-(|A∩B|+|A∩C|+|A∩D|+|B∩C|+|B∩D|+|C∩D|)+(|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|)-|A∩B∩C∩D|-4 =(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0-4 (理由见说明部分) =89因此不超过120的素数个数=120-1-89=30 (因为1不是素数) 说明:|A|=int(120/2); |A?B|=int(120/lcd(2,3));|A?B?C|=int(120/lcd(2,3,5)); |A?B?C?D|=int(120/lcd(2,3,5,7)).二集合关系证明1 设A,B,C是任意集合, 证明 (1) (A-B)-C=A-(B∪C)(2) A∩C?B∩C ∧ A-C?B-C ? A?B(合计12分: 每小题6分; 格式3分, 过程每错一步扣1分) 证明(1) 逻辑演算法: ?x, x∈(A-B)-C?x∈(A-B)∧?x∈C (-定义) ?(x∈A∧?x∈B)∧?x∈C (-定义) ?x∈A∧(?x∈B∧?x∈C) (∧的结合律) ?x∈A∧?(x∈B∨x∈C) (德摩根律) ?x∈A∧?x∈B∪C (∪定义) ?x∈A-B∪C (-定义) 所以 (A-B)-C=A-(B∪C). 集合演算法 (A-B)-C=(A∩~B)∩~C (补交转换律) =A∩(~B∩~C) (∩的结合律) =A∩~(B∪C) (德摩根律) =A-(B∪C) (补交转换律) 得证.(2) 逻辑演算法: ?x, x∈A?x∈A∩(C∪~C) (排中律, 同一律) ?x∈(A∩C)∪(A∩~C) (∪对∩的分配率) ?x∈A∩C∨x∈A-C (∪的定义, 补交转换律) ?x∈B∩C∨x∈B-C (已知条件A∩C?B∩C与 A-C?B-C) ?x∈(B∩C)∪(B-C) (∪的定义) ?x∈(B∩C)∪(B∩~C) (补交转换律) ?x∈B∩(C∪~C) (∩对∪的分配率) ?x∈B (排中律, 同一律) 所以 A?B. 集合演算法A=A∩(C∪~C) (同一律, 排中律) =(A∩C)∪(A∩~C) (∩对∪的分配率)=(A∩C)∪(A-C) (补交转换律) ?(B∩C)∪(B-C) (已知条件A∩C?B∩C与 A-C?B-C) =(B∩C)∪(B∩~C) (补交转换律) =B∩(C∪~C) (∩对∪的分配率) =B (排中律, 同一律) 得证. 方法三因为A∩C?B∩C, A-C?B-C, 所以(A∩C)∪(A-C)?(B∩C)∪(B-C)|, 整理即得A?B, 得证.2 求下列等式成立的充分必要条件 (1) A-B=B-A(2) (A-B)∩(A-C)=?(合计10分: 每小题5分; 正确给出充分必要条件2分, 理由3分) 解(1) A-B=B-A 方法一两边同时∪A得: A=(B-A)∪A=B∪A ? B?A; 同理可得A?B, 综合可得A=B. 另一方面, 当A=B时显然有A-B=B-A. 因此所求充要条件为 A=B. 方法二?x,x∈A-B∧x∈B-A ? x∈ (A-B)∩(B-A) ? x∈ ?所以 A-B=B-A ? A-B=? ∧ B-A=? ? A?B ∧ B?A ? A=B因此A=B即为所求.(2) (A-B)∩(A-C)=? ? (A∩~B)∩(A∩~C)=? ? A∩(~B∩~C)=? ?A∩~(B∪C)=? ? A-(B∪C)=? ? A? B∪C所以A?B∪C即为所求充要条件.说明: 这类题型一般先求出必要条件, 再验证其充分性.三设全集为n元集, 按照某种给定顺序排列为E={x1,x2,…,xn}. 在计算机中可以用长为n的0,1串表示E的子集. 令m元子集A={xi1,xi2,…,xi m}, 则A所对应的0,1串为j1j2…jn, 其中当k=i1,i2,…,im时jk=1, 其它情况下jk=0.例如, E={1,2,…,8}, 则A={1,2,5,6}和B={3,7}对应的0,1串分别为11001100和00100010. (1) 设A对应的0,1串为10110010, 则~A对应的0,1串是什么?(2) 设A与B对应的0,1串分别为i1i2…in和j1j2…jn, 且A∪B, A∩B, A-B,A��B对应的0,1串分别为a1a2…an, b1b2…bn, c1c2…cn, d1d2…dn, 求ak,bk,ck,dk, k=1,2,…,n. (合计15分: (1)3分; (2)12分, 每个结果正确2分, 求解过程4分) 解下述运算是二进制数的位运算(1) 01001101(2) ak=ik∨jk, bk=ik∧jk, ck=ik∧?jk, dk=(ik∧?jk)∨(?ik∧jk).说明: 这里ck和dk的求解可以使用主范式求解. ck, dk的真值表如下ik 0 0 1 jk 0 1 0 ck 0 0 1 0 dk 0 1 1 0 1 1 因此可用主析取范式表示ck和dk 如下: ck?m2=ik∧?jk dk?m1∨m2=(?ik∧jk)∨(ik∧?jk).感谢您的阅读,祝您生活愉快。
离散数学(第二版)最全课后习题答案详解

-
(10)
p:天下大雨
q:他乘车上班
-
(11)
p:下雪
q:路滑
r:他迟到了
(12)
p:2 是素数
q:4 是素数
-
(13)
p:2 是素数
q:4 是素数
-
15.设 p:2+3=5. q:大熊猫产在中国. r:太阳从西方升起. 求下列符合命题的真值:
(1)
(2)
(3) (4) 解:p 真值为 1,q 真值为 1,r 真值为 0. (1)0,(2)0,(3)0,(4)1 16.当 p,q 的真值为 0,r,s 的真值为 1 时,求下列各命题公式的真值: (1) (2) (3) (4)
24.已知 的类型.
解:∵
是重言式,试判断公式
及
是重言式,而要使该式为重言式,其成真赋值只有
11,∴ 25.已知
解:∵
的类型.
都是重言式。
Hale Waihona Puke 是矛盾式,试判断公式及
是矛盾式,而要使该式为矛盾式,其成假赋值
只有 00,∴
都是重言式。
26. 已 知 解:
是重言式, 及
是矛盾式,试判断 的类型.
是矛盾式。
是重言式。
q:老王是河北人
-
(3)
p:天气冷
p:王欢与李乐组成
(4)
一个小组
p:李辛与李末是兄
(5)
弟
q:我穿羽绒服 -
-
p:王欢与李乐组成一个
-
小组
-
p:李辛与李末是兄弟
(6) p:王强学过法语
q:刘威学过法语
-
(7)
p:他吃饭
q:他听音乐
-
离散数学 第二版 课后习题答案详解

习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1.答:否定式:. p:5 .q:5 q的真值为 1.(2.. p:. q:25 . 其否定式q的真值为 1.(3)2.5是自然数.答:否定式:2.5不是自然数. p:2.5是自然数. q:2.5不是自然数. 其否定式q 的真值为 1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数. 其否定式q的真值为 1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5 是素数,符号化为p q∧ ,其真值为 1.(2)不但π是无理数,而且自然对数的底e也是无理数.答:p:π是无理数,q:自然对数的底e是无理数,符号化为p q∧ ,其真值为 1.(3)虽然2是最小的素数,但2不是最小的自然数.答:p:2是最小的素数,q:2是最小的自然数,符号化为p q∧¬ ,其真值为 1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧ ,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3是偶数.(2)2或4是偶数.(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是偶数.答: p:2是偶数,q:3是偶数,r:3是素数,s:4 是偶数, t:5是偶数(1)符号化: p q∨ ,其真值为1.(2)符号化:p r∨ ,其真值为1.(3)符号化:r t∨ ,其真值为0.(4)符号化:¬ ∨¬q s,其真值为1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q )(p q ) . 7.设p :王冬生于 1971 年,q :王冬生于 1972 年,说明命题“王冬生于 1971 年或 1972年”既可以化答:列出两种符号化的真值表:但结合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化方式. 8.将下列命题符号化,并指出真值. (1)只要; (2)如果; (3)只有; (4)除非; (5)除非; (6).答:设p:.))))), 则:; 设 q: , 则:仅当 , 否则 , 才有 , 才有 , 则 , 就有)设p:俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p为假命题,q为真命题.(1);(2);(3);(4).答:根据题意,p为真命题,q为假命题.(1)若2+2=4,则地球是静止不动的;(2)若2+2=4,则地球是运动不止的;(3)若地球上没有树木,则人类不能生存;(4)若地球上没有水,则是无理数.答:(1)2+2=4当且仅当3+3=6;(2)2+2=4的充要条件是3+36;(3)2+24与3+3=6互为充要条件;(4)若2+24,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.将下列命题符号化,并讨论各命题的真值:(1)若今天是星期一,则明天是星期二;(2)只有今天是星期一,明天才是星期二;(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.(1)(2)(3)(4)14.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答:q:大熊猫产在中国.r:太阳从西方升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“是无理数.并且,如果3是无理数,则 也是无理数.另外,只有6能被2整除,6才能被4整除.” 是无理数s: 6能被2整除t :6能被4整除符号化为: ,该式为重言式,所以论述为真。
离散数学课后答案详解第二版

离散数学课后答案详解第二版离散数学课后答案详解第二版是一本重要的参考书,在学习离散数学的过程中能够提供很大的帮助。
下面就是本书中的一些重要知识点和解答,希望对各位读者有所帮助。
一、命题逻辑1.什么是命题?命题是用来陈述某个陈述语句真假的陈述句。
2.什么是合取和析取?合取是将两个命题连接起来,且要求两者同时成立,符号用“∧”表示;析取是也将两个命题连接起来,但是只要求其中一个成立即可,符号用“∨”表示。
3.什么是条件和双条件?条件是指前者为真则后者为真,否则后者为假,符号用“→”表示;双条件是指前者为真则后者为真,否则后者为假;同时后者为真则前者也为真,反之后者为假则前者也为假,符号用“↔”表示。
4.什么是命题公式?命题公式是用变量、命题连接词和括号构成的表达式,构成命题公式的常常为命题或者是一些常用的命题连接词。
二、谓词逻辑1.什么是一阶逻辑?一阶逻辑是对命题进行量化的扩展。
除了命题外,一阶逻辑还包括了“个体”和它们之间的关系,以及用于描述这些关系的“量词”。
2.什么是量词?量词包括“存在量词∃”和“全称量词∀”,前者表示存在至少一个使谓词成立的个体,后者表示所有个体都满足该谓词。
3.什么是命题函数?命题函数是将数学函数和逻辑命题符号相结合的一种新型命题符号。
4.什么是名词?名词是指代对象的标签,它是一般化的名词。
例如,女人是一般化的名词,梅丽莎是特定的名词。
三、集合论和图论1.什么是集合?集合是指具有某种共同特征而组成的元素的整体。
2.什么是集合的理论?集合的理论是关于集合的性质、关系和操作的一种抽象理论。
3.什么是图?图是用来描述一些个体之间的关系的工具,由节点和边构成。
其中节点表示个体,边表示个体之间的某种关系。
4.什么是路径?路径是指通过边连接一些节点的一系列节点。
四、树和排序1.什么是树?树是一种数据结构,它由一组节点和边构成。
节点可以包含数据,边用于连接节点并表示关系。
2.什么是排序?排序是一种对数据进行重新排列的操作,目的是使数据具有某种有序结构。
离散数学第二版课后答案pdf

离散数学第二版课后答案pdf选择题:1. 以下哪个函数不是单射?A. f(x)=x+1B. f(x)=x²C. f(x)=sin(x)D. f(x)=|x|2. 设 A={1,2,3},B={2,3,4},则A∪B=?A. {1,2,3,4}B. {2,3}C. {1,2,3}D. {1,2,3,4,5}3. 若 5n+1 是完全平方数,则 n 的取值范围是?A. n 是任意自然数B. 1、3、11C. 2、3、7D. 0、2、84. 若 P(A)=0.4,P(B)=0.3,P(AB)=0.1,则P(A∪B)=?A. 0.2B. 0.3C. 0.4D. 0.55. 在一个 10 个点的完全图中,不同颜色的边有红、蓝、绿三色,其中红边有 3 条,蓝边有 2 条,绿边有 5 条,则将这 10 个点分成涂3 种颜色的三部分的方案数为?A. 6552B. 1260C. 3150D. 5040选择题答案:1. C2. D3. B4. A5. C填空题:1. 用 1,2,3,4,5 这 5 个数字,能组成多少个长度为 3 的无重复的数字串?答:602. 已知 a+b=7,a-b=3,则 a²-b²=?答:203. 一个无向图有 8 条边,则它的图的边数有多大范围?答:4≤边数≤284. 在一组含有 5 个正整数的数列中,最大值是最小值的 3 倍,则这5 个数中的最小值不能小于多少?答:55. 若 G 是一个有 n 个点的简单无向图,且 G 不是完全图,则 G 中边的数量最少是多少?答:n填空题答案:1. 602. 203. 4≤边数≤284. 55. n解答题:1. 一张简单无向图 G 有 10 个顶点和 20 条边,证明 G 中至少有 3 个度数为偶数的顶点。
答:设 G 中度数为奇数的点的个数为 x,度数为偶数的点的个数为 y,则 x+y=10,2x+4y=40,化简得 x=2y-10,由于每个点的度数都是偶数或奇数,所以 2x+20-y 是偶数,即 2(2y-10)+20-y=3y-10 是偶数,即 y 是奇数。
华东师范大学离散数学章炯民课后习题第6章答案
华东师范大学离散数学章炯民课后习题第6章答案p992.f:x?y、有什么需要吗?x、定义f(a)={f(x)|x?a}。
(1)证明f(a?B)=f(a)?f(b)(3)举例说明f(a?b)≠f(a)?f(b)。
证明:(1)? Y∈f(a?b)??x∈a?b,使y=f(x)??x∈a或?x∈b,使y=f(x)?y=f(x)∈f(a)或y=f(x)∈f(b)?y∈f(a)?f(b)?f(a?b)=f(a)?f(b)(2)举例:设f(x)=X2,a={1,2},B={1,-2}。
则f(a?b)={1},而f(a)={1,4}f(b)={1,4}f(a)?f(b)={1,4}故,f(a?b)≠f(a)?f(b)基本正确。
一些学生错误地认为函数值是一个值而不是一个集合。
4F:x?y、以下命题正确吗?(1)f是一对一的当且仅当对任意a,b?x,当f(a)=f(b)时,必有a=b;(2)f是一对一的当且仅当对任意a,b?x,当f(a)≠f(b)时,必有a≠b。
解:(1)设立(2)不成立,如f(x)=x2,部分学生第(2)判断错误5.下图显示了五种关系的关系图。
问:这些关系中哪些是函数?什么是一对一功能?它的功能是什么?哪些是一对一的通信?解:1是一个函数,一对一,但不是顶部;2是一个高达但不是一对一的函数;3是一个函数,一对一对应;4是功能;5不是一个函数。
对的9(1).f:x?y,g:y?z。
命题“f?G是一对一的当且仅当f和G都是一对一的”这是真的吗?解决方案:不成立。
F是一对一。
假设f不是一对一的,不妨设f(a)=b,f(b)=b(a≠b)f?g(a)=g(f(a))=g(b),f?g(b)=g(f(b))=g(b)Fg(a)=f?G(b),哪个和f相同?G是一对一的矛盾。
但g不一定是一对一的。
反例:如f的论域{1,2}:f(1)=5,f(2)=6,g的论域{4,5,6}:g(4)=a,g(5)=a,g(6)=c,f是一对一的,f?g也是一对一的,但g不是一对一的部分学生判断错误。
离散数学习题答案1-2-6-7-8-9章-2009-12-17
习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。
由子集的定义。
(2) 不一定。
如:A={1},B={{1}},C={{1}}。
(3)不一定。
如:A={1},B={1,2},C={{1,2}}(4)不一定。
如:A={1},B={1,2},C={{1,2}}。
7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。
A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。
8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。
离散数学第二版邓辉文编著第一章第六节习题答案
离散数学第二版邓辉文编著第一章第六节习题答案第一篇:离散数学第二版邓辉文编著第一章第六节习题答案1.6 集合对等习题1.6 1.证明: 任意无限集合均存在可数子集.证设A是无限集合,取a0∈A,则A-{a0}是无限集合.取a1∈A,则A-{a0,a1}是无限集合.一直下去,即可得到无限集合A的可数子集{a0,a1,...an,...}.2.证明:(0,1)~[0,1].证由于(0,1)是无限集合,而任意无限集合均存在可数子集,设{a0,a1,...an,...}是(0,1)开区间的一个可数子集合,令f:(0,1)→[0,1],满足下面的条件f(a0)=0,f(a1)=1, f(ai)=ai-2,i≥2;f(x)=x,x∉{a0,a1,...,an,...}.显然,f 是(0,1)到[0, 1]的一个双射.故(0,1)~[0,1].3.证明: [0,1]~[a,b],a<b.证令f:[0,1]→[a,b],f(x)=a+(b-a)x,容易证明f是一个双射,进而[0,1]~[a,b].4.有理数集合Q是可数集合.证由于正有理数集合Q+ = ⎨⎧n⎫m,n∈N,m≠0,m与n互素⎬,令⎩m⎭f:Q+→N⨯N,⎛n⎫f ⎪=(m,n),⎝m⎭则f是单射,所以|Q+| ≤|N⨯N|.由于N~N⨯N,于是|Q+| ≤|N|=ℵ0.而Q+是无限集合,所以|Q+| ≥|N|=ℵ0.于是|Q+| = ℵ0.所以正有理数集合Q+是可数集合.显然Q+与所有负有理数集合Q-对等,而Q = Q+⋃Q-⋃{0},所有Q是可数集合.5.证明: 全体无理数组成的集合R –Q与R有相同的基数.证在全体无理数集合R –Q中选取可数子集{a0,a1,...an,...},因为Q可数,设Q = {b0,b1,...bn,...}.构造映射f:R-Q→R如下f(a2i)=ai,f(a2i+1)=bi,i=0,1,2,...;f(x)=x,x∉{a0,a1,...,an,...}.则f:R-Q→R是双射,所以R – Q与R有相同的基数.6.对于任意集合A,P(A)是A的幂集,证明: |A|<|P(A)|.证令g:A→P(A),g(x)={x},则g是A到P(A)的单射,所以|A|≤|P(A)|.假设|A|=|P(A)|,则存在A到P(A)的双射f.令S={x|x∉f(x)},则S⊆A.因为f是A到P(A)的双射,必存在y∈A是得f(y)=S.考虑是否y∈S.由于y∈S⇔y∈{x|x∉f(x)}⇔y∉f(y)⇔y∉S,这是一个矛盾.于是|A|=|P(A)|不成立,因此有|A|<|P(A)|.第二篇:离散数学习题及答案离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
离散数学第2版课后答案
5)?x?1(mod 5)????x?1(mod 3)
?x?3(mod8)??x?1(mod 3) : 求解同余方程组 ?x?1(mod 5)?
m1=8 , m2=3 ,m3=5 ,m=120 ,m1=15 , m2=40 , m3=24
15x≡1(mod 8),40x ≡1(mod 3),24x ≡1(mod 5的) 特解:
所以, p=3
11 计算 2400 mod 319 。
解:
14(2) 解同余方程: 56x≡88(mod 96) 。
解:
(1) (a,m)=(56,96)=8 , 8|96 ,方程有解
(2) a?=56/8=7 , b?=88/8=11 ,m?=96/8=12
(3)由辗转相除法可求得 p 和 q 满足 pa?+qm?=1 , p=-5 , q=3
?5x?7(mod 12)16(2) 解同余方程组 ? 7x?1(mod 10)?
解:
5x≡7(mod 12) ? 12?(5x -7) ? 4?(5x-7) 且 3?(5x- 7) ? 5x ≡7(mod 4)
且 5x≡7(mod 3) ∴同余方程 5x≡7(mod 12) 与同余方程
组??5x?7(mod 4) 同解
c1=7,c2=1,c3=4
19 . *设 m1 和 m2 是正整数, b1 和 b2 是整数。证明一次同余方程
5 .设 a、b、 c、 d 是正整数,满足 ab=cd 。证明: a4+b4+c4+d4 不是素数。 证明:设 11)(n-1)! ∴ n 整除 (1++?+2n-1adp?? ,其中 p 和 q 是互素的正整数 cbq aq=cp ? p?aq ? p?a (∵ p 和 q 互素) 于是, ?u?n ,使 a=pu ? c=qu
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
6.1
1.画出图 的图示,指出其中哪些图是简单图。
(1)
不是简单图。
(2)
不是简单图。
(3)
是简单图。
2.写出图7-8的抽象数学定义。
(1)解: ,其中 , , (2)解: ,其中 , ,
3.证明:在n阶简单有向图中,完全有向图的边数最多,其边数为 。
证明:简单有向图是没有自环,没有平行边的有向图,只要两个不同的结点之间才能有边。完全有向图是每个结点的出度和入度都是n-1的简单有向图,也就是每个结点都有到其他所有结点的边,因此,完全有向图的边数最多。
任取 ,分情况讨论:
(1)x和y都可以表示成 ,设 ,
那么 ,
(2)x和y都不能表示成 ,那么 也不能表示成
,
(3)x可以表示成 ,y不能表示成 ,那么 也不能表示成
,
(4)x不可以表示成 ,y能表示成 ,那么 也不能表示成
,
可知,无论x和y如何取值,都能够保证 。
综上所述, 是U到V的同态映射。
5.
两个图的结点和边的数目都相同。假设函数 ,左图中相邻的结点是1和4,1和5,1和6,2和4,2和5,2和6,3和4,3和5,3和6,对应的像点1’和4’,1’和2’,1’和6’,5’和4’,5’和2’,5’和6’,3’和5’,3’和2’,3’和6’在右图中也相邻,因此,两图同构。
7.证明:在任意六个人中,若没有三个人彼此认识,则必有三个人彼此都不认识。
, ,此时
故二元运算*是不可结合的。
不存在这样 使得任意的 都有 ,
因此,二元运算*不含幺元。
②
对于任意的 都有 ,故二元运算*是可交换的。
故二元运算*是不可结合的。
不存在这样 使得任意的 都有 ,
因此,二元运算*不含幺元。
③
因此,二元运算*是不可交换的。
故二元运算*是不可结合的。
由于二元运算*不是可交换的,所以不存在这样 使得任意的 都有 ,
2.
(1)二元运算表如下图所示:
GCD
1
2
3
4
6
8
12
24
1
1
1
1
1
1
1
1
1
2
1
2
1
2
2
2
2
2
3
1
1
3
1
3
1
3
3
4
1
2
1
4
2
4
4
4
6
1
2
3
2
6
2
6
6
8
1
2
1
4
2
8
4
8
12
1
2
3
4
6
4
12
12
24
1
2
3
4
6
8
12
24
(2) , 其中 。(假定 为丛X到X的双射函数)
解:X到X有6个双射函数,分别用 表示,设
对于任意的 ,
因此, 。
由(1),(2),(3)可知, 同构于 。
9.证明:
(1) 是代数系统 到当 的同态映射
又 是 的子代数
(2)对于 ,必存在 ,
使得 ,
由于 为代数系统 到当 的同态映射
,又 是 的子代数
故 对*运算封闭
,即
对 运算满足封闭性。
由(1),(2),(3)可知, 为 的子代数。
6.3
由于 对 具有代换性质,所以有
由此可知:
同理可知:
因 是等价关系,故是可传递的,所以有
所以 对 具有代换性质。
(2) 对 具有代换性质,
但对 不具有代换性质,因
4.设代数系统 , 为同余关系。
(1)即证: 为同余关系
证明: 为等价关系
若 对任意
有 , ,…
则 , ,…
, ,…
为同余关系
所以 为同余关系。
(2) 为等价关系
若 对任意
有 , ,…
未必有 , ,…
, ,…
因此,可能不满足代换性质
所以 未必是同余关系。
5.
(1)
解:R不是 上的同余关系,取 则 ,但是 , ,因此 ,不满足代换性质。
(2) , 当且仅当
解:R不是 上的同余关系,取 ,则 , ,但 , ,R不满足可传递性,不是等价关系。
(3)
③单位元素即幺元,若存在必唯一。
设集合 ,若幺元为1,则有
此时的二元运算的个数相当于求映射 的个数,其中:
映射 的个数为
幺元为2,3,4时同理,
因此集合 上有 个有单位元素的二元运算。
推广到 有 个元素时,具有单位元素的二元运算的个数为 。
5.解:任取
①
对于任意的 都有 ,故二元运算*是可交换的。
若
解:R不是 上的同余关系,取取 则 ,但是 , ,因此 ,不满足代换性质。
(4)
解:R不是 上的同余关系,取 ,则 ,但 ,即 ,R不满足对称性,不是等价关系。
6.4
1.
解:
(1)设
其中,
任取
下面通过运算表构造*运算(这里仅给出了一个运算表,另一个照推)
<0,0>
<0,1>
<0,2>
<1,0>
<1,1>
与偶数个人握手的人,这些人的握手次数之和为 (其中, 都是偶数),为偶数。
与奇数个人握手的人,这些人的握手次数之和为 (其中, 为基数),由于所有人的握手次数之和偶数,因此 也要为偶数,即
又因为
即 ,因此x为偶数,即与奇数个人握手的人是偶数个,得证。
6.证明:图7-7中的两个图同构。
证明:首先,给这两幅图标上对应的结点编号,如下
<1,2>
<1,1>
<1,0>
<1,0>
<1,0>
<1,0>
<0,0>
<0,0>
<0,0>
<1,1>
<1,0>
<1,1>
<1,2>
<0,0>
<0,1>
<0,2>
<1,2>
<1,0>
<1,2>
<1,1>
<0,0>
<0,2>
<0,1>
证明:
① 与 都只有一个二元运算,故为同型的。
② 与 定义域大小相同,具备构成双射函数的条件。
1.解:
解:首先,判断 是否是等价关系。任取 ,由于 ,因此 , 是自反的;任取 ,若 ,即 ( ),则 , ,因此 是对称的;任取 ,若 ,则 ( ), ( ),于是 , ,因此 ,可知 是可传递的。因此, 是等价关系。
其次,判断 关于*是否满足代换性质。
任取 ,若 ,即存在某个 ,满足
则
于是
由于 ,因此, , 关于*是满足代换性质。
5.在一次集会中,相互认识的人会彼此握手,试证明:与奇数个人握手的人数是偶数个。
证明:设集会上的人一共有m个,可分为两部分,一部分为与奇数个人握手的人,设为x个,另一部分为与偶数个人握手的人,为m-x个。
由于握手是相互的,即一次握手,两个人握手的次数都加1,一共加2,因此,集会上所有人的握手次数之和为偶数。
不妨设点A与B,C,E认识(用实线连接)。因为B,C,E之间只有有两个人认识就不满足任何三个人都不认识的条件,比如B,C认识画一条实线,那么A,B,C就相互认识,与已知矛盾。所以B,C,E是所求的三个互补认识的人。
(4)任何一个人最多认识两外4或5个人
该情况与(3)类似,所求的人即与A认识的两外4或5个人中的三个人。
4
5
0
1
3
3
4
5
0
1
2
4
4
5
0
1
2
3
5
5
0
1
2
3
4
<0,0>
<0,1>
<0,2>
<1,0>
<1,1>
<1,2>
<0,0>
<0,0>
<0,0>
<0,0>
<1,0>
<1,0>
<1,0>
<0,1>
<0,0>
<0,1>
<0,2>
<1,0>
<1,1>
<1,2>
<0,2>
<0,0>
<0,2>
<0,1>
<1,0>
③构造双射函数
由上图可知,像的运算=运算的像
所以 与 是同构的。
6.5
1.
(1)半群
(2)半群
(3)半群
(4)独异点,么元0
(5)不是半群,取a=b=1,c=2,则
不满足结合律
(6)不是半群,因为||不是二元运算;
(7)半群
(8)独异点,么元0
(9)半群
(10)独异点,么元为恒等关系;
(11)独异点,么元为a
4.解:设
①设 是 上的二元运算,则 是一个从 的映射。
求 上有多少个二元运算即相当于求这样的映射的个数。