电力系统自动装置
电力系统自动装置

电力系统自动装置实验思考题1.准同期并列的理想条件有哪些?实际中利用脉动电压如何体现?答:(1)并列开关两侧的电压相等,最大允许相差20%以内;并列开关两侧电源的频率相同,一般规定:频率相差0.15Hz即可进行并列;并列开关两侧电压的相位角相同;并列开关两侧的相序相同;(2)先将待并发电机组先后升至额定转速和额定电压,然后通过调整待并机组的电压和转速,使电压幅值和频率条件满足,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,使出口断路器合上的时候相位差尽可能的小。
2.根据绘制的脉动电压波形,分析脉动电压的变化规律,受哪些因素的影响。
答:受并联铁磁谐振和串联铁磁谐振的影响,主要特点是:(1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。
电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。
(2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压3.理论分析与测试观察结果是否一致,为什么?答:理论分析与测试观察结果一致,因为正常自动准同期并列时,对电网冲击很小,机端电压和电流波形畸变不大,波形依然为正弦。
4.在合闸时相角误差产生的主要原因有哪些?答:合闸相角差主要产生有功电流分量;在有相角差的情况下合后,发电机、变压器与电网间立刻进行有功功率的交换,使得发电机组的联轴、变压器受到冲击,这对于发电机组、变压器和电网均产生不利影响,为了保证机组和变压器安全,一般将有功冲击电流限制在较小的范围内。
最大允许并列误差角为10°。
5.根据实验步骤,详细分析半自动准同期并列过程。
答:在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频率差在允许范围内,相角差在零度前某一适合位置时,准同期装置控制合闸按钮进行合闸。
电力系统自动装置原理课后答案

电力系统自动装置原理附录思考题答案第一部分 自动装置及其数据的采集处理1-1.采用式1-13对电流进行分解,0a 、n a 、n b 的物理意义分别是什么? 【答案提示】0a :直流分量;n a :n 次谐波分量的实部;n b :n 次谐波分量的虚部。
1-2.采样的前期处理讨论: 【答案提示】如果正态分布均匀,那么采用4只电阻串联采样的方式要比采用一只电阻采样的精确度高; 是用算术平均法进行滤波有两种方式,其一:10~1021a a a a+++= ;其二:2~211a a a +=,2~~312a a a +=,2~~423a a a += (2)~~108a a a +=。
第二种方法只占有3个内存变量,每一次计算结果覆盖了前一次的采样数据,节省内存,另外,第二种方法滤波后的权重比例合理,10a 占权重为50%,更加接近采样的后期,因此计算机采样中经常采用。
第一种方法的权重完全一样,10个采样数据各占10%,另外它需要11个内存变量。
总的来看,第二种方法的误差和实际意义都大于第一种。
第二部分 自动并列2-3.已知:两个区域电网的等值机系统如附图1-1所示,其电压幅值相等,频率分别为:t f cos 1.0501+=Hz ,t f 2sin 1.0502+=Hz ,现准备进行恒定越前时间准同期互联操作,设远程通讯和继电器动作时间之和为0.14秒,求调度中心发出合闸信号的时刻。
【答案提示】合闸相角差表达式为:⎩⎨⎧-=-=-==20100212sin 2.0cos 2.0)(22δδδππππδe s e t t f f f先不考虑提前量,则有:01.02cos 1.0sin 2.0]2sin 2.0cos 2.0[0→++=+-=⎰πππδππδt t dt t t e e251sin 01sin sin 1sin 21sin 212cos sin 222-=⇒=--=+-+=++t t t t t t t 8078.32+=πk t 或6662.02-=πk t8078.31=t , 5.61692=t ,……考虑时间提前量0.14秒,则调度中心发出合闸信号的时刻可为:3.6678秒,5.4769秒,等等。
电力系统自动化装置调试与维护 中职专业专业简介

电力系统自动化装置调试与维护中职专业专业简介电力系统自动化装置调试与维护是一门中职专业,它涉及到电力系统中的自动化设备的安装、调试、运行和维护等方面。
电力系统自动化装置在电力输配过程中起着至关重要的作用,它们能够自动化地实现电力系统的监控、控制和管理,提高电力系统的稳定性和可靠性,同时也能提高运维效率。
电力系统自动化装置调试与维护专业对于电力系统的稳定运行具有重要意义。
在电力系统自动化装置调试与维护专业中,学生将深入学习电力系统的基础知识和自动化技术知识。
他们将学习电力系统的基本结构、原理和运行特点,掌握电力系统中常用的自动化装置的类型、功能和工作原理。
他们还将学习相关的电气知识和计算机控制技术,以便能够熟练掌握自动化设备的安装、调试和维护技术。
在实际的教学中,电力系统自动化装置调试与维护专业通常采用理论与实践相结合的方式进行培养。
学生将通过课堂学习、实验操作和实习实践等形式,掌握相关的理论知识和实际操作技能。
他们将学会使用测试仪器和设备,进行自动化装置的调试和故障排除。
他们还将学习如何编写自动控制程序,以实现对电力系统的监控和控制。
电力系统自动化装置调试与维护专业的学生需要具备一定的电气和计算机知识。
他们需要熟悉电力系统的基本原理和工作方式,了解自动化装置的各种功能和特点。
他们还需要熟练掌握计算机软件的使用,能够编写和调试自动控制程序。
毕业后,电力系统自动化装置调试与维护专业的学生可以在电力系统的调试、运维和维护部门工作。
他们可以负责电力系统自动化装置的安装、调试和故障排除工作,能够及时解决自动化装置的故障和问题,保障电力系统的正常运行。
他们还可以参与电力系统的改造和升级工程,提出改进建议和措施,提高电力系统的自动化水平和运行效率。
电力系统自动化装置调试与维护专业是一个与电力系统紧密相关的专业,它为培养具备电力系统自动化装置调试与维护技术的中职人才提供了专业平台。
这个专业的学生将通过系统的学习和实践,不仅能够掌握电力系统自动化装置的调试与维护技术,还能够提高自己的问题解决能力和创新能力。
电力系统自动装置原理第02章同步发电机的自动并列(自动并列装置的工作原理)

第二章同步发电机的自动并列1.概述2.准同期并列的基本原理3.自动并列装置的工作原理4.频率差与电压差的调整5.数字型并列装置的组成脉动电压含有同期合闸所需要的所有信息:电压幅值差、频率差和合闸相角差。
但是,在实际装置中,却不能利用它检测并列条件。
因为它的幅值与发电机电压及系统电压有关。
这就使得利用脉动电压检测并列条件的越前时间信号和频率检测引入了受电压影响的因素,造成越前时间信号时间误差不准,从而成为引起合闸误差的原因之一。
逻辑关系满足即可以合闸。
必须在之前判定完毕。
YJt•装置的控制逻辑越前时间信号电压差不允许滑差不允许与门或非门合闸信号电压差、频率差判别区U tYJt stω正弦整步电压法采用与直接做差,得到正弦性的包络线来判别。
误差较大。
GU •并列的检测信号&两种方法应用于模拟式并列装置中,实现检测。
线性整步电压法X U &采用三角波(线性)的整步电压。
不考虑电压差,只考虑相角差。
精度较好。
整步电压自动并列装置监测并列条件的电压–正弦整步电压法–线性整步电压法X G U U =若:若X G U U ≠:K Z ——整流系数正弦整步电压法特点:正弦型整步电压不仅是相角差的函数,还与电压差有关。
此并列条件检测引入误差成为合闸误差的原因之一。
应用:早期曾采用,现已被“线性整步电压”替代。
线性整步电压法线性整步电压---指其幅值在一周期内与相角差δe分段按比例变化的电压。
注意:线性整步电压只与发电机电压和系统电压的相角差δe 有关,而与它们的幅值无关。
线性整步电压的表达式:U sl 的上升段)0,0)(()(sl≤≤≤−+=+=t t U U e s slme slmUδπωππδππ)0,0)(()(sl≥≤≤−=−=t t U U s slme slmUπδωππδππfS s T Δ=Δ==1f 222ππωπU slm ---U sl 的最大值U sl 的周期T S 表征发电机电压和系统电压频率差△f的大小:U sl 的下降段线性整步电压法2.因此:越前时间信号和频率差的检测不受电压幅值的影响,提高了并列装置的控制性能。
电力系统自动装置原理

2、现场总线系统中路由器的功能:主要起到路由、中继、数据交换等功能。
3、发电机并列的理想条件:W G=W X或f G=f x (频率相等);U G=U X (电压幅值相等);6 e=0 (相角差为零)4、同步发电机的并列方法:准同期并列、自同期并列。
5、脉动电压波形中载有准同期并列所需检测的信息:电压幅值差、频率差以及相角差随时间变化的规律。
6、准同期并列装置主要组成:频率差控制单元、电压差控制单元、合闸信号控制单元。
7、同步发电机的准同期并列装置按自动化程度分为:半自动并列装置、自动并列装置。
8、同步发电机的励磁系统组成:励磁功率单元、励磁调节器。
9、直流励磁机励磁系统按励磁机励磁绕组供电方式的不同分为:自励式、他励式。
10、按照电压调节的原理来划分,电压调节可分为:反馈型、补偿型。
11、励磁控制系统动态特性指标:上升时间y、超调量。
p、调整时间ts.12、系统频率f和发电机转速n的关系:f=pn/60(p发电机极对数,n机组每分钟转数)13、负荷的频率调节效应系数:阮*=工n i=1ia i fi T* 发电机组的调差系数R=- f/A P G14、调速器分为:机械液压调速器、电气液压调速器。
(PI、PID)15、汽轮发电机组调速器的不灵敏区为0.1%~0.5%,水轮发电机组调速器的不灵敏区为0.1%~0.7%16、汽轮机长期低于49~49.5Hz以下运行时,叶片容易产生裂纹。
1、量化:把采样信号的幅值与某个最小数量单位的一系列整数倍比较,以最接近于采样信号幅值的最小数量单位倍数来表示该幅值。
编码:把量化信号的数值用二进制数码表示。
2、同步发电机自动并列过程中脉动电压:方向不变,大小随时间周期性变化的电压。
3、恒定越前相角并列装置:在脉动电压U S到达6 e=0之前的某一恒定越前6 YJ相角时发出合闸信号。
恒定越前时间并列装置:在脉动电压U S到达两电压相量U G、U X重合(6 e=0)之前的某一恒定t YJ时间差时发出合闸信号。
电力系统自动装置原理

1.并列操作:将同步发电机并入电力系统参加并列运行的操作2.不恰当并列操作影响:①产生巨大冲击电流;②系统电压严重下降;③使电力系统震荡以致瓦解3. 同步发电机并列原则:①并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍;②发电机组并入电网后,应能迅速同步,暂态过程要短,以减小对电力系统的扰动。
4. 同步发电机并列方法:准同期并列、自同期并列5. 并列的理想条件:① ƒG =ƒX ②U G =U X ③ δe=0 (即相角差为0)6. 存在电压幅值差时,冲击电流主要为无功电流分量;存在合闸相角差时,冲击电流主要是有功电流分量;存在频率差时,待并发电机需经很长暂态过程才能同步,严重时甚至失步。
7.准同期并列主要是对脉动电压Us 和滑差角频率ωs 进行检测和控制。
8.准同期并列装置采用的提前量有恒定越前相角和恒定越前时间。
9. 计算题: 例:一次系统的参数为:发电机交轴次暂态电抗"q X 为0.125;系统等值机组的交轴次暂态电抗与线路电抗X X 为0.25;断路器QF t =0.5s,它的最大可能误差时间为±20%QF t ;自动并列装置最大误差时间为±0.05s ,待并发电机允许的冲击电流值为"i hm =2GN I 。
试计算允许合闸误差角ey δ、允许滑差角频率sy ω,与相应的脉动电压周期s T 。
解:按题意求解如下:① 取''q E =1.05,允许合闸误差角ey δ=''q ""21.82arcsin 2E X X i X q hm ⨯+)(=2arcsin 05.128.1225.0125.012⨯⨯+⨯⨯)(=11.38°=0.199 rad PS:若记不住以上公式,可用"''28.1h hm I i =和2sin X 2ey ''q "q"δX h X E I +=推导。
电力系统自动装置
一:填空1.电能在生产、传输和分配过程中遵循着功率平衡的原则。
2.发电厂、变电所电气主接线设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。
3.电压和功率是电能质量的两个重要指标。
4.电力系统自动装置的结构形式主要有四种:微型计算机系统、工业控制计算机系统、集散控制系统和现场总线系统、计算机网络系统。
5.采样保持器一般由模拟开关、保持电容器、和缓冲放大器组成。
6.把量化信号的数值用二进制代码表示,这里就称为编码。
7.准同期并列装置主要由频率差控制单元、电压差控制单元和合闸信号控制单元组成。
8.同步发电机的准同期并列装置按自动化程度分为半自动并列装置和自动并列装置。
9.在准同期并列操作中,合闸信号控制单元是准同期并列装置的核心部件。
10.准同期并列装置可分为恒定越前相角和恒定越前时间两种原理。
11.频率差检测是在恒定越前时间之前完成的检测任务,用来判别是否符合并列条件。
12.频率差调整的任务是将待并发电机的频率调整到接近电网频率,是频率差趋向并列条件允许的范围,以促成并列的实现。
13.电压差调整的任务是在并列操作过程中自动调节待发电机的电压值,是电压差条件符合并列的要求。
14.同步发电机的励磁系统一般由励磁功率单元和励磁调节器两个部分组成。
15.电力系统的稳定分为静态稳定和暂态稳定两类。
16.静态稳定是指电力系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。
17.暂态稳定是指电力系统在某一正常方式下突然遭受大扰动后能否过渡到一个新的稳定运行状态、或者恢复到原来运行状态的能力。
18.自动励磁调节器应能保证同步发电机端电压静差率:半导体型的<1%;电磁型的<3%。
19.直流励磁机励磁系统是过去常用的一种励磁方式,只能在10万KW以下小容量机组使用。
20.三相桥式半空控整流电路在0到60度输出电压波形连续。
21.具有负调差特性的发电机是不能在公共母线上并联运行的。
《电力系统自动装置》教学
《电力系统自动装置》的教学探讨摘要:“电力系统自动装置”是电气工程及其自动化专业的必修课程。
在实际教学中,由于学生对实际装置的操作较少,对书中设备的各组成元件、工作原理以及现象更是感到既抽象又陌生,导致学生对理论知识难以理解,更难于将理论联系实际。
我们的教学目标为的就是能够更好地培养学生的创新意识,并在教学中提高学生的动手实践的能力,学会如何去思考,达到激发学生学习的兴趣的目的,切实提高该课程的教学质量。
本文正是结合教学目标,分析教学中存在的问题,并以此为基础从教学内客、教学方法、教学手段等方面做一些探讨。
关键词:电力系统自动装置兴趣培养教学质量中图分类号:g40 文献标识码:a 文章编号:1673-9795(2013)01(b)-0198-011 “电力系统自动装置”课程的教学目标本课程主要是培养学生的创新意识,提高他们的动手实践能力,并通过对电力系统自动装置原理和应用的学习,使学习本专业的学生能熟悉电力系统常用的各种自动装置,并有利于该专业的学生较好、较快地适应电力行业的工作,培养能够适应社会主义市场经济需要、能牢固掌握必须的科学文化知识和专业知识,成为具备较强实践能力的高层次技术型、应用型人才。
具体到电力专业来说,就是培养熟悉电力技术,会进行各种基本操作的技能型人才[1]。
2 教学中存在的问题“电力系统自动装置”是一门理论体系相当完整并且实践性非常强的课程。
而在具体的教学过程中,又存在以下两点问题。
2.1 教学不能抓准教学重难点在本课程的实际教学中,能否抓准本课程的重难点,是学生能否学好理论知识与能否成为具有较强实践能力的高层次技术型、应用型人才的关键所在。
本课程的重点在于教师对相关知识点在理论上的讲解,如各种自动装置的使用、工作原理、调试与维护等。
本课程的难点是学生对装置原理的理解掌握。
本课程的理论知识相对于其他学科来说十分抽象,学生难以理解,而教师在教学讲解时又经常出现讲解较为笼统又或者过于单一,甚至出现知识点不全的现象,学生不能进行系统的理论学习,在今后的理论联系实践中便会更加困难。
电力系统自动装置原理PPT课件
由外特性,当励磁电流一定时,UG随IQ的 UG 增大而下降。若IQ太大造成UG过小,满足 UGe
不了运行条件,则需通过励磁控制系统 UG2
增加励磁电流,从而增大Eq,以使UG上升 到满足运行条件;若IQ太小,造成UG过大, 则需减小励磁电流,从而减小Eq,使UG下
降到满足运行条件。
IEF2 IEF1
返回
水轮发电机组的强行减励
水轮发电机组发生故障突然跳闸时,调速系统不能迅速 关闭导水叶(惯性作用的结果),致使转速急剧上升, 如不采取措施迅速降低发电机的励磁电流,则发电机电 压有可能升高到危及定子绝缘的程度(在励磁电流一定 时,转子转速上升,定子绕组切割磁力线的速度加大,
从而使Eq增大。)
返回
对励磁调节器的要求
行发电机组间无功功率的合理分配。
返回
提高静态稳定性
以单机无穷大系统为例分析。
发电机输出的有功功率(功率或功角特性)为:
PG = EqUsin/x = Pmaxsin
当Eq(与励磁电流相对应)和U固定时,PG是的正弦函数。
因此,调节励磁电流,改变Eq,使发电机的有功功率特性得到改变,
从而改善系统的有功静态传输能力。对于按参数偏差量的比例进行
QG = UGIGsin=UGk1tg 或 QG =[EqUGcosUG2]/xd = k2tg - UG2/xd 结论:虽然IEF改变使Eq、及发生了变化,但仍可使PG维持恒定,而QG随之调 节,即在调节励磁时,一方面可以维持PG恒定,另一方面又可改变发电机承
担的无功功率。因此,在多机系统中,可以通过调节励磁电流来实现并联运
IQ1
IQ2 IQ
返回
控制无功功率的分配
参考 相位
设机端电压恒定。正常情况下,发电机
自动装置知识点
《电力系统自动装置原理》知识点杨冠城主编绪论1.电力系统自动装置对发电厂、变电所电气设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。
电力系统自动装置有两种类型:自动调节装置和自动操作装置。
2.电气设备的操作分正常操作和反事故操作两种类型。
(1)按运行计划将发电机并网运行的操作为正常操作。
(2)电网突然发生事故,为防止事故扩大的紧急操作为反事故操作。
防止电力系统的系统性事故采取相应对策的自动操作装置称为电力系统安全自动控制装置。
3.电力安全装置发电厂、变电所等电力系统运行操作的安全装置,是为了保障电力系统运行人员的人身安全的监护装置。
自动装置及其数据的采集处理电力系统运行的主要参数是连续的模拟量,而计算机内部参与运算的信号是离散的二进制数字信号,所以,自动装置的首要任务是数据采集和模拟信号的数字化。
1、硬件组成形式从硬件方面看,目前电力系统自动装置的结构形式主要有四种:即微型计算机系统、工业控制机系统、集散控制系统(Distributed control system——DCS)和现场总线系统(Field bus Control System——FCS)。
2、采样对连续的模拟信号x(t),按一定的时间间隔T S,抽取相应的瞬时值,这个过程称为采样。
采样过程就是一个在时间和幅值上连续的模拟信号x(t),通过一个周期性开闭(周期为T S,开关闭合时间为τ)采样开关S后,在开关输出端输出一串在时间上离散的脉冲信号x S(nT S)。
3、采样定理采样周期T S决定了采样信号的质量和数量: T S太小,会使x S(nT S)的数据剧增,占用大量的内存单元;T S太大,会使模拟信号的某些信息丢失,当将采样后的信号恢复成原来的信号时,就会出现信号失真现象,而失去应有的精度。
因此,选择采样周期必须有一个依据,以保证x S(nT S)能不失真地恢复原信号x(t)。
这个依据就是采样定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THLZD-2型电力系统综合自动化实验平台实验一发电机组的起动与运转实验一、实验目的1.了解微机调速装置的工作原理和掌握其操作方法。
2.熟悉发电机组中原动机(直流电动机)的基本特性。
3.掌握发电机组起励建压,并网,解列和停机的操作二、原理说明在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率.图3-1—1为调速系统的原理结构示意图,图3—1—2为励磁系统的原理结构示意图。
图3—1—1 调速系统原理结构示意图装于原动机上的编码器将转速信号以脉冲的形式送入THLWT—3型微机调速装置,该装置将转速信号转换成电压,和给定电压一起送入ZKS—15型直流电机调速装置,采用双闭环来调节原动机的电枢电压,最终改变原动机的转速和输出功率。
图3—1—2 励磁系统的原理结构示意图发电机出口的三相电压信号送入电量采集模块1,三相电流信号经电流互感器也送入电量采集模块1,信号被处理后,计算结果经485通信口送入微机励磁装置;发电机励磁交流电流部分信号、直流励磁电压信号和直流励磁电流信号送入电量采集模块2,信号被处理后,计算结果经485通信口送入微机励磁装置;微机励磁装置根据计算结果输出控制电压,来调节发电机励磁电流.三、实验内容与步骤1.发电机组起励建压2.发电机组停机3.发电机组并网4.发电机组发出有功和无功功率5.发电机组解列6.发电机组组网运行四、实验报告1.简述发电机组起励建压,并网,解列和停机的操作步骤.答,建压⑴先将实验台的电源插头插入控制柜左侧的大四芯插座。
打开控制柜电源开关;再打开实验台的开关.⑵将控制柜上的“原动机电源"开关旋到“开”的位置⑶按下THLWT-3型微机调速装置面板上的“自动/手动"键,选定“自动"方式⑷按下THLWT—3型微机调速装置面板上的“启动”键⑸当发电机转速接近或略超过1500rpm时,可手动调整使转速为1500rpm并网⑴首先投入无穷大系统,。
打开控制柜的电源开关;再打开实验台的开关.⑵选“单回”.⑶合上断路器QF7,调节自耦调压器的手柄,逐渐增大输出电压,直到接近发电机电压.⑷投入同期表。
将实验台上的“同期表控制"旋钮打到“投入"状态。
解列⑴将发电机组输出的有功和无功减为0。
⑵按下THLZD—2电力系统综合自动化实验台上的断路器QF0的“分闸"按钮,将发电机组和系统解列。
然后发电机停机停机⑴减小发电机励磁至0。
⑵按下THLWT—3微机调速器装置面板上的“停止”键。
⑶当发电机转速减为0时,将THLZD—2电力系统综合自动化控制柜面板上的“励磁电源"打到“关”,“原动机电源”打到“关”。
2.为什么发电机组送出有功和无功时,先送无功?若先送有功太大可能导致失步3.为什么要求发电机组输出的有功和无功为0时才能解列?发电机解列前将有功和无功减到零,是为了:1,保护断路器,尽量不要带电流分闸。
2,维护系统稳定。
不发生功率突变.3。
保护发电机,避免突然甩负荷的冲击实验三手动准同期并网实验一、实验目的1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件.2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。
3.熟悉同步发电机手动准同期并列过程二、原理说明在满足并列条件的情况下,只要控制得当,采用准同期并列方法可使冲击电流很小且对电网扰动甚微,故准同期并列方式是电力系统运行中的主要并列方式。
准同期并列要求在合闸前通过调整待并发电机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
依并列操作的自动化程度,又可分为手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映发电机组与系统间的同步情况,如频率差、相角差以及电压幅值差.线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波.它能反映电机组与系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度.自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。
准同期控制装置根据给定的允许压差和允许频差,不断地检测准同期条件是否满足,在不满足要求时,闭锁合闸并且发出均压、均频控制脉冲。
当所有条件均满足时,在整定的越前时间送出合闸脉冲.三、实验内容与步骤选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁"位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“手动"位置。
微机励磁装置设置为“恒U g”控制方式。
1.发电机组起励建压,使n=1485 rpm;U g=390V。
(操作步骤见第一章)将自耦调压器的旋钮逆时针旋至最小.按下QF7合闸按钮,观察实验台上系统电压表,顺时针旋转旋钮至显示线电压400V,然后按下QF1和QF3合闸按钮.2.在手动准同期方式下,发电机组的并列运行操作在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。
⑴将实验台上的“同期表控制”旋钮打到“投入”状态。
投入模拟同期表。
观察模拟式同期表中,频差和压差指针的偏转方向和偏转角度,以及和相角差指针的旋转方向.⑵按下微机调速装置上的“+”键进行增频,同期表的频差指针接近于零;此时同期表的压差指针也应接近于零,否则,调节微机励磁装置。
⑶观察整步表上指针位置,当相角差指针旋转至接近0度位置时(此时相差也满足条件),手动按下QF0合闸,合闸成功后,并网指示灯闪烁蜂鸣。
观察并记录合闸时的冲击电流将并网前的初始条件调整为:发电机端电压为410V, n=1515 rpm,重复以上实验,注意观察各种实验现象.3.在手动准同期方式下,偏离准同期并列条件,发电机组的并列运行操作本实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况;⑴电压差、相角差条件满足,频率差不满足,在f g>f s和f g<f s时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表3—3—5-1;注意:频率差不要大于0.5Hz。
⑵频率差、相角差条件满足,电压差不满足,V g>V s和V g<V s时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表3-3—5—1;注意:电压差不要大于额定电压的10%.⑶频率差、电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表3-3—5—1。
注意:相角差不要大于30°。
表3—3-5—1 偏离准同期并列条件并网操作时,发电机组的功率方向变化表⑷发电机组的解列和停机。
(见第一章)四、实验报告1.根据实验步骤,详细分析手动准同期并列过程。
答。
先将发电机的转速升至额定转速,再加励磁升到额定电压.然后比较待并发电机和电网的电压和频率,在符合条件的情况下,即当同步器指向“同期点”时(说明两侧电压接近一致),合上该发电机与电网接通的断路器.2.根据实验数据,比较满足同期并列条件与偏离准同期并列条件合闸时,对发电机组和系统并列时的影响发电机并网的同期条件保证了发电机投入到电网运行时,冲击电流比较小,减小系统对发电机组的冲击迅速进入同步运行状态,减小对电力系统的扰动实验四自动准同期并网实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。
2.掌握自动准同期装置的工作原理及使用方法。
3.熟悉同步发电机准同期并列过程。
二、原理说明图3-3—7-1 自动准同期并列装置的原理框图自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高.微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。
微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求.此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有利于平稳地进行并列。
三、实验内容与步骤选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励"位置;将“同期方式”旋钮开关打到“自动”位置。
微机励磁装置设置为“恒U g"控制方式;“自动"方式.1.发电机组起励建压,使n=1480rpm;U g=400V。
(操作步骤见第一章)2.查看微机准同期各整定项是否为附录八中表4-8-2的设置(出厂设置)。
如果不符,则进行相关修改。
然后,修改准同期装置中的整定项:“自动调频":投入;“自动调压”:投入.“自动合闸":投入.3.在自动准同期方式下,发电机组的并列运行操作在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸.⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表3-3-7-1、3-3—7-2和3-3—7—3修改.注:QF0合闸时间整定继电器设置为t d-(40~60ms)。
t d为微机准同期装置的导前时间设置。
微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压差、频差和相差闭锁与整定)等实验内容。
⑵操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V,n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。
观察微机准同期装置当“升速”或“降速"命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应.微机准同期装置“升压”、“降压"、“增速"、“减速”命令指示灯亮时,观察本记录旋转灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。