藤茶中二氢杨梅素的药理作用研究进展

藤茶中二氢杨梅素的药理作用研究进展
藤茶中二氢杨梅素的药理作用研究进展

藤茶降血压作用研究

藤茶降血压作用研究 廖寅平1,王硕2,安丰轩1,葛智文1,兰毅1,张征1* (1.柳州市农业技术推广中心,广西柳州 545002;2.广西药用植物研究所,广西南宁 530023) 摘要:藤茶学名为显齿蛇葡萄,英文名称为vine tea,葡萄科蛇葡萄属落叶藤本植物,广西柳州市的融安、融水、三江等县均有大量野生资源分布。中国医学科学院药用植物研究所广西分所姚新生院士实验室通过对大鼠饲喂藤茶水溶液,以研究藤茶对大鼠血压的影响。研究结果表明,藤茶对实验大鼠具有较好的降血压作用,但对心率并无显著性影响。 关键词:藤茶;降血压;研究;心率 藤茶,学名为显齿蛇葡萄[Ampelopsis grossedentata (Hand-Mazz)W.T.Wang],英文名称为vine tea,是葡萄科(Vitaceae Michx)蛇葡萄属(Ampelopsis)的一种野生木质落叶藤本植物,属于典型的类茶植物,主要分布于我国湖南、湖北、云南、贵州、广东、广西、福建等地。据调查,广西柳州市的融安县分布大量野生藤茶资源,分布面积约2万亩,具有很好的开发价值。 资料显示,藤茶具有清热解毒、抗菌消炎、祛风除湿、强筋骨、降血压、降血脂、降血糖、保肝护肝等功效。目前,运用药理研究的方法对藤茶的降血压作用进行研究还鲜有报导,中国医学科学院药用植物研究所广西分所姚新生院士实验室用藤茶水溶液饲喂实验大鼠的方法,研究了藤茶对大鼠血压的影响。 1 实验材料 1.1 样品来源及处理:藤茶,广西柳州市农业技术推广中心提供。将藤茶分别按1:10和1:6的比例用开水浸泡30min,然后再煮沸5min,过滤,将两次滤液合并,置于热水浴上浓缩至0.5g/ 1ml。 1.2 实验动物:SPF级SD大鼠,体重150~180g,雄性,共50只。湖南斯莱克达实验动物有限公司生产,合格证号:SCXK2009 -0004号。实验温度:23~25℃,相对湿度:6 5%~7 0%。 1.3 饲料 普通基础饲料:配方略。 1.4 剂量分组

二氢杨梅素的稳定性

二氢杨梅素的稳定性及其影响因素NEWS 二氢杨梅素的稳定性及其影响因素 发布时间:2010-10-14 信息来源:admin 发布人:admin 点击次数:164 林淑英1 , 高建华1 , 郭清泉2 , 宁正祥1 (1. 华南理工大学食品与生物工程学院, 广东广州510640 ; 2. 华南理工大学化工研究所,广 东广州510640) 摘要: 二氢杨梅素是一种重要的黄酮类物质,具有较好的抗氧化活性. 通过溶析称重法测 定了溶解度的变化,采用紫外2可见光谱扫描法研究其化学结构的变化,结果表明:二氢杨梅素溶液易发生氧化,稳定性较差,在不超过100 ℃,加热时间不超过30 min 以及酸性和中性条件可保持其化学结构稳定,而过渡态金属离子Al3 + ,Fe3 + ,Cu2 + 等对二氢杨梅素的氧化则起到诱导催化作用. 关键词: 二氢杨梅素;光谱; pH 值;化学结构;稳定性 二氢杨梅素(3 ,5 ,7 ,3’,4’,5’2 六羟基22 ,3 双氢黄酮醇,Dihydromyricetin ,DMY) 是多酚羟基双氢黄酮醇,属黄酮类化合物,广泛存在于葡萄科植物中,尤其是在蛇葡萄属植物中,在显齿蛇葡萄植物的幼嫩茎叶中,其质量分数可达20 %~28 %(占干重) , 幼叶中的含量更高[1. 2 ] . 用显齿蛇葡萄幼叶制成的类茶产品具有消炎、止咳、祛痰、镇痛、抑菌[3 ,4 ] 、抗高血压、消脂[5 ] 、防癌、保肝护肝[6 ] 等显著功效. 除此之外,二氢杨梅素还具有优异的防腐和抗氧化性能,有望成为新型的天然防腐剂和抗氧化剂,具有广阔的开发前景. 鉴于显齿蛇葡萄的特殊功效,对于二氢杨梅素提取和生理活性的研究日趋活跃. 目前的研究主要集中在两个方面:一是溶剂提取法,包括复合有机溶剂法和水浸提法[7 ] ;二是层析法,主 要为大孔吸附树脂提取法[8~10 ] . 黄酮类物质均具有一定紫外2可见吸收光谱[11 ] ,紫外2可见吸收光谱扫描法可准确、快速地测定出其化学结构是否发生变化,因此作者主要采用紫外2可见光谱扫描法研究pH 值、温度以及金属离子对于二氢杨梅素化学结构稳定性、溶解度以及色泽的影响,为其在食品、医药及化妆品工业中应用提供一定的依据. 1 材料与方法 1. 1 实验材料、仪器与试剂 实验材料:显齿蛇葡萄幼嫩叶,采自广东白云山,依文献鉴定为原植物;实验仪器:紫外2可见分光光度计,电子天平,恒温仪;所用化学试剂均为分析纯. 1. 2 实验方法 1. 2. 1 二氢杨梅素的提取制备取蛇葡萄幼嫩干叶,加水煎煮,浓缩过滤后,放置,待析出浅

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。而且存在很大的安全隐患,成本也很高。 金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。金属氢化物储氢具有高体积储氢密度和高安全性等优点。在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。但是,金属氢化物储氢最大的缺点是金属密度很大,导致氢的质量百分含量很低,一般只有2%-5%,而且释放氢时需要吸热,储氢成本偏高。 目前大量的储氢研究是基于物理化学吸附的储氢方法。物理吸附是基于吸附剂的表面力场作用,根源于气体分子和固体表面原子电荷分布的共振波动,维系吸附的作用力是范德华力。吸附储氢的材料有碳质材料、金属有机骨架(MOFs)材料和沸石咪唑酯骨架结构(ZIFs)材料、微孔/介孔沸石分子筛等矿物储氢材料。 碳质储氢材料主要是高比表面积活性炭、石墨纳米纤维(GNF)和碳纳米管(CNT),是最好的吸附剂,它对少数的气体杂质不敏感,且可反复使用。超级活性炭在94K、6MPa下储氢量

从落叶松根中提取二氢槲皮素可研报告

从落叶松根中提取二氢槲皮素 可行性研究报告 一、总论 1.1项目名称:大兴安岭林区从落叶松中提取高纯度(95%以上)二氢槲皮素可行性研究 1.2拟建规模:年产二氢槲皮素30吨 1.3建设性质:新建 1.4建设地点:加格达奇工业园区 1.5项目设计依据:专利发明 1.6项目设立的宗旨:一是项目符合国家产业政策,具有低碳、环保、节能等特点,属节能环保类。二是项目所使用原料为,100年以上兴安落叶松的根部高度0-100厘米部分,主要存在于原条墩根中,少占用木材,属废物利用。三是项目属高科技,产出比大,消耗原料少,产值利润高。四是开创大兴安岭以兴安落叶松为原料,生产林化产品的新纪元。 1.7经营范围: (1)范围:主要生产95%高纯度二氢槲皮素;同时生产副产品阿拉伯半乳聚糖、落叶松油 (2)规模:年产30吨二氢槲皮素;200吨阿拉伯半乳聚糖;50吨落叶松油 1.8主要经济技术指标

表一,主要经济技术指标 二、项目背景及建设的必要性分析 2.1项目背景 二氢槲皮素又称花旗松素或紫杉叶素,属维生素p。是一种二氢

酮醇类化合物。俄罗斯和美国药典中都收录有二氢槲皮素。二氢槲皮素在植物中的含量偏低,主要植物资源是西伯利亚落叶树(花旗松),多分布于俄罗斯西伯利亚地区,其他地区少见。或有通过化合物合成的二氢槲皮素,因程序复杂,成本较高,无法达到工业化生产要求。目前中国医药领域所使用的二氢槲皮素主要来自于俄罗斯和美国,因为供需差距较大,价格较为昂贵,这也进一步阻碍了它的工业化生产和应用。 (1)国内外研究现状 二氢槲皮素在落叶松中的含量约在0.3~5.7%左右,二氢槲皮素最早由日本学者Fukui从针叶植物Chamaecyparis obtusa(Sieb. et Zucc.) Endl.叶中提取出来,为一种葡萄糖苷的苷元。随后他又研究了它的 3-O-葡萄糖苷在针叶植物中的分布以及细菌存在下苷键的水解。以后又有人从多种植物中分离出二氢槲皮素及其衍生物,在植物中以苷元或苷两种形式存在。 美国专利(US2744919A)介绍了用水或极性稍大的醇或酮从树皮中提取二氢槲皮素,减压浓缩溶剂得到一种含有单宁、糖类和有色物质的粗提物,然后用低极性的醇、酮或醚萃取,脱除溶剂后的膏状物用热水进行结晶纯化制得二氢槲皮素粗品。此法溶剂萃取后得到的浸膏溶液含有较多杂质,在结晶的过程中纯度提高不明显且结晶次数较多。 俄罗斯专利(RU2184561C1)介绍了一种以落叶松木粉为原料提取二氢槲皮素的方法,将木粉与有机溶剂混合加热到110~120℃提

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

二氢杨梅素

二氢杨梅素(DMY,Dihydromyricetin) 二氢杨梅素,是葡萄科蛇葡萄属的一种野生木质藤本植物提取物,其中主要活性成分为黄酮类化合物,此类物质具有清除自由基、抗氧化、抗血栓、抗肿瘤、消炎等多种奇特功效;而二氢杨梅素是较为特殊的一种黄酮类化合物,除具有黄酮类化合物的一般特性外,还具有解除醇中毒、预防酒精肝、脂肪肝、抑制肝细胞恶化、降低肝癌的发病率等作用。是保肝护肝,解酒醒酒的良品。 二氢杨梅素,是藤茶的主要活性成分之一具有多种生物学功能。又名双氢杨梅树皮素、福建茶素、白蔽素、二氢杨梅黄酮、蛇葡萄素等。 主要功能: 藤茶提取物具有多种功效: 1)清除自由基、抗氧化的作用:藤茶提取物能有效降低小鼠体内脂质过氧化水平,防止体内抗氧化酶受自由基的诱导的氧化损伤,显著增强机体抗氧化能力; 2)抗菌作用:藤茶提取物对金色葡萄球菌、枯草杆菌有很强的抑制效果,对黄曲霉、黑曲霉、青霉和交链霉均有不同程度的抑制效果。二氢杨梅素对金葡萄、耐药金葡萄和绿脓杆菌都有不同的抑制效果。 3)保肝作用:二氢杨梅素能明显抑制血清中丙氨酸转氨酶(ALT)和天冬氨酶转氨酶(AST)的活性升高及降低血清总胆红素,有明显的降酶退黄的作用。藤茶提取物能抑制大鼠肝纤维化的形成。 4)降血脂、降血糖的作用:二氢杨梅素能降低小鼠血脂,增强机体抗氧化能力,减轻高脂对肝细胞的损害。同时对高血糖小鼠有明显的降糖效果。 5)抗炎、镇疼效果:藤茶提取物能明显抑制二甲苯致小鼠耳廓肿胀,抑制乙酸诱发小鼠扭体反应。 6)抗肿瘤作用:藤茶提取物对部分癌细胞的增殖有明显的抑制作用。 Dihydromyricetin As a Novel Anti-Alcohol Intoxication Medication 1.Yi Shen1, 2. A. Kerstin Lindemeyer1, 3.Claudia Gonzalez1, 4.Xuesi M. Shao2, 5.Igor Spigelman3, 6.Richard W. Olsen1, and 7.Jing Liang1 1.1Departments of Molecular and Medical Pharmacology and 2.2Neurobiology, David Geffen School of Medicine, and 3.3Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California 90095 1.Author contributions: X.M.S., I.S., R.W.O., and J.L. designed research; Y.S., A.K.L., C.G., and J.L. performed research; Y.S., A.K.L., C.G., X.M.S., and J.L. analyzed data; Y.S., X.M.S., I.S., R.W.O., and J.L. wrote the paper. Abstract Alcohol use disorders (AUDs) constitute the most common form of substance abuse. The development of AUDs involves repeated alcohol use leading to tolerance, alcohol withdrawal syndrome, and physical and psychological dependence, with loss of ability to control excessive drinking. Currently there is no effective therapeutic agent for AUDs without major side effects.

几种金属与二氢杨梅素络合作用的光谱研究

第28卷,第5期光 谱 实 验 室Vol.28,No.5 2011年9月Chinese J ournal of Sp ectroscop y L abor atory September,2011 几种金属与二氢杨梅素络合作用的光谱研究 严赞开 黄文霞 叶楚洁 (韩山师范学院化学系 广东省潮州市桥东 521041) 摘 要 金属离子(M)容易接受配体,成为中心离子,二氢杨梅素(DM Y)是藤茶中活性最强的天然活性物质,可作为多基配体与金属发生络合反应。本文研究了DM Y-M系统的紫外光谱、荧光光谱及红外光谱,与DM Y相比,DM Y-M有以下特点:紫外光谱吸收峰、荧光光谱发射峰位置基本不变,但强度减弱;羰基红外吸收峰发生红移,并在500—700cm-1出现M—O吸收峰。 关键词 二氢杨梅素;配合物;光谱法 中图分类号:O657.32;O657.33 文献标识码:A 文章编号:1004-8138(2011)05-2631-03 1 引言 二氢杨梅素为3,5,7,3′,4′,5′-六羟基-2,3-双氢黄酮醇(Dihydromyricetin,DM Y),是一种重要的黄酮类化合物[1,2],在抗菌、消炎、降血脂、抗突变、抗氧化、抗癌、抑制脂肪酶等方面具有显著效果[3,4]。该分子具有超离域大 键、6个羟基和一个羰基,氧原子具有强配位能力,与金属离子易形成配合物[5],其配合物也具有很好的生物活性[6]。由于二氢杨梅素与金属络合时,结构上的改变会导致其光谱发生变化,许多学者利用此现象,采用金属盐(常用铝盐)与二氢杨梅素络合,运用紫外光谱法测定其含量[7,8]。本文在前人研究工作基础上,合成了几种二氢杨梅素的金属配合物,对其红外光谱、紫外光谱、荧光光谱进行了系统研究,揭示二氢杨梅素金属配合物的光谱特性。 2 实验部分 2.1 材料与仪器 二氢杨梅素(纯度大于98%,浏阳艾特天然产物研究与开发有限公司);其他试剂均为分析纯(潮州市化学试剂公司)。准确配制二氢杨梅素5.0×10-4mol/L、各金属离子为1.0×10-3、1.0×10-2mol/L储备液。实验用水为二次蒸馏水。 pHS-2C型精密酸度计(上海精密科学仪器有限公司);TU-1900双光束紫外分光光度计(北京普析通用仪器有限责任公司);RF-5301PC荧光分光光度计(日本岛津公司);WQF-510型FTIR傅里叶变换红外光谱仪(北京瑞利分析仪器公司);FY-40型手动压片机(天津思创精实科技发展有限公司)。 韩山师范学院高层次人才科学研究启动资金资助 联系人,电话:(0768)2523643;E-mail:yanxiao4300@https://www.360docs.net/doc/e414509997.html, 作者简介:严赞开(1963—),男,湖北省鄂州市人,教授,主要从事天然产物化学研究工作。 收稿日期:2010-10-28;接受日期:2010-12-06

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.360docs.net/doc/e414509997.html, 收稿日期:2009-01-13 33

二氢杨梅素分离纯化的研究进展

二氢杨梅素分离纯化的研究进展 摘要:二氢杨梅素是黄酮类化合物中重要的一员,具有消炎、止咳、祛疚、镇痛、抑菌、抗高血压、消脂以及解乙醇中毒等药理作用;本文将对二氢杨梅素的理化性质及其分离纯化进行阐述。 关键字:二氢杨梅素;理化性质;分离;纯化 The progress of dihydromyricetin separate and purify Abstract:Dihydromyricetin one of the important flavonoids,and have pharmacological effects of anti-inflammatory, cough, dispel remorse, analgesic, antibacterial, antihypertensive, Cellulite solution of ethanol poisoning; This paper will dihydromyricetinphysical and chemical properties and its purification described. Keywords:Dihydromyriceti n·Chemical properties·Separate·Purification 0、前言 二氢杨梅素(3,5,7,3 7,4’,5’一六羟基2,3-双氢黄酮醇,DMY)又名双氢杨梅树皮素、福建茶素、蛇葡萄素等,是黄酮类化合物的重要一员。该化合物首次由Kotake和Kubota于1940从葡萄科蛇葡萄属植物福建茶即楝叶玉葡萄A.Meliaefolia的叶中分离到,命名为蛇葡萄素[1]。 DMY广泛存在于松柏类植物和木材中,如松属(pinus)和雪松属(cedrus)树皮中,也存在于木本被子植物,如杜娟花科植物饼砂杜娟(Rhodendron cinnnbariuunm)叶、连香树科植物连香树(Cercidiphyllum japonicus)木材中,是一种很好的抗氧化剂。该植物存在于杨梅科、杜娟科、藤黄科、大戟科等植物中,有抗癌、利胆和抗炎作用。近十年来,随着黄酮类化合物成为天然植物活性成分的研究热点后,DMY也受到人们的重视和关注,但由于在以上植物中存在含量不高的因素,一直无法进行大规模的应用和实验,直到在蛇葡萄科中发现并提取之后才引起人们极大的关注和重视。从目前研究情况表明,DMY大量存在于葡萄科植物中,尤其是在蛇葡萄属植物中更是大量存在。有研究表明,藤茶幼嫩茎叶中含量达27%28%,最高部位可达40%以上;粤蛇葡萄中幼嫩茎叶中含量可达25%以上[2]。

藤茶

藤茶- 中药材 【药名】藤茶烘干藤茶 【别名】霉茶叶。 【功效】清热利湿;平肝降压;活血通络 【科属分类】葡萄科 【主治】痢疾;泄泻;小便淋痛;高血压;头昏目胀;跌打损伤 【生态环境】生于海拔1300-1950m的山坡灌丛或山谷疏林中。 【资源分布】分布于西南及陕西、甘肃、湖北等地。 【出处】《中国中草药汇编》记载: 藤茶味甘淡,性凉,具有清热解毒,降暑生津,祛风湿,强筋骨,消炎利尿,抗心律失常,抗心肌缺血,缓解酒精作用等功效。长期饮用对皮肤癣癞,黄疸性肝炎,感冒风热,咽喉肿痛,急性结膜炎,痛疖,高血压,高血脂,高血糖,护扶养颜等都有极好作用。 藤茶- 喝藤茶的功效 “茶友”们相聚,一个话题——饮用藤茶的体会及种种妙处,常会被提及。渐渐地我萌发了一个念头,想进一步了解藤茶,认识藤茶,知其然还想知其所以然。经过一番寻觅探求,藤茶面貌逐渐清晰凸现。现将我所了解的藤茶的情况与诸君细细说来,供各位作保健养生之参考。 藤茶学名Ampelopsis grossedentata,中文植物名为显齿蛇葡萄,是属于葡萄科蛇葡萄属的一种野生藤本植物。地方名除了藤茶外,还有甘露茶、茅岩莓等。它主要分布在两广、两湖、云贵、江西、福建等省,生长在山坡混交林中,野生贮量大。 藤茶水浸出物中含有丰富的糖和氨基酸,包括人体必需的8种氨基酸,具有一定的营养保健作用。藤茶还含有大量的多酚及黄酮类化合物,这是藤茶具有某些医疗保健作用的重要的物质基础。 有学者研究认为:藤茶有消炎止咳祛痰作用,其祛痰止咳的作用与安妥明相似。实验表明,藤茶对金黄色葡萄球菌、表皮葡萄球菌、乙型溶血性链球菌、大肠埃希菌、痢疾杆菌等有明显的抑制作用。对食品中常见细菌的抑制作用优于常用的防腐剂苯甲酸。此外,藤茶具有防止动脉粥样硬化及降血脂、降血糖等作用。藤茶中含有大量的黄酮类化合物,其主体物质为二氢杨梅素,它对自由基的清除率高达73.3%~91.5%,可减轻机体内氧化损伤,具有抗衰老的作用。藤茶还能减轻动物肝组织的变性和坏死程度,有保肝护肝之作用。 长期饮用藤茶有无毒副反应,这是“茶友”们曾经十分关心的一个问题。专家对广西藤茶所含的黄酮类化合物进行长期毒性试验,结果表明:在大鼠身上未发现与毒性有关的明显病变,停药后也未见药物延迟性毒性反应。事实上,我国南方一些少数民族地区长年累月饮用此茶,尚未见到饮用藤茶出现不良情况的报道。藤茶不含鞣酸,不会影响蛋白质的消化与吸收,不会夺取体内作为造血原料的铁质;藤茶也不含有咖啡因一类具有兴奋作用的化合物,故对于贫血、睡眠质量不高等人,且又喜欢饮茶而不敢饮茶者,藤茶也许是一种理想的代用品。 少数人饮藤茶后会出现一种微弱的催眠现象。有一友人描述如下:藤茶饮后犹如冬日坐在朝南无风的墙角,沐浴在金色的阳光中,慵懒舒适,伴随着一种淡淡的睡意。总之,藤茶既有普通保健之功,又对某些疾病有医疗或预防作用,长期饮用又比较安全。可以说藤茶是大自然给我们的一种恩赐,“甘露茶”的说法并非妄语。不过根据有些“茶友”个人体验认为:此物虽属平和,阴盛阳虚者还需谨慎饮用。 三降 降血粘:抑制血小板聚集,降低血浆纤维蛋白原浓度,增强红细胞变形能力而起降血粘

金属储氢材料研究进展

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

本科毕业论文(设计)杨梅素和二氢杨梅素的高效分离纯化

杨梅素和二氢杨梅素的高效分离纯化 大摘要 本研究以藤茶(显齿蛇葡萄)为原料致力于易于工业化生产的二氢杨梅素、杨梅素的分离纯化条件研究。建立和优化了二氢杨梅素的结晶重结晶条件,获得了较高纯度的二氢杨梅素和杨梅素。在此基础上,建立了高效液相色谱法测定杨梅素、二氢杨梅素的操作条件和藤茶总黄酮的测定方法。 藤茶是一种非常古老的中草药资源、类茶植物资源和药食两用植物资源,其原植物为葡萄科蛇葡萄属的显齿蛇葡萄(Ampelopsis grossedentata(Hand-Mazz) W.T.Wang)。其性凉,具利尿,消炎,清热解毒,散瘀破结,祛风除湿等功效,能医治肺痈、肠、瘰病、痈症肿痛、跌打、风湿、烫伤、肝炎、慢性肾炎、小便涩痛等疾病,并可治感冒、咽喉肿痛、胃热呕吐等症。藤茶主要成分为二氢杨梅素和杨梅素等黄酮成分。二氢杨梅素基本性质为白色针状结晶,mp: 245~246℃,易溶于热水、热乙醇、丙酮、甲醇,微溶于水、醋酸乙酯,难溶于氯仿、石油醚。显色反应为盐酸-镁粉反应呈玫瑰红色,三氯化铁反应呈紫黑色,与三氯化铝反应呈强黄绿色荧光;α-萘酚反应阴性;与锆盐-柠檬酸反应鲜黄色不褪。杨梅素基本性质为黄色结晶,mp:324~326℃,溶于甲醇、乙醇、热水,微溶于水,难溶于氯仿、丙酮、石油醚。显色反应为盐酸-镁粉反应呈玫瑰红色, 与FeCl 3乙醇液反应呈墨绿色,与AlCl 3 反应呈强黄绿色荧光,α-萘酚反应呈阴性,与 NaOH 反应呈黑绿色,UV(MeOH):375.0nm,255.0nm。 贵州藤茶黄酮含量可高达40%以上,藤茶黄酮的主要成分为二氢杨梅素(Dihydromyricetin,DMY)和杨梅素(Myricetin, MYR),美国FDA已将杨梅素广泛应用于医药、食品、保健品和化妆品;而二氢杨梅素具有清除自由基、抗氧化、抗血栓、抗肿瘤、消炎等多种功效,广泛应用于治疗呼吸道感染、酒精中毒的中成药制剂并已在制备抗白血病及鼻咽癌药物的应用领域取得了发明专利;是保肝护肝,解酒醒酒的良品,主要作为医药原料药并做为一类新药准备进入临床试验。 研究了藤茶总黄酮的测定方法,以二氢杨梅素为对照品,在291 nm测定吸收度,获得标准曲线的线性回归方程为:y= 0.0441x+ 0.034,相关系数:R2=0.9992,建立了藤茶总黄酮的测定方法,用该法测定藤茶总黄酮含量,比用芦丁作标样测定结果更准确和符合实际,测定6月初采自贵州梵净山的藤茶中总黄酮成分含量达43%。

储氢材料的研究与发展前景

目录 1.前言 (3) 2.储氢材料 (4) 2.1金属储氢材料 (4) 2.1.1镁基储氢材料 (5) 2.1.2钛基(Fe-Ti)储氢材料 (8) 2.1.3稀土系合金储氢材料 (9) 2.1.4锆系合金储氢材料 (10) 2.1.5金属配位氢化物 (11) 2.2碳质储氢材料 (11) 2.3液态有机储氢材料 (12) 3.储氢方式 (14) 3.1气态储存 (14) 3.2液化储存 (14) 3.3固态储存 (15) 4.氢能前景 (15) 参考文献 (17)

储氢材料的研究与发展前景 摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料, 如镁基储氢材料钛碳基储氢材料、稀土储氢材料、碳质储氢等材料的研究进展、发展前景和方向。 关键字:储氢材料,储氢性能,储氢方式,发展前景 1.前言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)

藤茶的研究进展

藤茶的研究进展1 平政,蒋才武 广西中医学院,南宁(530001) E-mail:pingzheng@https://www.360docs.net/doc/e414509997.html, 摘要:本文从化学成分、药理作用和应用等方面概述了近年来对药食两用植物—藤茶的研究进展,提示了藤茶药用资源的研究开发前景。 关键词:藤茶,化学成分,药理作用,应用,研究进展 藤茶,学名为显齿蛇葡萄[Ampelopsis grossedentata (Hand-Mazz) W.T.Wang],是葡萄科(Vitaceae Michx)蛇葡萄属(Ampelopsis)的一种野生木质落叶藤本植物,俗称山甜茶、甘露茶、白毛猴、白茶、白茶饼等,主要分布于我国湖南、湖北、云南、贵州、广东、广西、福建等地。我国壮族和瑶族百姓将其幼嫩茎叶,经揉制、干燥用于感冒、发热、风湿病、中暑、头晕、肠胃不适等症,至今已有数百年的历史。文献报道藤茶及其提取物有抗氧化、抗肿瘤、抗病毒、抗炎镇痛、广谱抗菌、降血糖、降血脂、保肝等作用。药理实验证明其功效主要是由黄酮类化合物尤其是二氢杨梅树皮素(Dihydromyricetin)和杨梅树皮素(Myricetin)所致。化学成分分析表明藤茶中黄酮总含量高达40%左右,其中二氢杨梅树皮素的含量20%以上,杨梅素的含量1.6%以上 [1],这惊人的高含量预示着藤茶有极大的研究和应用前景。本文就近年来对藤茶的化学成分、药理作用和应用等方面进行的研究概述如下。 1. 化学成分研究 1.1 藤茶化学成分的种类 周天达[2]等从藤茶的乙醇提取物中分离出3,3’,5,5’7-六羟基-2,3-二氢黄酮醇,即二氢杨梅素(简称DMY}。何桂霞[3]等从藤茶的乙醇提取物中提取分离得另一种黄酮类化合物3,5,7,3,4,5-六羟基黄酮,即杨梅树皮素(简称MYR)。进一步从藤茶的乙醇提取物中分离出:4'-羟基-3-甲氧基异黄烷-7-0-a-L-鼠李糖(1→6)-β-D-葡萄糖甙即藤茶甙(grossedentataside)、橙皮素、二氢槲皮素、芹菜素、山萘酚[4][5];从乙酸乙酯提取物中分离得到了槲皮素、槲皮素-3-O-?-D-葡萄糖苷,花旗松素、洋芹素、芦丁等黄酮类化合物和没食子酸、没食子酰-β-D-葡萄糖、没食子酸乙酯、棕榈酸、没食子酸甲酯[6][7];从正定醇提取物中分离出4’-羟基-3’-甲氧基异黄烷-7-O-吡喃鼠李糖甙即藤茶素(grossedentatasin)[8];从乙醚浸膏中分离得杨梅苷[9];从石油醚提取物中分离得到?-谷甾醇、豆甾醇和齐墩果酸[4]。 显齿蛇葡萄中含有挥发油成分,从中分离出28种香气成分,主要有反-2-己烯醛、苯乙烯、三甲基-7-吡嗪、苯乙醛、α-萜品醇、水杨酸甲酯、香叶醇、紫罗酮、顺茉莉酮、雪松醇、6,10,14-三甲基地-十五烷酮等[10];富含多种微量元素,Fe(245.00μg.g-1)、Cu(21.00μg.g-1)、Zn(56.60μg.g-1)、Ca(322.00μg.g-1)、Mg(2265.00μg.g-1)、Mn(600.00μg.g-1)、Se(0.18μg.g-1)、Na(62.50μg.g-1)、F(24.30μg.g-1)、I(0.21μg.g-1)、K(15625.50μg.g-1)及Co(0.50μg.g-1)[11]。熊皓平等[12]研究表明显齿蛇葡萄水浸出物近50%,多酚类化合物 1本课题得到国家自然科学基金(No. 20562002) 项目的资助。

藤茶有效成分及功效的研究进展

学术 专业 人文 茶趣 2014年第三期 02 作者简介:周才碧,硕士研究生,主要研究方向为茶叶加工与综合利用。 *通讯作者:陈文品,副教授,副主任,主要研究方向为茶叶加工与安全。E-mail: cwptea@https://www.360docs.net/doc/e414509997.html, 藤茶有效成分及功效的研究进展 周才碧,张敏星,穆瑞禄,陈文品* (华南农业大学园艺学院茶叶科学系,广东 广州 510642) 摘要:近年来,国内外对藤茶有效成分和功效的研究主要集中在:藤茶中黄酮类、蛇葡萄素和二氢杨梅素等有效成分的分离和提取,以及藤茶抗氧化、降血压和调节免疫等方面功效的研究。本文主要从藤茶有效成分及相关功效进行综述,以期为藤茶有效成分和相关功能作用机理的研究提供一定的参考。 关键词:藤茶;成分;功效 藤茶,学名为显齿蛇葡萄(Ampelopsis grossedentata W.T .Wang),是一种典型的类茶植物,俗称山甜茶、白茶、甘露茶、白毛猴等,主要分布于广西、广东、云南、贵州、湖南、湖北、江西、福建等省区[1, 2]。它是瑶族常用药之一,至今已有数百年的药用历史,入药以叶为主,带有少量的茎枝。 据《中国中草药汇编》记载,藤茶味甘淡、性凉。主要成分为蛇葡萄素[3]、杨梅素和双氢杨梅素[4]等,具有降血糖[5]、清热解毒、消肿止痛和散瘀破结等功效[6, 7]。1 藤茶的有效成分 藤茶含有丰富的黄酮类、多糖类和多酚类等化合物。1.1 黄酮类 藤茶中主要含有黄酮类成分 [8, 9] 。目前已从中分离得到将 近20个黄酮类成分,有二氢杨梅素[10, 11]、槲皮素、杨梅素 [11] 、橙皮素、洋芹素和蛇葡萄素 [12, 13] 等,其中3-二羟基槲 皮素和二氢杨梅素同分异构体[14],以双氢杨梅素含量最高,为藤茶中的主要活性成分。 不同叶型,总黄酮的含量不同,以中叶型的含量最高为31.66% [15] ,嫩茎叶中高达 43.4~45.52%。采用不同提取方法, 黄酮类含量不同,浸提法[16, 17] 黄酮类为13.64%,超声法 [18] 总黄酮得率为35.86%;而采用HPD-100大孔树脂较适合分离纯化总黄酮,回收率达77.23%[19]。1.2 二氢杨梅素 1996 年周天达[20]等人首次从藤茶茎叶中分离出二氢杨梅素,它具有黄酮化合物的基本结构,含有6个羟基,其化学结构式 [21, 22] 见图1。 二氢杨梅素在藤茶的含量很高,在幼叶可达40%[23, 24],其含量与地理、气候环境有关。采用热水提取法,结合活性炭脱色、多次重结晶的纯化,二氢杨梅素获得率4.0%,纯度为98% 以上[25];藤茶粗提物经丙酮回流提取、浓缩、加水沉淀后得到晶体,晶体经重结晶4次后得到二氢杨梅素产品,其纯度可达91.3%,得率为4.2%[26]。1.3 多糖和多酚类 藤茶含有丰富的水溶性多糖[27],以水为提取剂,粗提物结晶后的清液经过醇沉、2次Sevage 法除蛋白和干燥,得到藤茶多糖纯度为45.4%,得率为5.2%[28]。 水浸提法提取藤茶中多酚类,获得率为9.80%[16];而采用溶剂提取法,最佳提取条件为体积分数50%丙酮溶液、料液比1:25、75℃提取1.5h,总多酚得率高达21.82%。2 藤茶的功效 民间认为,大凡中暑、便秘等症,泡饮藤茶,疗效明显。藤茶是清除人体内有害物质的“清洁剂”,长期饮用,能消除人体亚健康。2.1 抗氧化作用 藤茶提取物均有不同程度的体外抗氧化效果,其中最主要有黄酮类、多糖类[27, 29],而杨梅素和二氢杨梅素为藤茶黄酮类化合物的主要抗氧化活性成分。杨梅素[30]对DPPH.的清除

相关文档
最新文档