数字电路实验二--译码器实验报告
数字电路实验报告

数字电路实验报告姓名:张珂班级:10级8班学号:2010302540224实验一:组合逻辑电路分析一.实验用集成电路引脚图1.74LS00集成电路2.74LS20集成电路二、实验内容1、组合逻辑电路分析逻辑原理图如下:U1A 74LS00NU2B74LS00NU3C74LS00N X12.5 VJ1Key = Space J2Key = Space J3Key = Space J4Key = SpaceVCC5VGND图1.1组合逻辑电路分析电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。
真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1表1.1 组合逻辑电路分析真值表实验分析:由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。
2、密码锁问题:密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。
试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下:U1A74LS00NU2B74LS00NU3C 74LS00NU4D 74LS00NU5D 74LS00NU6A74LS00N U7A74LS00NU8A74LS20D GNDVCC5VJ1Key = SpaceJ2Key = SpaceJ3Key = SpaceJ4Key = SpaceVCC5VX12.5 VX22.5 V图 2 密码锁电路分析实验真值表记录如下:实验真值表 A B CD X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 11 10 1表1.2 密码锁电路分析真值表实验分析:由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。
实验2编码器、译码器

实验二编码器、译码器一、实验目的1、掌握编码器和译码器的工作原理;2、熟悉常用编码器和译码器的逻辑功能与典型应用。
二、实验仪器及设备1、EEL-II型电工电子实验台2、数字电路实验箱3、万用表4、集成器件74LS148、74LS138等三、实验内容及步骤1、编码器实验:测试74LS148的逻辑功能输入接数据开关,输出接显示器件(如发光二极管),将测试结果填入下表。
2、译码器实验:(1)测试74LS138的逻辑功能(2) 用74LS138实现Z A B C A B C A B C A B C =⋅⋅+⋅⋅+⋅⋅+⋅⋅。
四、实验报告1、画出实验线路,记录实验数据;2、对实验结果进行分析、讨论。
五、器件介绍1、 8-3线优先编码器74LS1488个信号输入端、3个二进制码输出端、输入使能端EI 、输出使能端EO 、优先编码工作状态标志GS 。
输入、输出均为低电平有效。
输入使能端ST :允许编码器工作的控制端。
输出使能端S Y :方便扩展,组成更多输入端的优先编码器。
优先编码工作状态标志EX Y :是否存在有效输入的工作状态标志端。
注意:74*148和CD4532输入、输出正相反,即CD4532均为高电平有效。
2、 3-8线译码器74LS138A 2、A 1、A 0为二进制译码输入端, 为译码输出端(低电平有效),G 1、 、 为选通控制端。
当G 1=1、 时,译码器处于工作状态;当G 1=0、=1时,译码器处于禁止状态。
70~Y Y 2A G 2B G 22A B G G +220A B G G +=。
数字电子技术 实验报告

实验一组合逻辑电路设计与分析1.实验目的(1)学会组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。
2.实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻输入信号的取值组合。
根据电路确定功能,是分析组合逻辑电路的过程,一般按图1-1所示步骤进行分析。
图1-1 组合逻辑电路的分析步骤根据要求求解电路,是设计组合逻辑电路的过程,一般按图1-2所示步骤进行设计。
图1-2 组合逻辑电路的设计步骤3.实验电路及步骤(1)利用逻辑转换仪对已知逻辑电路进行分析。
a.按图1-3所示连接电路。
b.在逻辑转换仪面板上单击由逻辑电路转换为真值表的按钮和由真值表导出简化表达式后,得到如图1-4所示结果。
观察真值表,我们发现:当四个输入变量A,B,C,D中1的个数为奇数时,输出为0,而当四个输入变量A,B,C,D 中1的个数为偶数时,输出为1。
因此这是一个四位输入信号的奇偶校验电路。
图1-4 经分析得到的真值表和表达式(2)根据要求利用逻辑转换仪进行逻辑电路的设计。
a.问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾探测器。
为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。
b.在逻辑转换仪面板上根据下列分析出真值表如图1-5所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高电平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。
因此,令A、B、C分别表示烟感、温感、紫外线三种探测器的探测输出信号,为报警控制电路的输入、令F 为报警控制电路的输出。
图1-5 经分析得到的真值表(3)在逻辑转换仪面板上单击由真值表到处简化表达式的按钮后得到最简化表达式AC+AB+BC。
4.实验心得通过本次实验的学习,我们复习了数电课本关于组合逻辑电路分析与设计的相关知识,掌握了逻辑转换仪的功能及其使用方法。
数字电路——2-4译码器设计

目录1 绪论 (1)1.1设计背景 (1)2 电路分析 (2)2.1 2-4功能分析 (2)2.2 2-4译码器逻辑图 (3)3 系统建模与仿真 (4)3.1 建模 (4)3.2 仿真波形 (5)4 仿真结果分析 (7)5 小结与体会 (8)参考文献 (9)1 绪论1.1设计背景在数字系统中,经常需要将一中代码转换为另一种代码,以满足特定的需求,完成这种功能的电路称为码转化电路。
译码器就属于其中一种。
而译码就是编码的逆过程,它的功能是将具有特定含义的二进制码转换成对应的有效输出信号,具有译码功能的的逻辑电路称为译码器。
而2-4译码器是唯一地址译码器,是将一系列的代码转换成与之一一对应有效的信号。
常用于计算机中对存储单元地址的译码,因此,设计2-4译码器具有很强的现实意义。
1.2 matlab简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
它主要由MATLAB和Simulink两大部分组成。
本设计主要采用simulink进行设计与仿真。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
十六进制7段数码显示译码器设计实验报告

实验名称:十六进制7段数码显示译码器设计实验目的:1.设计七段显示译码器2.学习Verilog HDL文本文件进行逻辑设计输入;3.学习设计仿真工具的使用方法;工作原理:7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是二进制的,所以输出表达都是十六进制的,为了满足十六进制数的译码显示,最方便的方法就是利用译码程序在FPGA/CPLD中来实现。
例如6-18作为7段译码器,输出信号LED7S 的7位分别接图6-17数码管的7个段,高位在左,低位在右。
例如当LED7S输出为“1101101”时,数码管的7个段g,f,e,d,c,b,a分别接1,1,0,1,1,0,1;接有高电平的段发亮,于是数码管显示“5”。
注意,这里没有考虑表示小数点的发光管,如果要考虑,需要增加段h,例6-18中的LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)应改为…(7 DOWNTO 0)。
实验内容1:将设计好的VHDL译码器程序在Quartus II上进行编辑、编译、综合、适配、仿真,给出其所有信号的时序仿真波形。
实验步骤:步骤1:新建一个文件夹击打开vhdl文件;步骤2:编写源程序并保存步骤3:新建一个工程及进行工程设置步骤4:调试程序至无误;步骤5:接着新建一个VECTOR WAVEFOM文件及展出仿真波形设置步骤6:输入数据并输出结果(时序仿真图)步骤7:设置好这个模式步骤8:生成RTL原理图步骤9:引脚锁定及源代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY DECL7S ISPORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO 0);LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END;ARCHITECTURE one OF DECL7S ISBEGINPROCESS(A)BEGINCASE A ISWHEN"0000"=> LED7S<="0111111";WHEN"0001"=> LED7S<="0000110";WHEN"0010"=> LED7S<="1011011";WHEN"0011"=> LED7S<="1001111";WHEN"0100"=> LED7S<="1100110";WHEN"0101"=> LED7S<="1101101";WHEN"0110"=> LED7S<="1111101";WHEN"0111"=> LED7S<="0000111";WHEN"1000"=> LED7S<="1111111";WHEN"1001"=> LED7S<="1101111";WHEN"1010"=> LED7S<="1110111";WHEN"1011"=> LED7S<="1111100";WHEN"1100"=> LED7S<="0111001";WHEN"1101"=> LED7S<="1011110";WHEN"1110"=> LED7S<="1111001";WHEN"1111"=> LED7S<="1110001";WHEN OTHERS =>NULL;END CASE;END PROCESS;END;实验内容二:1、硬件测试。
实验四编码器,译码器,数码管(定稿)

实验四编码器、译码器、数码管一、实验目的1.掌握编码器、译码器和七段数码管的工作原理和特点。
2.熟悉常用编码器、译码器、七段数码管的逻辑功能和他们的典型应用。
3. 熟悉“数字拨码器”(即“拨码开关”)的使用。
二、实验器材1. 数字实验箱 1台2. 集成电路:74LS139、 74LS248、 74LS145、 74LS147、 74LS148 各1片74LS138 2片3. 电阻: 200Ω 14个4. 七段显示数码管:LTS—547RF 1个三、预习要求1.复习编码器、译码器和七段数码管的工作原理和设计方法。
2. 熟悉实验中所用编码器、译码器、七段数码管集成电路的管脚排列和逻辑功能。
3. 画好实验用逻辑表。
四、实验原理和电路按照逻辑功能的不同特点,常把数字电路分成两大类:一类叫做组合逻辑电路,另一类叫做时序逻辑电路。
组合逻辑电路在任何时刻其输出信号的稳态值,仅决定于该时刻各个输人端信号的取值组合。
在这种电路中,输入信号作用以前电路的状态对输出信号无影响。
通常,组合逻辑电路由门电路组成。
(一)组合逻辑电路的分析方法:a.根据逻辑图,逐级写出函数表达式。
b.进行化简:用公式法或图形法进行化简、归纳。
必要时,画出真值表分析逻辑功能。
(二)组合逻辑电路的设计方法:从给定逻辑要求出发,求出逻辑图。
一般分以下四步进行。
a.分析要求:将问题分析清楚,理清哪些是输入变量,哪些是输出函数。
进行逻辑变量定义(即定义字母A、B、C、D ……所代表的具体事物)。
b. 根据要求的输入、输出关系,列出真值表。
c. 进行化简:变量比较少时,用图形法;变量多时,可用公式法化简。
化简后,得出逻辑式。
d. 画逻辑图:按逻辑式画出逻辑图。
进行上述四步工作,设计已基本完成,但还需选择元件——数字集成电路,进行实验论证。
值得注意的是,这些步骤的顺序并不是固定不变的,实际设计时,应根据具体情况和问题难易程度进行取舍。
(三)常用组合逻辑电路:1.编码器编码器是一种常用的组合逻辑电路,用于实现编码操作。
编码器、译码器的功能测试及应用
学生实验报告学院:课程名称:数字电路实验与设计专业班级:姓名:学号:学生实验报告(一)学生姓名学号同组人: 实验项目编码器、译码器的功能测试及应用■必修□选修□演示性实验■验证性实验□操作性实验□综合性实验实验地点W105 实验仪器台号指导教师实验日期及节次一、实验综述1. 实验目的:(1)了解编码器、译码器和数码管的管脚排列和管脚功能。
(2)掌握编码器、译码器和数码管的性能和使用方法。
2. 实验所用仪器及元器件:(1)示波器、信号源、万用表、数字实验箱和电脑。
(2)集成电路TTL74LS147、TTL74LS148、TTL74LS47、TTL74LS04、电阻和电位器等。
3. 实验原理:(1) 10- 4线优先编码器74HC14774HC147外引线排列如图1所示,逻辑符号如图2所示。
图1 74HC147外引脚排列图图2 74HC147逻辑符号如图74HC147有9路输入信号,4位BCD码输出,因输出端带圈,所以输入输出均为低电平有效。
他将0—9十个十进制数编成4位BCD码,可把输入端的9路输入信号和隐含的不变信号按优先级进行编码,且优先级别高的排斥级别低的。
当输入端都无效时,隐含着对0路信号进行编码(输出采用反码输出)。
74HC147的功能见表1。
表1 10- 4线优先编码器74HC147输入输出I2I3I4I5I6I7I8I9I3Y2Y1Y0Y1H H H H H H H H H H H H H××××××××L L H H L×××××××L H L H H H××××××L H H H L L L×××××L H H H H L L H××××L H H H H H L H L×××L H H H H H H L H H××L H H H H H H H H L L×L H H H H H H H H H L HL H H H H H H H H H H H L (2) 8-3线优先编码器74LS14874LS148是8-3线优先编码器逻辑符号如图3,外引线排列如图4所示。
实验2、PCM实验
实验 2 PCM 编译码实验一、实验目的1.理解 PCM 编译码原理及 PCM 编译码性能;2.熟悉 PCM 编译码专用集成芯片的功能和使用方法及各种时钟间的关系;3.熟悉语音数字化技术的主要指标及测量方法。
二、实验原理1.抽样信号的量化原理模拟信号抽样后变成在时间离散的信号后,必须经过量化才成为数字信号。
模拟信号的量化分为均匀量化和非均匀量化两种。
把输入模拟信号的取值域按等距离分割的量化就称为均匀量化,每个量化区间的量化电平均取在各区间的中点,如下图所示。
图 2-1 均匀量化过程示意图均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号m(t ) 较小时,则信号量化噪声功率比也很小。
这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中往往采用非均匀量化的方法。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔D v 也小;反之,量化间隔就大。
非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。
非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。
现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用 A 压缩律。
本实验中 PCM 编码方式也是采用 A 压缩律。
A 律压扩特性是连续曲线,实际中往往都采用近似于 A 律函数规律的 13 折线(A=87.6)的压扩特性。
这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现,如下图所示。
图2-2 13 折线特性表 2-1 列出了 13 折线时的x 值与计算得的x 值的比较。
数字电子技术实验报告
实验报告课程名称数字电子技术实验项目门电路逻辑功能及测试、译码器及其应用、时序电路测试及研究、集成计数器及其应用项目一门电路逻辑功能及测试一、实验目的1、熟悉门电路的逻辑功能。
2、熟悉数字电路实验装置的结构、基本功能和使用方法。
二、实验原理用以实现基本逻辑运算和复合逻辑运算的单元电路通称为门电路。
常用的门电路在逻辑功能上有与门、或门、非门、与非门、或非门、与或非门、异或门等几种。
基本逻辑门可以分为分立器件电路和集成电路(Integrated Circuit,简称IC)两类。
用二极管、三极管和电阻等分立元器件组成的基本逻辑门电路即是分立器件电路。
随着集成电路制造工艺的日益完善,集成电路得到广泛应用。
集成基本逻辑门电路是最简单、最基本的数字集成元件,是构成各种复杂数字电路的基本逻辑单元,任何复杂的组合电路和时序电路都可用基本逻辑门通过适当的组合连接而成。
掌握各种基本逻辑门电路的逻辑功能、工作原理和电气特性,对于正确使用数字集成电路是十分必要的,是数字技术工作者所必备的基本功之一。
门电路的逻辑函数式分别为:与门Y =A·B或门Y =A+B非门Y =与非门Y =与非门Y =或非门Y =异或门Y =A⊕B与或非门Y =与门的逻辑功能为“有0 则0 ,全1 则1”;或门的逻辑功能为“有1则1 ,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1 ,全1 则0”;或非门的逻辑功能为“有1 则0 ,全0 则1”;异或门的逻辑功能为“不同则1 ,相同则0”。
三、实验内容及步骤实验前先检查实验箱电源是否正常。
然后选择实验用的集成电路连好线,特别注意Vcc 及地线不能接错。
线接好后经检查无误方可通电实验。
1、集成与非门74LS20的逻辑功能测试选用74LS20一只。
74LS20为双4输入与非门, 即在一块集成块内含有二个互相独立的与非门,每个与非门有4个输入端。
如图1-1(a)所示。
(完整word版)2对4译码器VHDL实验报告.doc
通信与信息工程学院2012 /2013学年第二学期软件设计实验报告模块名称二对四译码器专业电子信息工程学生班级B100109学生学号学生姓名指导教师梅中辉、王奇、周晓燕、孔凡坤实验目的:本软件设计的目的和任务: 1.使学生全面了解如何应用该硬件描述语言进行高速集成电路设计; 2.通过软件使用、设计与仿真环节使学生熟悉 EDA-VHDL 开发环境; 3. 通过对基本题、综合题的设计实践,使学生掌握硬件系统设计方法(自底向上或自顶向下),熟悉 VHDL 语言三种设计风格,并且培养学生应用 VHDL 语言解决实际问题的能力。
实验设备: 1:微型计算机2:quartus II 开发软件实验课题: 2 对 4 译码器实验描述:设计一个 2 对 4 译码器(输入: A B 输出: Y3 Y2 Y1 Y0 ),真值表如图:A B Y3 Y2 Y1 Y00 0 1 1 1 00 1 1 1 0 11 0 1 0 1 11 1 0 1 1 1一:实验目的1:能了解组合逻辑中译码器电路的设计原理。
2:能利用 CPLD数字发展实验系统设计一个二对四译码器。
3:能自行验证所设计电路的正确性。
二:实验内容及要求设计一个 2-4 译码器,并验证输出数值的正确性。
三:实验器材1. 软件: Altera公司的Quartus ||软件。
2. 芯片: Altera公司的EP2C8T144C8。
1)、选择 Block Diagran/Schenatic File,单击 OK 按钮,打开图形2)、进入原理图编辑页面如下:导入逻辑门电路符号、输入/输出符号,用导线连接各逻辑单元如下:工程建立与编译建立工程:在 D 盘建立 test 文件夹,进入 quartusII7.2 主界面,新建编辑代码页面,选择 VHDL file ,点击 OK代码输完后存盘,文件名必需为 test8(文件名必须与实体名一致),目录为,按 project 菜单下 set as top-level entity 命令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路实验二--译码器实验报告
译码器实验是数字电路实验课程的重要组成部分。
本次实验旨在介绍译码的基本原理,并取得实际的实验效果。
本次实验使用的译码器类型是双向双回路译码器。
它可以将2位二进制输入转换为4
位二进制数字代码输出。
它是由基础译码单元(BCD)和其它外部电路组成的,可以根据
二进制输入状态产生正确的十进制输出。
此外,本次实验使用了按钮、LED、模拟电路、
小灯丝等部件来实现所涉及的功能。
实验分为以下几步:首先需要将所有的组成部件组装在原理图的对应接口中;其次根
据原理图上的接口,安装电源组件;然后根据电路要求,按钮和灯丝等部件的位置应该有
所区别;紧接着,根据原理图的线路图,将按钮和LED的铜丝焊接到对应接口处。
最后,
根据实验要求,连接模拟电路,测试结果是否符合实验要求。
在实验过程中,本实验室使用了一台OMRON译码器,根据二进制输入状态,它可以产
生4位十进制输出状态。
实验结果显示,在每种二进制输入状态下,OMRON译码器都可以
成功实现预期的输出,从而证明了译码器的良好性能及高精度。
总的来说,本次实验的主要任务是译码的基本介绍,以及掌握OMRON译码器的使用方法。
实验过程既充满乐趣,也有所收获。
让我们有机会贴近电子工程实践,掌握各种技术,扩充知识。
这次实验是一次有趣又有意义的学习体验。