数字电路实验报告——译码器

合集下载

译码器 实验报告

译码器 实验报告

译码器实验报告译码器实验报告引言:在现代科技的发展中,计算机和电子设备扮演着重要的角色。

而在这些设备中,译码器是一种关键的元件,它能够将数字信号转换为可读的信息,使得我们能够更好地理解和操作这些设备。

本实验旨在探究译码器的工作原理以及其在电子领域中的应用。

一、译码器的基本原理译码器是一种数字电路,其作用是将输入的数字信号转换为对应的输出信号。

它通常由多个逻辑门组成,根据不同的输入组合产生不同的输出。

译码器可以分为德州仪器(TI)码译码器、BCD-7段译码器等多种类型。

二、实验步骤1. 实验材料准备:准备所需的译码器芯片、电路板、电源等材料。

2. 连接电路:根据实验指导书上的电路图,将译码器芯片与电路板上的其他元件进行连接。

3. 设置电源:将电源接入电路板,确保电路正常工作。

4. 输入信号:通过拨动开关或其他输入设备,将数字信号输入到译码器中。

5. 观察输出:观察译码器的输出状态,记录并分析不同输入组合对应的输出结果。

三、实验结果通过实验,我们得到了以下几个重要的实验结果:1. 不同的输入信号组合会导致译码器产生不同的输出信号。

2. 译码器的输出信号可以直接连接到其他电子设备中,实现数字信号的解码和显示。

3. 译码器的输出信号可以通过适当的电路设计和调整,实现各种复杂的功能。

四、实验分析译码器在电子领域中有着广泛的应用。

它可以用于数码管的显示、LED灯的控制、数码电路的设计等方面。

通过将数字信号转换为可读的信息,译码器为我们提供了更方便、更直观的操作方式。

此外,译码器还可以与编码器相结合,实现信息的双向转换。

编码器将输入的信息转换为数字信号,而译码器则将数字信号转换为对应的输出信息。

这种编码-解码的过程在许多通信系统中起着重要的作用,如数字音频、视频传输等。

五、实验总结通过本次实验,我们深入了解了译码器的工作原理和应用。

译码器作为一种重要的数字电路元件,为我们提供了数字信号解码的功能,使得我们能够更好地理解和操作电子设备。

译码器及其应用实验报告

译码器及其应用实验报告

译码器及其应用实验报告译码器是一种能够将数字信号转换为模拟信号或者将模拟信号转换为数字信号的设备,它在通信、控制系统以及各种电子设备中都有着广泛的应用。

本实验旨在通过对译码器的实际操作,深入了解其工作原理和应用场景。

实验一,译码器的基本原理。

首先,我们需要了解译码器的基本原理。

译码器是一种数字电路,它能够将输入的数字信号转换为相应的模拟信号输出。

在实验中,我们使用了常见的二进制译码器,通过对不同的输入信号进行转换,观察输出信号的变化,从而验证译码器的工作原理。

实验二,译码器的应用场景。

译码器在数字通信系统中有着重要的应用,比如在调制解调器中,译码器可以将数字信号转换为模拟信号进行传输,而在接收端,又可以将模拟信号转换为数字信号进行解码。

此外,在控制系统中,译码器也扮演着重要的角色,它能够将数字控制信号转换为模拟控制信号,实现对各种设备的精确控制。

实验三,译码器的性能评估。

在实验中,我们对译码器的性能进行了评估。

通过测量译码器的输入输出特性、信噪比、失真度等指标,我们可以全面了解译码器的性能优劣,并对其在实际应用中的适用性进行评估。

实验四,译码器的改进与优化。

最后,我们对译码器进行了改进与优化。

通过对译码器电路的调整和优化设计,我们可以提高译码器的性能指标,使其在实际应用中具有更好的稳定性和可靠性。

总结:通过本次实验,我们深入了解了译码器的工作原理和应用场景,掌握了对译码器性能进行评估和优化的方法,这对我们进一步深入研究译码器的工作原理和应用具有重要意义。

译码器作为一种重要的数字电路设备,在通信、控制系统等领域有着广泛的应用前景,我们有信心通过不断的研究和实践,进一步提升译码器的性能和应用水平,为数字化时代的发展做出更大的贡献。

实验-译码器

实验-译码器

实验八译码器及其应用一、实验目的:1、掌握中规模集成译码器逻辑功能分析及测试方法;2、学会中规模集成译码器的连接使用方法;3、熟悉数码管的使用方法。

二、实验原理:1、译码器是一个多输入、多输出的组合逻辑电路。

它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

译码器在数字系统中有着广泛的用途,不仅适用于代码的转换,终端的数字显示,而且还适用于数据分配,存储器寻址和组合控制信号等方面。

2、译码器可分为通用译码器和显示译码器两大类。

通用译码器又分为变量译码器和代码变换译码器。

(1)、变量译码器(又称二进制译码器),用以表示输入变量的状态,如2/4线译码器、3/8线译码器和4/16线译码器。

若有n个输入变量,则有2n个不同的状态组合,就有2n 个输出端供其使用。

而每一个输出状态所代表的函数就对应一个n变量的最小项表达式。

图8-1 3-8译码器74LS138逻辑图及列脚排列以3/8线译码器74LS138为例进行分析,图8-1(a)、(b)分别为其逻辑图和引脚排列图。

A2、A1、A0为地址输入端,Y0~Y7是译码器输出端,S1、S2、S3是使能端。

表8-1为74LS138功能表,当S1=1,S2+S3=0时,器件使能端有效,地址码所指定的输出端有信号(为0)输出,其它所有输出端均无信号(为1)输出。

当S1=0,S2+S3=X时或S1=X,S2+S3=1时,译码器被禁止,所有输出同时为1。

二进制译码器实际上也就是负脉冲输出的脉冲分配器。

若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称多路分配器),如图8-2所示。

若在S1输入端输入数据信息,S2=S3=0,地址码所对应的输出是S1数据信息的反码;若从S2输入端输入数据信息,令S1=1,S3=0,地址码所对应的输出就是S2端数据信息的原码。

若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。

根据输入地址的不同组合译出唯一的地址,故可用作地址译码器。

数字电路实验报告 实验2

数字电路实验报告 实验2

实验二 译码器及其应用一、 实验目的1、掌握译码器的测试方法。

2、了解中规模集成译码器的管脚分布,掌握其逻辑功能。

3、掌握用译码器构成组合电路的方法。

4、学习译码器的扩展。

二、 实验设备及器件1、数字逻辑电路实验板1块 2、74HC(LS)20(二四输入与非门) 1片 3、74HC(LS)138(3-8译码器)2片三、 实验原理74HC(LS)138是集成3线-8线译码器,在数字系统中应用比较广泛。

下图是其引脚排列,其中A 2、A 1、A 0为地址输入端,Y ̅0~Y ̅7为译码输出端,S 1、S ̅2、S ̅3为使能端。

下表为74HC(LS)138功能表。

74HC(LS)138工作原理为:当S 1=1,S ̅2+S ̅3=0时,电路完成译码功能,输出低电平有效。

其中:Y ̅0=A ̅2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅4=A 2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅1=A ̅2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅5=A 2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅2=A ̅2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅6=A 2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅3=A ̅2A 1A 0̅̅̅̅̅̅̅̅̅̅Y ̅7=A 2A 1A 0̅̅̅̅̅̅̅̅̅̅因为74HC(LS)138的输出包括了三变量数字信号的全部八种组合,每一个输出端表示一个最小项(的非),因此可以利用八条输出线组合构成三变量的任意组合电路。

实验用器件管脚介绍:1、74HC(LS)20(二四输入与非门)管脚如下图所示。

2、74HC(LS)138(3-8译码器)管脚如下图所示。

四、实验内容与步骤(四学时)1、逻辑功能测试(基本命题)m。

验证74HC(LS)138的逻辑功能,说明其输出确为最小项i注:将Y̅0~Y̅7输出端接到LED指示灯上,因低电平有效,所以当输入为000时,Y̅0所接的LED指示灯亮,其他同理。

数电实验之译码器及其应用

数电实验之译码器及其应用

译码器及其应用一 实验目的1.掌握译码器的逻辑功能。

学习译码器的应用。

二 实验原理1、 译码器是一个多输入、多输出的组合逻辑电路。

它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

译码器在数字系统中有广泛的用途,不仅用于代码的转换,终端的数字显示,还用于数据分配,存储器寻址和组合控制信号等。

不同的功能可选用不同种类的译码器。

2、 变量译码器(二进制译码器),用以表示输入变量的状态,如2线—4线、3线—8线和4线—16线译码器。

若有n 个输入变量,则有2n 个不同的组合状态,就有2n 输出端供其使用。

而每一个输出所代表的函数对应于n 个输入变量的最小项。

以3线—8线译码器74LS138为例进行分析,图14.1是其内部逻辑图:图14.1 74LS138 3线—8线译码器逻辑图其中A 0 、A 1 、A 2为地址输入端,0Y ——7Y 是译码器输出端,S 1、2S 、3S 是使能端。

由74LS138的功能可知,当S 1 = 1,2S +3S =0时,译码器使能,地址码把指定的输出端有信号输出(低电平有效为:“0”)。

其它所有输出端均无信号输出(输出全为高电平“1”)。

当S 1 = 0,2S +3S =X 时,或S 1 = X ,2S +3S =1时,译码器被禁止,所有输出端同时为高电平“1”。

表14.1集成3线—8线译码器真值表三 实验器材数字电路实验箱;集成电路芯片 74LS138、74LS20集成电路引脚分布如图14.2所示:图14.2四 实验内容1、74LS138译码器逻辑功能测试 将译码器使能端S 1 、2S 、3S 及地址端(输入变量)A 0 、A 1 、A 2分别接到逻辑开关,八个输出端0Y ——7Y 依次连接在0—1指示器的八个插口上,拨动逻辑开关,按照74LS138的功能表逐项测试其逻辑功能。

2、 码器的应用A 利用译码器做数据分配器用74LS138译码器使能端中的一个输入端输入数据信息器件就成为一个数据分配器(多路分配器),若从S 1输入端送入数据(用逻辑开关或单脉冲源作为数据源),2S +3S =0,地址译码器所对应的输出是S 1输入数据的反码;若从S 2端输入数据(用逻辑开关或连续脉冲源作为数据),令S 1=1,3S = 0时,地址码所对应的输出就是2S 端数据信息的原码。

数字电路实验报告-译码器及其应用

数字电路实验报告-译码器及其应用

电学实验报告模板实验原理1. 译码器(1)2线-4线译码器图1 2线-4线译码器及其逻辑图1所示为2线-4线译码器及其逻辑。

与4线-2线编码器相比较,可以把“译码”视为“编码”的逆过程。

该译码器的特点是:对于任何一个输入二进制码,四个输出端中,只有一个为“1”,其它输出端均为“0”。

每一个输入二进制码,都与一个特定的输出端相对应。

不同的输入码各对应不同的输出端。

译码器的逻辑功能也可以理解为把每一个输入二进制码翻译成另外一个代码。

具体到图1所示2线-4线译码器,则是把每一个输入二进制码翻译成另外一种四位码,每一个四位码中都只有一个“1”。

由图1(b)可得到编码器逻辑函数式为(2)3线-8线译码器74LS138图2 3线-8线编码器74LS138及其逻辑图2所示为集成电路芯片3线-8线编码器74LS138及其逻辑。

和是译码输入端,是译码输出端。

和为译码使能控制端。

当,时,译码器处于正常译码工作状态;否则,译码器被禁止,此时,所有的输出端全部为“1”,无任何输出端为“0”。

这3个使能控制端,也称为“片选”输入端,利用其“片选”作用可以将多片译码器连接起来,以扩展译码功能。

当,时,译码器的逻辑函数式为(3)七段显示译码器图3 七段显示译码器及其逻辑图3所示为七段显示译码器。

和是输入的BCD代码,表示输出的7位二进制代码。

输出代码中的“1”表示所对应的数码管线段点亮,“0”则表示熄灭。

图3(b)列出了BCD码“0000~1001”十种状态与之间的对应关系,还列出了输入码“1010~1111”六种状态与之间的对应关系及所显示的字形。

由图3(b)可得到该编码器逻辑函数式为实验内容及步骤1. 测试2线-4线译码器(1)集成电路芯片74LS139引脚图74LS139是双2线-4线译码器,芯片内部包含两个独立的2线-4线译码器。

图5所示为引脚图。

与图1的2线-4线译码器相比,74LS139的每一个2线-4线译码器都设置了一个使能控制端。

译码器实验报告

译码器实验报告

译码器实验报告译码器实验报告引言:在现代科技的快速发展中,数字电路的应用越来越广泛。

而译码器作为数字电路中的一种重要组件,具有将输入的数字信号转换为特定输出的功能。

本实验旨在通过搭建一个基本的译码器电路,深入理解译码器的原理和工作方式,并通过实验验证其正确性和可靠性。

一、实验目的本实验的主要目的是:1. 理解译码器的基本原理和工作方式;2. 学习使用逻辑门电路搭建译码器电路;3. 验证译码器电路的正确性和可靠性。

二、实验原理译码器是一种将输入的数字信号转换为特定输出的电路。

它通常由多个逻辑门组成,根据输入信号的不同组合方式,产生相应的输出信号。

常见的译码器有BCD译码器、二进制译码器等。

本实验使用的是一个4-2译码器,即4位二进制输入信号经过译码后,输出对应的2位二进制码。

4-2译码器的真值表如下所示:输入(A3A2A1A0) 输出(Y1Y0)0000 000001 010010 100011 110100 000101 010110 100111 111000 001001 011010 101011 111100 001101 011110 101111 11三、实验材料和仪器1. 74LS138 4-2译码器芯片;2. 电路连接线;3. 数字示波器。

四、实验步骤1. 将74LS138芯片插入实验板上的插槽中,并连接适当的电源和接地线。

2. 使用电路连接线将芯片的输入端(A3、A2、A1、A0)与开关电路相连。

3. 使用电路连接线将芯片的输出端(Y1、Y0)与数字示波器相连。

4. 打开电源,将开关电路设置为不同的二进制输入组合,观察数字示波器上的输出信号。

五、实验结果和分析根据实验步骤进行实验后,观察到数字示波器上显示的输出信号与译码器的真值表一致。

这表明译码器电路能够正确地将输入的二进制信号转换为对应的输出信号。

六、实验总结通过本次实验,我们深入了解了译码器的原理和工作方式,并通过实验验证了译码器电路的正确性和可靠性。

数字电路实验报告-译码器

数字电路实验报告-译码器

第五次试验报告 实验五 译码器一、实验目的要求1、熟悉中规模集成电路T4138译码器的工作原理与逻辑功能2、掌握译码器的应用 二、实验仪器、设备直流稳压电源、电子电路调试器、万用表、两个T4138、74LS20 三、实验线路、原理框图 1、T4138的逻辑符号T4138是一个3线—8线译码器,它是一种通用译码器,其逻辑符号如图1所示。

图1其中,A 2、A 1、A 0是地址输入端,Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7是译码输出端,S 1、S 2、S 3是使能端,当S 1=1, S 2+S 3=0时,器件使能。

2、T4138的管脚排列T4138的管脚排列如图2所示:图23、T4138的逻辑功能T4138的功能表如下表所示:Y Y Y Y Y Y Y 32(a )原SJ 符号 (b )GB 符号3线—8线译码器实际上是一个负脉冲输出的脉冲分配器。

若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器。

4、用T4138实现一个逻辑函数译码器的每一路输出,实际上是地址码的一个最小项的反变量,利用其中一部分输出端输出的与非关系,也就是它们相应最小项的或逻辑表达式,能方便地实现逻辑函数。

本试验要求实现以下逻辑函数:Y=AB C +A B C+A BC+ABC=ABC BC A C B A C AB ⋅⋅⋅=7356Y Y Y Y 用T4138和74LS20实现以上逻辑函数,实验线路见下图(图3):图35,用两个3线—8线译码器组成一个4线—16线的译码器 “0Y根据真值表写出4线——16线译码器的逻辑函数表达式0Y =0123D D D D1Y =0123D D D D 2Y =0123D D D D3Y =0123D D D D4Y =0123D D D D5Y =0123D D D D 6Y =0123D D D D 7Y =0123D D D D 8Y =0123D D D D 9Y =0123D D D D 10Y =0123D D D D11Y =0123D D D D 12Y =0123D D D D13Y =0123D D D D14Y =0123D D D D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五次试验报告 实验五 译码器
一、实验目的要求
1、熟悉中规模集成电路T4138译码器的工作原理与逻辑功能
2、掌握译码器的应用 二、实验仪器、设备
直流稳压电源、电子电路调试器、万用表、两个T4138、74LS20 三、实验线路、原理框图 1、T4138的逻辑符号
T4138是一个3线—8线译码器,它是一种通用译码器,其逻辑符号如图1所示。

图1
其中,A 2、A 1、A 0是地址输入端,Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7是译码输出端,S 1、
S 2、S 3是使能端,当S 1=1, S 2+S 3=0时,器件使能。

2、T4138的管脚排列
T4138的管脚排列如图2所示:
图2
3、T4138的逻辑功能
T4138的功能表如下表所示:
Y Y Y Y Y Y Y 32
(a )原SJ 符号 (b )GB 符号
3线—8线译码器实际上是一个负脉冲输出的脉冲分配器。

若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器。

4、用T4138实现一个逻辑函数
译码器的每一路输出,实际上是地址码的一个最小项的反变量,利用其中一部分输出端输出的与非关系,也就是它们相应最小项的或逻辑表达式,能方便地实现逻辑函数。

本试验要求实现以下逻辑函数:
Y=AB C +A B C+A BC+ABC=ABC BC A C B A C AB ⋅⋅⋅=7356Y Y Y Y 用T4138和74LS20实现以上逻辑函数,实验线路见下图(图3):
图3
5,用两个3线—8线译码器组成一个4线—16线的译码器 4线—16线的真值表为:
“0Y
根据真值表写出4线——16线译码器的逻辑函数表达式
0Y =0123D D D D 1Y =0123D D D D 2Y =0123D D D D
3Y =0123D D D D 4Y =0123D D D D
5Y =0123D D D D 6Y =0123D D D D 7Y =0123D D D D 8Y =0123D D D D 9Y =0123D D D D 10Y =0123D D D D
11Y =0123D D D D 12Y =0123D D D D
13Y =0123D D D D 14Y =0123D D D D
15Y =0123D D D D
其实验线路图见下图(图4):
图4
四、实验方法步骤
1、测试T4138的逻辑功能
按图2接线,将使能端S1、2S 、3S 和输入端A 、B 、C 分别接电子电路调试器的状态设置开关,输出端Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7接LED 逻辑电平指示器,逐个按真
210
2、用T4138和74LS20实现以下逻辑函数
Y=AB C +A B C+A BC+ABC=ABC BC A C B A C AB ⋅⋅⋅=7356Y Y Y Y
按图3接线,将T4138的使能端S1、2S 、3S 和输入端A 、B 、C 分别接电子电路调试器的状态设置开关,输出端Y 3、Y 5、Y 6、Y 7接到74LS20的一个与非门A 、B 、C 、D 上,74LS20的输出端接一个LED 逻辑电平指示器,逐个按真值表扳动状态设置开关。

测试结果如下表:
分别计算每一个逻辑函数式,计算结果和测试结果相同,可验证实验线路连接正确。

3、用两个T4138的3线—8线译码器组成一个4线—16线的译码器
按图4接线,将两T4138的使能端S1、2S 、3S 和连接后的输入端D 3、D 2、D 1、D 0分别接电子电路调试器的状态设置开关,输出端Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7 、Y 8、Y 9、Y 10、Y 11、Y 12、Y 13、Y 14、Y 15接LED 逻辑电平指示器,逐个按真值表扳动状态设置
测试结果符合4线——8线译码器的真值表。

相关文档
最新文档