数字逻辑电路实验报告

合集下载

数字逻辑实验报告实验

数字逻辑实验报告实验

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。

3. 熟悉常用数字逻辑门电路的功能和应用。

4. 提高数字电路实验技能,培养动手能力和团队协作精神。

二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。

数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。

1. 与门:当所有输入端都为高电平时,输出端才为高电平。

2. 或门:当至少有一个输入端为高电平时,输出端为高电平。

3. 非门:将输入端的高电平变为低电平,低电平变为高电平。

4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。

三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。

(2)识别与测试与门、或门、非门、异或门。

(3)观察并记录实验现象,分析实验结果。

2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。

(2)根据真值表列出输入输出关系,画出逻辑电路图。

(3)利用逻辑门电路搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。

(2)根据电路功能,列出状态表和状态方程。

(3)利用触发器搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。

(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。

(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。

2. 实验二:(1)根据实验要求,设计组合逻辑电路。

(2)列出真值表,画出逻辑电路图。

(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告一、引言数字逻辑实验是电子信息类专业的一门重要实践课程。

本实验报告旨在记录和总结我在数字逻辑实验中的学习和实践经验,分享我对数字逻辑的理解和应用。

二、实验概述本次数字逻辑实验的主题是设计一个简单的加法器电路。

实验目的是通过实践操作和设计,加深对数字逻辑电路的理解,并掌握逻辑门的使用和联接方式。

三、实验步骤1. 学习并熟悉逻辑门的基本原理和真值表。

2. 根据加法器的要求,确定所需的逻辑门类型和数量。

3. 使用逻辑门芯片进行电路设计和布线。

4. 连接电路连接线,确保电路的正常工作。

5. 使用示波器验证电路的正确性。

6. 总结实验过程中的问题和解决方法。

四、实验结果经过设计和调试,成功实现了一个4位全加器电路。

通过输入不同的二进制数值,成功实现了两个四位数的相加运算,并正确输出结果。

实验结果表明,逻辑门的正确使用和连接方式能够实现复杂的算术运算。

五、实验心得数字逻辑实验是一门非常实用的实践课程。

通过本次实验,我深刻理解了数字逻辑的基本原理和应用方法。

实验中,我了解了逻辑门的分类和功能,并学会了逐级联接逻辑芯片的技巧。

同时,实验还培养了我解决问题的能力和动手操作的实践技能。

在实验过程中,我遇到了一些问题,如逻辑门连接不正确、芯片损坏等。

但通过仔细检查和重新设计,最终找到了解决问题的方法。

这使得我更加珍惜实验中出现的错误和挑战,因为它们实际上是对我们思维和创造力的锻炼和考验。

通过本次实验,我还意识到数字逻辑的应用范围非常广泛。

数字逻辑不仅仅应用于电子电路中,还可以用于计算机设计、数字通信、自动控制等领域。

数字逻辑的深入学习对我们今后的专业发展非常重要。

总之,数字逻辑实验是一门非常有意义和实践性的课程。

通过实验,我不仅加深了对数字逻辑的理解,还培养了动手操作和解决问题的能力。

我相信通过持续的实践和学习,我将进一步提高数字逻辑的应用水平,为未来的专业发展打下坚实基础。

六、结语通过本次数字逻辑实验的学习和实践,我对数字逻辑有了更深的了解和认识。

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告引言本实验旨在通过对数字逻辑电路与系统的学习与实践,加深对数字逻辑电路原理和应用的理解,掌握数字逻辑电路实验的设计与调试方法。

本报告将详细介绍实验步骤、实验结果以及实验心得体会。

实验目的1.掌握基本的数字逻辑电路设计方法;2.熟悉数字逻辑电路的布线和调试方法;3.学会使用EDA软件进行数字逻辑电路的仿真和验证。

实验器材•FPGA开发板•EDA软件实验过程实验一:逻辑门的基本控制本实验采用FPGA开发板进行实验,以下是逻辑门的基本控制步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,依次放置与门、或门、非门和异或门,并连接输入输出引脚;4.面向测试向量实现逻辑门的控制和数据输入;5.运行仿真并进行调试。

实验二:数字逻辑电路实现本实验以4位全加器为例,进行数字逻辑电路的实现,以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置输入引脚、逻辑门和输出引脚,并进行连接;4.根据全加器的真值表,设置输入信号,实现加法运算;5.运行仿真并进行调试。

实验三:数字逻辑电路的串联与并联本实验旨在通过对数字逻辑电路的串联与并联实现,加深对逻辑门的理解与应用。

以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置多个逻辑门,并设置输入输出引脚;4.进行逻辑门的串联与并联连接;5.根据逻辑门的真值表,设置输入信号,进行运算;6.运行仿真并进行调试。

实验结果经过实验测试,实验结果如下:1.实验一:逻辑门的基本控制–与门的功能得到实现;–或门的功能得到实现;–非门的功能得到实现;–异或门的功能得到实现。

2.实验二:数字逻辑电路实现–4位全加器的功能得到实现;–正确进行了加法运算。

3.实验三:数字逻辑电路的串联与并联–逻辑门的串联与并联功能得到实现;–通过逻辑门的串联与并联,实现了复杂的逻辑运算。

数字逻辑实验报告解析

数字逻辑实验报告解析

一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。

为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。

二、实验目的1. 理解数字逻辑电路的基本原理和组成。

2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。

3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。

三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。

(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。

通过实验,我们加深了对逻辑门电路工作原理的理解。

2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。

(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。

通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。

3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。

(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。

通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。

四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。

本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。

实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。

逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。

我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。

以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。

实验中,我们通过连接开关和LED灯,观察了与门的输出变化。

实验结果与预期相符,验证了与门的正确性。

实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。

多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。

我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。

实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。

通过输入不同的二进制数,观察了加法器的输出结果。

实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。

实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。

时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。

我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。

实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。

通过改变计数器的计数值,观察了脉冲信号的频率和周期。

实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。

实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。

存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。

我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。

本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。

实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。

通过对二进制数的逐位相加,我们可以得到正确的结果。

首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。

最后,将得到的结果输出。

实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。

数字比较器可以比较两个数字的大小,并输出比较结果。

通过使用数字比较器,我们可以实现各种判断和选择的功能。

比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。

实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。

通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。

比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。

实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。

时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。

比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。

实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。

状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。

状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。

实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。

通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。

逻辑电路实验实验报告

逻辑电路实验实验报告

一、实验名称逻辑电路实验二、实验目的1. 掌握基本的数字逻辑电路设计方法。

2. 理解并掌握常用的逻辑门及其组合电路。

3. 提高实验操作技能和观察能力。

4. 培养团队协作精神。

三、实验原理数字逻辑电路是构成数字系统的基本单元,主要由逻辑门、触发器等基本元件组成。

逻辑门是数字电路的基本单元,它按照一定的逻辑规则实现基本的逻辑运算。

本实验主要涉及以下逻辑门及其组合电路:1. 与门(AND):当所有输入信号都为高电平时,输出信号才为高电平。

2. 或门(OR):当至少一个输入信号为高电平时,输出信号才为高电平。

3. 非门(NOT):将输入信号取反。

4. 异或门(XOR):当输入信号不同时,输出信号为高电平。

四、实验器材1. 逻辑门实验板2. 逻辑笔3. 万用表4. 逻辑分析仪5. 示波器6. 计时器五、实验内容1. 与门、或门、非门、异或门的逻辑功能测试2. 组合逻辑电路设计3. 电路仿真与验证六、实验步骤1. 与门、或门、非门、异或门的逻辑功能测试(1)按照实验指导书,连接与门、或门、非门、异或门实验板。

(2)使用逻辑笔和万用表,测试各个逻辑门的输入、输出信号。

(3)记录测试结果,与理论值进行对比,分析实验误差。

2. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门,绘制电路图。

(2)使用实验板,搭建组合逻辑电路。

(3)测试电路功能,验证设计是否正确。

3. 电路仿真与验证(1)使用逻辑分析仪或示波器,观察电路的输入、输出信号波形。

(2)分析波形,验证电路功能是否符合预期。

七、实验结果与分析1. 与门、或门、非门、异或门的逻辑功能测试实验结果如下:与门:当所有输入信号都为高电平时,输出信号才为高电平。

或门:当至少一个输入信号为高电平时,输出信号才为高电平。

非门:将输入信号取反。

异或门:当输入信号不同时,输出信号为高电平。

2. 组合逻辑电路设计(1)设计一个4位二进制加法器,包括两个输入端(A、B)和两个输出端(S、C)。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。

1、验证半加器和全加器的逻辑功能。

2、、学会二进制数的运算规律。

3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。

当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。

S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。

当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。

当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。

该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计二、试验目的:1、掌握组合逻辑电路的功能测试。

2、验证半加器和全加器的逻辑功能。

3、、学会二进制数的运算规律。

三、试验所用的器件和组件:二输入四“与非”门组件3片,型号74LS00四输入二“与非”门组件1片,型号74LS20二输入四“异或”门组件1片,型号74LS86四、实验设计方案及逻辑图:1、设计一位全加/全减法器,如图所示:电路做加法还是做减法是由M决定的,当M=0时做加法运算,当M=1时做减法运算。

当作为全加法器时输入信号A、B和Cin分别为加数、被加数和低位来的进位,S 为和数,Co为向上的进位;当作为全减法时输入信号A、B和Cin分别为被减数,减数和低位来的借位,S为差,Co为向上位的借位。

(1)输入/输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:(3)逻辑电路图如下所示:2、舍入与检测电路的设计:用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421码,F1为“四舍五入”输出信号,F2为奇偶检测输出信号。

当电路检测到输入的代码大于或等于5是,电路的输出F1=1;其他情况F1=0。

当输入代码中含1的个数为奇数时,电路的输出F2=1,其他情况F2=0。

该电路的框图如图所示:(1)输入/输出观察表如下:B8 B4 B2 B1 F2 F10 0 0 0 0 00 0 0 1 1 00 0 1 0 1 00 0 1 1 0 00 1 0 0 1 00 1 0 1 0 10 1 1 0 0 10 1 1 1 1 11 0 0 0 1 11 0 0 1 0 11 0 1 0 0 11 0 1 1 1 11 1 0 0 0 11 1 0 1 1 1(2)求逻辑函数的最简表达式函数F2的卡诺图如下:函数F1的卡诺如下:化简后函数F2的最简表达式为:F1的最简表达式为:(3)逻辑电路图如下所示;五、课后思考题1、化简包含无关条件的逻辑函数时应注意什么?答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中的无关项是令其值为1还是为0,并不影响函数的实际逻辑功能。

因此,在化简这类逻辑函数时,利用这种随意性往往可以使逻辑函数得到更好的化简,从而使设计的电路达到更简。

2、多输出逻辑函数化简时应注意什么?答:设计多输出函数的组合逻辑电路时,如果只是孤立地求出各输出函数的最简表达式,然后画出相应逻辑电路图并将其拼在一起,通常不能保证逻辑电路整体最简。

因为各输出函数之间往往存在相互联系,具体某些共同的部分,因此,应该将它们当作一个整体考虑,而不应该将其截然分开。

使这类电路达到最简的关键在于函数化简时找出各输出函数的公用项,以便在逻辑电路中实现对逻辑门的共享,从而使电路整体结构最简。

六、实验感想第二次实验一、实验名称:同步时序逻辑电路设计二、实验目的:掌握同步时序逻辑电路实验的设计方法,验证所设计的同步时序逻辑电路,加深对“同步”和“时序”这两个名词的理解。

三、实验所用仪器和组件:双D触发器组件2片,型号为74LS74负沿双JK触发器组件2片,型号为74LS73二输入四与非门组件2片,型号为74LS00二输入四或非门组件1片,型号为74LS02三输入三与非门组件1片,型号为74LS10二输入四异或门组件1片,型号为74LS86六门反向器组件2片,型号为74LS04四、实验设计方案及逻辑图:1、同步模4可逆计数器设计利用所给组件,设计一个同步模4可逆计数器,其框图如图所示:图中,X为控制变量,当X=0时进行加1计数,X=1时进行减1计数;y2、y1为计数状态;Z为进位或借位输出信号。

(1)(2)求逻辑函数的最简表达式函数D2的卡诺图如下:函数D1的卡诺如下:化简后函数D2的最简表达式为:D1的最简表达式为:(3)逻辑电路图如下所示;2、设计一个“1001”序列检测器利用所给组件按Mealy型同步时序逻辑电路的设计方法设计一个“1001”序列检测器,其框图如图所示:(1)原始状态图和状态表:设初始状态为A,状态B表示接受信号‘1’,状态C表示接受信号‘10’,状态D表示接收信号‘100’,则状态图和状态表如下图所示:(2)状态编码及相应的二进制状态表:状态编码方案如下:现态次态输出y2 y1 X=0 X=1 Z0 00 11 01 1(3)确定激励函数和输出函数真值表输入现态次态激励函数输出X y2 y1 Z函数化简后,最简表达式为:(4)逻辑电路图如下所示:五、课后思考题:1、同步时序电路与组合电路有何区别?答:组合逻辑电路在任何时可产生的稳定输出信号都仅与该时刻电路的输入信号相关;而时序逻辑电路在任何时刻产生的稳定输出信号不仅与电路该时刻的输入信号有关,而且与电路过去的输入信号有关。

2、你所设计的电路中是否存在多余状态?若有,将会对电路的正常工作状态产生怎样的影响?答:没有。

若有,则将增加电路中所需触发器的数目。

3、Mealy型和Moore型同步时序电路的主要区别是什么?答:Mealy型电路是将过去的输入转换成状态后与输出建立联系,当前的输入直接和输出建立联系。

Moore型电路则是将全部输入转换成电路状态后再和输出建立联系。

六、实验感想:第三次试验一、实验名称:异步时序逻辑电路设计二、实验目的:熟悉并掌握脉冲异步时序逻辑电路的分析方法,加深对异步时序逻辑电路的理解。

掌握电平异步逻辑电路实验的设计方法及如何消除临界竞争。

三、实验所用仪器和组件:双J-K触发器芯片二片,型号为74LS7二输入四与门芯片一片,型号为74LS08二输入四与非门二片,型号为74LS00六门反相器一片,型号为7LS04三输入三与非门二片,型号为74LS10四、实验设计方案级逻辑图:用电平异步时序逻辑电路实现下降沿触发的D触发器(无空翻),典型的输入输出时间图如下:X2(CP) :X1(D) :Z(Q) :(1)建立原始流程表(2)化简原始流程表(3)状态编码最简流程表二进制表(4)确定激励函数和输出函数表达式Y2=Y1=Z=(5)逻辑电路图如下所示:五、思考题:1、异步时序逻辑电路与同步时序逻辑电路有何区别?答:对于同步时序逻辑电路,因为时钟脉冲对电路的控制作用,所以无论输入信号时电平信号还是脉冲信号,对电路引起的状态响应都是相同的。

而对于异步时序逻辑电路,电路中没有统一的时钟脉冲信号同步,电路状态的改变是外部输入信号变化直接作用的结果;在状态转移过程中,各存储元件的状态变化不一定发生在同一时刻,不同状态的维持时间不一定相,并且可能出现非稳定状态。

对输入信号的形式有所区分,输入电平信号与脉冲信号,对电路引起的状态响应是不同的。

2、如何发现电平异步时序逻辑电路中的竞争并消除临界竞争?答:观察当输入信号变化时是否会引起电路中两个或两个以上状态变量发生变化,会引起则存在竞争,否则不存在竞争。

若竞争的结果可能使电路到达不同的稳态,即状态转移不可预测,则是临界竞争。

消除临界竞争主要在状态编码时避免,有三种方法:1、相邻状态,相邻分配;2、增加过渡状态,实现相邻分配;3、容许非临界竞争,避免临界竞争。

六、实验感想:第四次试验一、实验名称:常用中规模集成电路的VHDL设计二、实验目的:1、进一步熟悉Lattice公司EDA开发系统ispLEVER软件平台的操作。

2、学习及提高VHDL的设计能力。

3、根据不同的功能要求编写与之对应的优质高效VHDL代码。

三、实验设备与器件:1、DICE-SEM型实验箱2、IspLSI1032下载板3、JTAG下载电缆四、实验内容:设计一个能清0、置数和进位输出的增1/减1的4位二进制计数器,如图所示:输入信号CLR为清0端,信号LD为置数端,将A、B、C、D的输入值送到计数器中,并立即在Qa、Qb、Qc、Qd中输出。

输入信号M为模式选择端,当M=1时加1计数,当M=0时减1计数。

当CP端输入一个上升沿信号时进行一次计数,计数有进位/借位时Qcc端输出一个负脉冲。

VHDL语言代码为:library ieee;use ieee.std_logic_1164.all;Use ieee.std_logic_unsigned.all ;entity count isport(cp,clr,ld,m : in std_logic;f : in std_logic_vector(3 downto 0);qcc : out std_logic;q : out std_logic_vector(3 downto 0) );end;architecture count of count isbeginprocess(cp , clr , ld)beginqcc <= '1';if ( clr = '0') thenq <= "0000";elsif (ld = '0') thenq <= f;elsif (cp'event and cp = '1') thenif (m = '0') thenif (q = "0000") then qcc <= '0'; end if;q <= q - 1;elseif (q = "1111") then qcc <= '0'; end if;q <= q + 1;end if;end if;end process;end count;设定各输入量的波形,仿真得到下列波形图五、实验感想:。

相关文档
最新文档