2010年江苏省无锡市中考数学试卷

合集下载

【中考十年】2003-2012年江苏省无锡市中考数学试题分类解析汇编专题10:圆

【中考十年】2003-2012年江苏省无锡市中考数学试题分类解析汇编专题10:圆

2003-2012年江苏省无锡市中考数学试题分类解析汇编专题10:圆锦元数学工作室编辑一、选择题1. (江苏省无锡市2003年3分)已知⊙O1的半径为5cm,⊙O2的半径为3cm,且圆心距O1O2=7cm,则⊙O1与⊙O2的位置关系是【】A.外离B.外切C.相交D.内含【答案】C。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

根据题意,得R=5cm,r=3cm,d=7cm,∴R+r=8cm,R-r=2cm。

∵2<7<8,即R-r<d<R+r,∴两圆相交。

故选C。

2. (江苏省无锡市2004年3分)已知⊙O1与⊙O2内切,它们的半径分别为2和3,则这两圆的圆心距d满足【】A、d=5B、d=1C、1<d<5D、d>5【答案】B。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

因此,根据两圆内切时,圆心距等于两圆半径的差,则圆心距d=3-2=1。

故选B。

3. (江苏省无锡市2005年3分)已知⊙O1与⊙O2的半经分别为2和4,圆心距O1 O2=6,则这两圆的位置关系是【】A、相离B、外切C、相交D、内切【答案】B。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

2010年江苏省苏州市中考数学真题试卷及答案(word版)

2010年江苏省苏州市中考数学真题试卷及答案(word版)

2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.........) 1.(2010苏州,1,3分)32的倒数是 A .32 B .23 C .32- D .23- 【分析】1除以32就得32的倒数.两个有理数的乘积为1,则称这两个数互为倒数. 【答案】B.2.(2010苏州,2,3分)函数11y x =-的自变量x 的取值范围是 A .0x ≠ B .1x ≠ C .1x ≥ D .1x ≤【分析】分式有意义,只要使分母不为0.【答案】B .3.(2010苏州,3,3分)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为A .1.3×104B .1.3×105C .1.3×106D .1.3×107【分析】把一个数表示成(110)a a ≤<与10的幂相乘的形式,叫做科学记数法.【答案】C.4.(2010苏州,4,3分)有一组数据:10,30,50,50,70.它们的中位数是A .30B .45C .50D .70【分析】这组数据有6个,偶数个数据,中位数为50与50之和的一半,结果还是50,因此中位数是50.【答案】C.5.(2010苏州,5,3分)化简211a a a a --÷的结果是 A .1aB .aC .1a -D .11a -【分析】211a a a a--÷221(1)1(1)a a a a a a a a a --=⋅==--. 【答案】B.6.(2010苏州,6,3分)方程组125x y x y +=⎧⎨-=⎩,的解是 A .12.x y =-⎧⎨=⎩, B .23.x y =-⎧⎨=⎩, C .21.x y =⎧⎨=⎩, D .21.x y =⎧⎨=-⎩, 【分析】二元一次方程的解法有:加减消元法和代入消元法,本题利用加减消元法即可求解.【答案】D.7.(2010苏州,7,3分)如图,在ABC ∆中,D 、E 两点分别在BC 、AC 边上. 若BD CD =,B CDE ∠=∠,2DE =,则AB 的长度是A .4B .5C .6D .7(第7题)【分析】由B CDE ∠=∠,可得//AB DE ,又BD CD =,所以DE 是ABC ∆的中位线,根据三角形中位线的性质得AB 的长度.【答案】A.8.(2010苏州,8,3分)下列四个说法中,正确的是A .一元二次方程22452x x ++=有实数根; B .一元二次方程2345x x ++= C .一元二次方程2545x x ++=D .一元二次方程245(1)x x a a ++=≥有实数根.【分析】对于一元二次方程是否有实数根,只需将一元二次方程化为一般形式(20ax bx c ++=,其中0a ≠),并计算24b ac -是否大于等于0.【答案】D.9.(2010苏州,9,3分)如图,在菱形ABCD 中,DE AB ⊥,3cos 5A =,2BE =,则tan DBE ∠的值是A .12B .2C .52D .55(第9题) 【分析】由DE AB ⊥,3cos 5A =,可设5AD x =,则4DE x =,3AE x =,又因为四边形ABCD 是菱形,所以AD AB =,且2BE =,所以AD AE EB =+,即532x x =+,解得1x =,所以4DE =,tan DBE ∠422DE BE ===. 【答案】B.10.(2010苏州,10,3分)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),C e 的圆心坐标为(-1,0),半径为1.若D 是C e 上的一个动点,线段DA 与y 轴交于点E ,则ABE ∆面积的最小值是A .2B .1C .222- D .22-(第10题)【分析】ABE ∆中BE 边上的高AO =2,要使面积最小,只需BE 最短,由图知DE 为C e 切线时,BE 最短.【答案】C.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位........置上...) 11.(2010苏州,11,3分)分解因式2a a -= ▲ .【分析】本题主要考查提取公因式法.【答案】(1)a a -.12.(2010苏州,12,3分)若代数式3x+7的值为-2,则x= ▲ .【分析】由题意得372x +=-,解之得3x =-.【答案】3-. 13.(2010苏州,13,3分)一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 ▲ . 【分析】等可能性事件的概率的计算.【答案】1214.(2010苏州,14,3分)如图,四边形ABCD 是正方形,延长AB 到E ,使AE AC =,则BCE ∠的度数是 ▲ °.(第14题)【分析】由AE AC =,得ACE ∆是等腰三角形,则有67.5E ACE ∠=∠=︒,又ACE ACB BCE ∠=∠+∠,且45ACB ∠=︒,所以BCE ∠67.54522.5=︒-︒=︒.【答案】22.515.(2010苏州,15,3分)如图,在平行四边形ABCD 中,E 是AD 边上的中点.若ABE EBC ∠=∠,2AB =,则平行四边形ABCD 的周长是 ▲ .【分析】由四边形ABCD 是平行四边形,得//AD BC ,所以AEB EBC ∠=∠.又因为ABE EBC ∠=∠,所以ABE AEB ∠=∠.即2AB AE ==.又因为E 是AD 边上的中点,所以24AD AE ==,因此平行四边形ABCD 的周长等于2212AD AB +=.【答案】1216.(2010苏州,16,3分)如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形. O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于 ▲ .(结果保留根号及π).【分析】由图形可知90AOB ∠=︒,扇形的半径22AO =2π.【答案】2π17.(2010苏州,17,3分)若一元二次方程2(2)20x a x a -++=的两个实数根分别是3、b ,则a b += ▲ .【分析】把3x =代入方程2(2)20x a x a -++=得,93(2)20a a -++=,解得3a =,再将3a =代入原方程,求出另一个根2b =.【答案】5.18.(2010苏州,18,3分)如图,已知A 、B 两点的坐标分别为()230,、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为 ▲ .【分析】圆周角是直角所对的弦的直径,由AOP ∠=45°,可设(,)P x x ,然后在直角三角形BPA 中求得.【答案】( 3 +1, 3 +1).三、解答题(本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.)19.(2010苏州,19,5分)(本题满分5分)计算:01243⎛⎫- ⎪⎝⎭. 【分析】01243⎛⎫-+ ⎪⎝⎭2213=+-=. 【答案】3.20.(2010苏州,20,5分)(本题满分5分)先化简,再求值:22()()a a b a b +-+,其中3a =5b =【分析】先利用分配律和完全平方公式展开,特别要注意的是完全平方前是减号,为避免出错,小括号先留着,等完全平方展开后再去括号.【答案】22()()a a b a b +-+ 22222(2)a ab a ab b =+-++222222a ab a ab b =+---22a b =-当a =b =原式22=-35=-2=-.21.(2010苏州,21,5分)(本题满分5分)解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩, 【分析】只需分别求出两个不等式的解,再取它们的公共部分即可.【答案】()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,①②由①得2x >,由②得3x ≤所以原不等式组的解为23x <≤.22.(2010苏州,22,6分)(本题满分6分)解方程:()221120x x x x----=. 【分析】原方程的两边同时乘以公分母2x 后,转化为整式方程,注意分式方程解后要检验.【答案】去分母得22(1)(1)20x x x x ----=去括号得2222120x x x x x -+-+-=合并同类项得2210x x +-= 1211,2x x =-= 经检验1211,2x x =-=是原方程的解.23.(2010苏州,23,6分)(本题满分6分)如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD ∆≌BCE ∆;(2)若D ∠=50°,求B ∠的度数.【分析】根据SAS 判定两个三角形全等,再利用全等三角形的性质求出1∠与3∠的度数,结合三角形的内角和及平角的意义求出所要求的角.【答案】(1)∵点C 是线段AB 的中点,∴AC BC =,又∵CD 平分ACE ∠,CE 平分BCD ∠,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在ACD ∆和BCE ∆中,⎪⎩⎪⎨⎧=∠=∠=BC AC CE CD 31∴ACD ∆≌BCE ∆.(2)解:∴∠1+∠2+∠3=180°,∴∠1=∠2=∠3=60°.∵ACD ∆≌BCE ∆.∴E D ∠=∠=50°,∴180370B E ∠=︒-∠-∠=︒.24.(2010苏州,24,6分)(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲ 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?【分析】如何从条形统计图及扇形统计图读出有关信息,销售量的最大的月份可以从条形统计图中读得.要求乙品牌电脑在二月份销售量,只需根据两统计图找出它与其它两个月份的数量关系,并计算可得.【答案】(1)二.(2)甲品牌电脑三个月总销售量为:150+180+120=450(台) .乙品牌电脑三个月总销售量为:450+50=500(台).乙口牌电脑二月份销售量为:500×30%=150(台).答:乙口牌电脑二月份销售量为150台.25.(2010苏州,25,8分)(本题满分8分)如图,在ABC ∆中,90C ∠=︒,8AC =,BC=6.P是AB 边上的一个动点(异于A 、B 两点),过点P 分别作AC 、BC 边的垂线,垂足为M 、N .设AP x =.(1)在ABC ∆中,AB = ▲ ; (2)当x = ▲ 时,矩形PMCN 的周长是14;(3)是否存在x 的值,使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 的面积同时相等?请说出你的判断,并加以说明.【分析】在直角三角形ABC ∆,已知两直角边长,由勾股定理可求出斜边AB .已知矩形周长,列出关于x 的方程,可求出x 的值.存在性问题,可根据题意列出方程,将问题转化为方程是否有解的问题.【答案】(1) 在ABC ∆中,∵90C ∠=︒,8AC =,6BC =,∴22AB AC BC =+=10.(2) 5.(3)∵PM AC ⊥,PN BC ⊥,∴90AMP PNB ∠=∠=︒.∵//AC PN ,∴A NPB ∠=∠.∴AMP ∆∽PNB ∆∽ABC ∆.由AP x =∴610MP x =,810AM x =,10PB x =-,8(10)10PN x =-,6(10)10BN x =- 若存在x 的值,使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 的面积同时相等,则有1122MP NP AM MP NP BN ⋅=⋅=⋅ 即2,2MP BN NP AM ==662(10)1010x x ⨯=-且882(10)1010x x ⨯-= 即310x =,此时103x = ∴存在能使得PAM ∆的面积、PBN ∆的面积与矩形PMCN 面积同时相等的103x =的值.26.(2010苏州,26,8分)(本题满分8分)如图,四边形OABC 是面积为4的正方形,函数k y x=(0x >)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC '、MA BC '.设线段MC '、NA '分别与函数k y x=(0x >)的图象交于点E 、F ,求线段EF 所在直线的解析式.【分析】比例系数k xy =,而四边形OABC 的面积刚好为xy .要求直线的解析式,只需设出这条直线的解析式,并列出与之相关系的二元一次方程即可.【答案】(1)∵四边形OABC 是面积为4的正方形,∴OA OC = =2.∴点B 坐标为(2,2).∴k xy = =2×2=4.(2)∵正方形MABC '、MA BC '由正方形OABC 翻折所得,∴2ON OM OA == =4,∴点E 横坐标为4,点F 纵坐标为4.∵点E 、F 在函数y=4x的图像上, ∴当4x =时,1y =,即(4,1)E .当4y =时,1x =,即(1,4)F .设直线EF 解析式为y mx n =+,将E 、F 两点坐标代入,得⎩⎨⎧=+=+.4,14n m n m ∴1,5m n =-=.∴直线EF 解析式为5y x =-+.27.(2010苏州,27,9分)(本题满分9分)如图,在等腰梯形ABCD 中,//AD BC .O 是CD 边的中点,以O 为圆心,OC 长为半径作圆,交BC 边于点E .过E 作EH AB ⊥,垂足为H .已知O e 与AB 边相切,切点为F(1)求证://OE AB ;(2)求证:12EH AB =; (3)若14BH BE =,求BH CE的值.【分析】要说明12EH AB =,只需证明四边形OEHF 是平行四边形,要说明OEHF 是平行四边形,已知它有一组对边平行,只需再说明另一组对边平行;要求BH CE,只要说明EHB ∆∽DEC ∆,再根据相似三角形的性质来求.【答案】(1)证明:在等腰梯形ABCD 中,AB DC =,∴B C ∠=∠,∵OE OC =,∴OEC C ∠=∠,B OEC ∠=∠,∴//OE AB .(2)证明:连结OF ,∵O e 与AB 边相切,切点为F ,∴OF AB ⊥,∵EH AB ⊥,∴//OF EH ,又∵//OE AB ,∴四边形OEHF 为平行四边形,∴12EH AB =. (3)解:连结DE .∵CD 是直径,∴90DEC ∠=︒则DEC EHB ∠=∠. 又∵B C ∠=∠,∴EHB ∆∽DEC ∆.∴BH BE CE CD=. ∵14BH BE =,设BH k =,则4BE k =,2215EH BE BH k =-= ∴2215CD EH k ==.∴21515215BH BE CE CD k === 28.(2010苏州,28,9分)(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90B ∠=︒,30A ∠=︒,6BC cm =;图②中,90D ∠=︒,45E ∠=︒,4DE cm =.图③是刘卫同学所做的一个实验:他将DEF ∆的直角边DE 与ABC ∆的斜边AC 重合在一起,并将DEF ∆沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF ∆沿AC 方向移动的过程中,刘卫同学发现:F 、C 两点间的距离逐渐 ▲ .(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF ∆移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行? 问题②:当DEF ∆移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形?问题③:在DEF ∆的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在, 求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.【分析】“ F 、C 两点间的距离”可利用勾股定理求得;动态几何问题是近几年中考考试是热点,着重考查学生的分析能力. 以线段AD 、FC 、BC 的长度为三边长的三角形是否是直角三角形,只需对三边是否能组成直角三角形进行行为,要对三边哪边是斜边进行讨论.【答案】(1)变小(2)问题①:解:∵90B ∠=︒,30A ∠=︒,6BC cm =,∴12AC =.∵90FDE ∠=︒,45,4DEF DE ∠=︒=,∴4DF =.连结FC ,设//FC AB .∴30FCD A ∠=∠=︒,在Rt FDC ∆中,DC=4 3 .∴AD AC DC =-=12-4 3 .即12AD =-时,//FC AB问题②:解:设当AD x =,在Rt FDC ∆中,2222(12)16FC DC FD x =+=-+. (Ⅰ)当FC 为斜边时,由222AD BC FC +=得,2226(12)16x x +=-+,316x =. (Ⅱ)当AD 为斜边时,由222FC BC AD +=得,222(12)166x x -++=,4986x =>(不符合题意,舍去).(Ⅲ)当BC 为斜边时,由222AD FC BC +=得,222(12)166x x +-+=,212620x x -+=,∆=144-248<0,∴方程无解.∴由(Ⅰ)、(Ⅱ)、(Ⅲ)得,当316x =时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形.问题③不存在这样的位置,使得15FCD ∠=︒.假设15FCD ∠=︒,由45FED ∠=︒,得30EFC ∠=︒.作EFC ∠的平分线,交AC 于P ,则15EFP CFP FCP ∠=∠=∠=︒,∴,60PF PC DFP DFE EFP =∠=∠+∠=︒.∴PD =28PC PF FD ===.∴812PC PD +=+>.∴不存在这样的位置,使得15FCD ∠=︒.29.(2010苏州,29,9分)(本题满分9分)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设(,)M m n 是抛物线上的一点(m 、n 为正整数),且它位于对称轴的右侧.若以M 、B 、O 、A 为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.【分析】(1)已知抛物线的顶点坐标,求其解析式,可设这个抛物线的解析式为顶点式.(2)要求点的坐标与m 有关系,对m 的取值进行分类讨论.【答案】(1)设2(3)y a x =-,把(0,4)B 代入,得49a =. ∴24(3)9y x =-. (2)∵,m n 为正整数,24(3)9n m =-, ∴2(3)m -应该是9的倍数.∴m 是3 的倍数.又∵3m >,∴6,9,12m =…当6m =时,4n =,此时,5,6MA MB ==.∴四边形OAMB 的四边长为3,4,5,6.当9m ≥时,6MB >,∴四边形OAMB 的四边长不能是四个连续的正整数.∴点M 坐标只有一种可能(6,4).(3) 设(3,)P t ,MB 与对称轴交点为D .则||,|4|PA t PD t ==-. 222(4)9PM PB t ==-+.∴222PA PB PM ++=22228862[(4)9]316503()33t t t t t +-+=-+=-+. ∴当83t =时,222PA PB PM ++有最小值863 , ∴22228PA PB PM ++>总是成立.。

2010年江苏省中考数学模拟试题

2010年江苏省中考数学模拟试题

2010年江苏省中考数学模拟试题096(中考)招生统一考试数学试卷一、选择题:(每小题3分,满分27分).1.2的倒数是( )A .2B .-2C .12 D .-122.我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电.经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为( )A .1.4×1012千瓦时B .1.4×1011千瓦时C .1.4×1010千瓦时D .14×1010千瓦时3.如图,△ABC 中,点D 、E 分别在AB 、BC 边上,DE ∥AC ,∠B=50°,∠C=70°,•那么∠1的度数是( )A .70°B .60°C .50°D .40°4.下列运算中,正确的是( )A .a 3·a 2=a 6B .(-3a )2=6a 2C.(a-3b )(a+3b )=a 2-9b 25.左下图是由几个小正方体组成的一个几何体,这个几何体的左视图是( )6.点A (2,m )在反比例函数y=-12x的图象上,则m 的值为( ) A .24 B .-24 C .6 D .-67.初三年级某班10名男同学“引体向上”的测验成绩(单位:次数)•分别是:•9,14,10,15,7,9,16,10,11,9,这组数据的众数,中位数,平均数依次是( ) A .9,10,11 B .10,11,9 C .9,11,10 D .10,9,11 8.如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是( ) A .正三角形 B .正方形 C .正五边形 D .正六边形9.如图,在钝角三角形ABC 中,AB=6cm ,AC=12cm ,动点D 从A 点出发到B 点止,•动点E 从C 点出发到A 点止,点D 运动的速度为1cm/秒,点E 运动的速度为2cm/秒,•如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )A .3秒或4.8秒B .3秒C .4.5秒D .4.5秒或4.8秒ED A(第9题) (第11题) 二、填空题:(每小题3分,满分18分,•请考生用黑色碳素笔将答案答在答题卡相应题号后的横线上).10.11.晚上,身高1.6米的小华站在D 处(如图),测得他的影长DE=1.5米,BD=4.5米,•那么灯到地面的距离AB=_______米.12. =+⎪⎭⎫⎝⎛+ba bb a 11化简: 。

2010年江苏省常州市中考数学真题试卷及答案(word版)【附解析】

2010年江苏省常州市中考数学真题试卷及答案(word版)【附解析】

常州市二O 一O 年初中毕业、升学统一考试数学试卷说明:本试卷共8页。

全卷满分120分,考试时间为120分钟。

一、选择题(本大题共有8个小题,每小题2分,共16分。

在每小题所给的四个选项中,只有一项是正确的) 1.(2010江苏常州,1,2分)用激光测距仪测得两座山峰之间的距离为14000000米,将14000000用科学计数法表示为( ) A .14×107 B .14×10 6 C . 1.4×10 7 D . 0.14×10 8【分析】大于10的数用科学计数表示成a ×10n (1≤a <10)的形式。

【答案】C【涉及知识点】科学计数法【点评】用科学记数法表示一个大于10的数时,10的指数比原数的整数位数少1 【推荐指数】★★2.(2010江苏常州,2,2分)函数xy 2=的图象经过的点是( ) 【分析】图像上的点的横纵坐标满足x y 2=,故下列选项中使xy 2=成立的点就是图像经过的点。

【答案】A【涉及知识点】反比例函数的定义【点评】在图像上的点的横纵坐标一定会使函数关系式的左右两边相等,反之不在图像上。

【推荐指数】★A .(2,1)B .(2,-1)C .(2,4)D .(21-,2) 3.(2010江苏常州,3,2分)函数31-=x y 的自变量x 的取值范围是( ) 【分析】x -3作为分母不能为0,而当x =3时,x -3=0,故x ≠3【答案】D【涉及知识点】函数的自变量取值范围【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★A . x ≠0B . x >3C . x ≠-3D . x ≠3 4.(2010江苏常州,4,2分)如图所示几何体的主视图是( )【分析】从物体的前面向后面所看到的视图称主视图——能反映物体前面的形状 【答案】D【涉及知识点】物体的三视图【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,从前往后看是解决本题的关键。

Bivdzlg2010年江苏省苏州市中考数学试题及答案Word

Bivdzlg2010年江苏省苏州市中考数学试题及答案Word

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。

2010年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题全部答在答题卡上,答在本试卷和草稿纸上无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上......... (10江苏苏州)1.32的倒数是 A .32 B .23 C .32- D .23-(10江苏苏州)2.函数11y x =-的自变量x 的取值范围是A .x ≠0B .x ≠1C .x ≥1D .x ≤1 (10江苏苏州)3.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为A .1.3×104B .1.3×105C .1.3×106D .1.3×107(10江苏苏州)4.有一组数据:10,30,50,50,70.它们的中位数是 A .30 B .45 C .50 D .70 (10江苏苏州)5.化简211a a a a--÷的结果是 A .1a B .a C .a -1 D .11a - (10江苏苏州)6.方程组125x y x y +=⎧⎨-=⎩,的解是A .12.x y =-⎧⎨=⎩, B .23.x y =-⎧⎨=⎩, C .21.x y =⎧⎨=⎩, D .21.x y =⎧⎨=-⎩,(10江苏苏州)7.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD=CD ,∠B=∠CDE ,DE=2,则AB 的长度是A .4B .5C .6D .7 (10江苏苏州)8.下列四个说法中,正确的是A .一元二次方程2452x x ++=有实数根; B .一元二次方程245x x ++=有实数根;C .一元二次方程245x x ++=有实数根; D .一元二次方程x 2+4x+5=a(a ≥1)有实数根. (10江苏苏州)9.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是A .12 B .2 C(10江苏苏州)10.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是A .2B .1C .2-.2二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上........... (10江苏苏州)11.分解因式a 2-a= .(10江苏苏州)12.若代数式3x+7的值为-2,则x= .(10江苏苏州)13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 .(10江苏苏州)14.如图,四边形ABCD 是正方形,延长AB 到E ,使AE=AC ,则∠BCE 的度数是 °.(10江苏苏州)15.如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2, 则平行四边形ABCD 的周长是 .(10江苏苏州)16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形. O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于 .(结果保留根号及π).(10江苏苏州)17.若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b ,则a+b= .(10江苏苏州)18.如图,已知A 、B两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为 .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. (10江苏苏州)19.(本题满分5分)计算:0123⎛⎫- ⎪⎝⎭.(10江苏苏州)20.(本题满分5分)先化简,再求值:2a(a+b)-(a+b) 2,其中a =b =(10江苏苏州)21.(本题满分5分)解不等式组:()20213 1.x x x ->⎧⎪⎨+≥-⎪⎩,(10江苏苏州)22.(本题满分6分)解方程:()221120 x xx x----=.(10江苏苏州)23.(本题满分6分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.(10江苏苏州)24.(本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?(10江苏苏州)25.(本题满分8分)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.(1)在△ABC中,AB= ;(2)当x= 时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.(10江苏苏州)26.(本题满分8分)如图,四边形OABC 是面积为4的正方形,函数ky x=(x >0)的图象经过点B .(1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数ky x=(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.(10江苏苏州)27.(本题满分9分)如图,在等腰梯形ABCD 中,AD ∥BC .O 是CD 边的中点,以O 为圆心,OC长为半径作圆,交BC 边于点E .过E 作EH ⊥AB ,垂足为H .已知⊙O 与AB 边相切,切点为F (1)求证:OE ∥AB ;(2)求证:EH=12AB ; (3)若14BH BE =,求BHCE的值.(10江苏苏州)28.(本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.(10江苏苏州)29.(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.。

无锡市中考数学试卷及答案(Word解析版)

无锡市中考数学试卷及答案(Word解析版)

无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于( ▲ ) A .2B .-2C .2±D .2答案:A解析:负数的绝对值是它的相反数,所以|-2|=2,选A 。

2.函数y=1-x +3中自变量x 的取值范围是( ▲ )A .x >1B .x ≥1C .x ≤1D .1≠x 答案:B解析:由二次根式的意义,得:x -1≥0,所以,x ≥1,选B 。

3.方程0321=--xx 的解为 ( ▲)A .2=xB .2-=xC .3=xD .3-=x答案:C解析:去分母,得:x -3(x -2)=0,即x -3x +6=0,解得:x =3,经检验x =3是原方程的解,选C >4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ▲)A .4,15B .3,15C .4,16D .3,16答案:A解析:极差为:17-13=4;数据15出现的次数最多,故众数为15,选A 。

5.下列说法中正确的是 ( ▲)A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直 答案:D解析:A 、B 都漏掉关键词“平行”,应该是“两条平行直线”,故错;两平行直线被第三条直线所截得的同位角的平分线互相平行,不垂直,故C 错;由两直线平行,同旁内角互补,及角平分线的性质,可得D 是正确的。

6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 2 答案:B解析:圆柱侧面展开图为长方形,长为圆柱的底面圆周长:6π,因此,侧面积为S =6π⨯5=30πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140° 答案:B解析:同弧所对圆周角是它所对圆周角的一半,所以,∠AOC =2∠ABC =140°,选B 。

2010年中考江苏镇江卷数学试题及答案(word版)

镇江市2010年初中毕业升学考试数 学 试 题注意事项:1.本试卷共28题,全卷满分120分,考试时间120分钟.2.考生必须在答题卡上各题指定区域内作答,在本试卷上和其他位置作答一律无效. 3.如用铅笔作图,必须把线条加黑加粗,描写清楚.一、填空题(本大题共有12小题,每小题2分,共计24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 1.31的倒数是 ;21-的相反数是 . 2.计算:—3+2= ; (—3)×2= .3.化简:25a a ÷= ; =22)(a . 4.计算:28⨯= ; 28-= .5.分解因式:a a 32-= ;化简:22)1(x x -+= .6.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是 ,众数是 . 7.如图,90,=∠∆ACB ABC Rt 中,DE 过点C ,且DE//AB ,若50=∠ACD ,则∠A= ,∠B= . 8.)函数x x y 中自变量1-=的取值范围是 ,当2=x 时,函数值y= .9.反比例函数xn y 1-=的图象在第二、四象限,则n 的取值范围为 ,),3(),,2(21y B y A 为图象上两点,则y 1 y 2(用“<”或“>”填空)10.如图,在平行四边形ABCD 中,CD=10,F 是AB 边上一点,DF 交AC 于点E ,且的面积的面积则CDE AEF EC AE ∆∆=,52= ,BF= . 11.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,若AB=10,CD=8,则线段OE 的长为 .12.已知实数y x y x x y x +=-++则满足,033,2的最大值为 .二、选择题(本大题共有5小题,每小题3分,共计15分,在每小题所给出的选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题卡相应位置上.........) 13.下面几何体的俯视图是 ( )14.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( ) A .8π B .9π C .10π D .11π 15.有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )A .31 B .41 C .32D .43 16.两直线1:,12:21+=-=x y l x y l 的交点坐标为( )A .(—2,3)B .(2,—3)C .(—2,—3)D .(2,3)17.小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是 ( )A .9.5千公里B .113千公里C .9.9千公里D .10千公里三、解答题(本大题共有11小题,共计81分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤) 18.计算化简(本小题满分10分) (1)|;4|)60(cos )5(02-+-(2).31962++-x x 19.运算求解(本小题满分10分) 解方程或不等式组;(1)⎪⎩⎪⎨⎧-≤->-;212,112x x x(2).231-=x x x 20.推理证明(本小题满分6分)如图,在△ABC 和△ADE 中,点E 在BC 边上,∠BAC=∠DAE ,∠B=∠D ,AB=AD. (1)求证:△ABC ≌△ADE ;(2)如果∠AEC=75°,将△ADE 绕着点A 旋转一个锐角后与△ABC 重合,求这个旋转角的大小.21.动手操作(本小题满分6分)在如图所示的方格纸中,△ABC 的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,其中A ,B ,C 分别和A 1,B 1,C 1对应; (2)平移△ABC ,使得A 点在x 轴上,B 点在y 轴上,平移后的三角形记为△A 2B 2C 2,作出平移后的△A 2B 2C 2,其中A ,B ,C 分别和A 2,B 2,C 2对应;(3)填空:在(2)中,设原△ABC 的外心为M ,△A 2B 2C 2的外心为M ,则M 与M 2之间的距离为 .22.运算求解(本小题满分6分)在直角坐标系xOy 中,直线l 过(1,3)和(3,1)两点,且与x 轴,y 轴分别交于A ,B 两点.(1)求直线l 的函数关系式; (2)求△AOB 的面积.23.运算求解(本小题满分6分)已知二次函数m x x y ++=22的图象C 1与x 轴有且只有一个公共点.(1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 轴的一个交点为A (—3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标; (3)若n y y C y Q y n P 求实数且上的两点是,,),2(),,(21121>的取值范围.24.实践应用(本小题满分6分)有200名待业人员参加某企业甲、乙、丙三个部门的招聘,到各部门报名的人数百分比见图表1,该企业各部门的录取率见图表2.(部门录取率=部门报名人数部门录取人数×100%)(1)到乙部门报名的人数有人,乙部门的录取人数是人,该企业的录取率为;(2)如果到甲部门报名的人员中有一些人员改到丙部门报名,在保持各部门录取率不变的情况下,该企业的录取率将恰好增加15%,问有多少人从甲部门改到丙部门报名?25.描述证明(本小题满分6分)海宝在研究数学问题时发现了一个有趣的现象:26.推理证明(本小题满分7分)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=3,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为.27.探索发现(本小题满分9分)如图,在直角坐标系OCD Rt OAB Rt xOy ∆∆和中,的直角顶点A ,C 始终在x 轴的正半轴上,B ,D 在第一象限内,点B 在直线OD 上方,OC=CD ,OD=2,M 为OD 的中点,AB 与OD 相交于E ,当点B 位置变化时,.21的面积恒为OAB Rt ∆ 试解决下列问题:(1)填空:点D 坐标为 ;(2)设点B 横坐标为t ,请把BD 长表示成关于t 的函数关系式,并化简; (3)等式BO=BD 能否成立?为什么?(4)设CM 与AB 相交于F ,当△BDE 为直角三角形时,判断四边形BDCF 的形状,并证明你的结论.28.(2010江苏 镇江)深化理解(本小题满分9分) 对非负实数x “四舍五入”到个位的值记为,><x即:当n 为非负整数时,如果.,2121n x n x n >=<+<≤-则 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①><π= (π为圆周率); ②如果x x 则实数,312>=-<的取值范围为 ;(2)①当><+>=+<≥x m m x m x :,,0求证为非负整数时;②举例说明><+>>=<+<y x y x 不恒成立;(3)求满足x x x 的所有非负实数34>=<的值; (4)设n 为常数,且为正整数,函数1412+<≤+-=n x n x x x y 在的自变量范围内取值时,函数值y 为整数的个数记为k n k a 的所有整数满足>=<;的个数记为b .求证:.2n b a ==镇江市2010年初中毕业升学考试 数学试题参考答案及评分标准一、填空题(本大题共有12小题,每小题2分,共计24分)1.3,21 2.—1,—6 3.43,a a 4.4,2 5.12),3(+-x a a 6.7,8 7. 40,50 8.1,1≥x 9.<<,1n 10.6,254 11.3 12.4二、选择题(本大题共有5小题,每小题3分,共计15分) 13.A 14.A 15.B 16.D 17.C三、解答题(本大题共有11小题,共计81分) 18.(1)原式415+-=(3分,每对1个得1分)=8 (5分) (2)原式31)3)(3(6-+-+=x x x (1分))3)(3(36-+-+=x x x (3分))3)(3(3-++=x x x (4分).31-=x (5分) 19.(1)由①得,1>x ;(2分)由②得,3≤x (4分)∴原不等式组的解集为31≤<x (5分)(2)223x x =-,(1分)0232=+-x x , (2分) 0)1)(2(=--x x , (3分).1,221==∴x x (4分)经检验,1,221==x x 中原方程的解. (5分) 20.(1)∵∠BAC=∠DAE ,AB=AD ,∠B=∠D ,∴△ABD ≌△ADE.(3分) (2)∵△ABC ≌△ADE ,∴AC 与AE 是一组对应边, ∴∠CAE 的旋转角,(4分) ∵AE=AC ,∠AEC=75°,∴∠ACE=∠AEC=75°, (5分)∴∠CAE=180°—75°—75°=30°. (6分) 21.(1)见图21;(2分) (2)见图21;(4分) (3).17 (6分)22.(1)设直线l 的函数关系式为)0(≠+=k b kx y , ① (1分)把(3,1),(1,3)代入①得⎩⎨⎧=+=+,3,13b k b k (2分)解方程组得⎩⎨⎧=-=.4,1b k (3分)∴直线l 的函数关系式为.4+-=x y ② (4分)(2)在②中,令)0,4(,4,0),4,0(,4,0A x y B y x ∴==∴==得令得 (5分).8442121=⨯⨯=⋅=∴∆BO AO S AOB (6分) 23.(1),1,1)1(222-=-++=++=x m x m x x y 对称轴为 (1分)x 与 轴有且只有一个公共点,∴顶点的纵坐标为0.∴C 1的顶点坐标为(—1,0) (2分) (2)设C 2的函数关系式为,)1(2k x y ++=把A (—3,0)代入上式得,4,0)13(2-==++-k k 得 ∴C 2的函数关系式为.4)1(2-+=x y (3分)∵抛物线的对称轴为x x 与,1-=轴的一个交点为A (—3,0),由对称性可知,它与x 轴的另一个交点坐标为(1,0). (4分) (3)当x y x 随时,1-≥的增大而增大,当.2,,121>∴>-≥n y y n 时 (5分))6(.42:.4,22,,12),,2(),(,12111分或综上所述且的对称点坐标为时当-<>-<∴>--∴>-≥-----<n n n n y y n y n y n P n24.(1)80,(1分)40,(2分) 47%;(3分)(2)设有x 人从甲部门改到丙部门报名,(4分)则:%),15%47(200%80)50(40%20)70(+⨯=⨯+++⨯-x x (5分) 化简得:0.630=x ,.50=x答:有50人从甲部门改到丙部门报名,恰好增加15%的录取率.(6分)25.(1);2ab abb a =++(1分).ab b a =+(2分) (2)证明:,2,222ab ababb a ab a b b a =++∴=++ (3分) )6.(,0,0,0,0)5(,)()()4(,)(222222分分分ab b a ab b a b a ab b a ab ab b a =+∴>>+>>=+∴=++∴ 26.(1)∵AB 是直径,∴∠ADB=90° (1分),)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴= 分又又∴OD ⊥DE ,∴DE 是⊙O 的切线. (3分) (2)在 30,3,=∠=∆ACB CD CBD Rt 中,.2,223330cos =∴===∴AB CDBC(4分))6(.27)23(1,)5(.2332121,30,3,2222分中在分中在=+=+=∆=⨯==∴=∠=∆OE OD OE ODE Rt CD DE ACB CD CDE Rt(3).127127+<<-r (7分) 27.(1))2,2(;(1分) (2)),1,(,21tt B OAB Rt 得的面积为由∆ ,)(222CD AB AC BD -+=4)1(221)21()2(22222++-+=-+==∴t t tt t t BD ① (2分).)21(2)1(22)1(22-+=++-+=tt t t t t (3分).21|21|-+=-+=∴tt t t BD ② (4分)(注:不去绝对值符号不扣分)(3)[法一]若OB=BD ,则.22BD OB =,1,22222tt AB OA OB OAB Rt +=+=∆中在 由①得,4)1(2212222++-1+=+t t t t t t (5分))6(..,024)2(,012,2122分此方程无解得BD OB t t tt ≠∴∴<-=-=∆=+-∴=+[法二]若OB=BD ,则B 点在OD 的中垂线CM 上.),22,22(,),0,2(M OCM Rt C 可求得中在等腰∆ ∴直线CM 的函数关系式为2+-=x y , ③ (5分),1,21xy B OAB Rt =∆点坐标满足函数关系式得的面积为由 ④联立③,④得:0122=+-x x ,)6(..,024)2(2分此方程无解BD OB ≠∴∴<-=-=∆[法三]若OB=BD ,则B 点在OD 的中垂线CM 上,如图27 – 1 过点B 作,,H y CM G y BG 轴于交轴于⊥)6(..)5(,2121222121,210分矛盾显然与分而BD OB S S S S S S S BG HNO DOC MOC OMH OAB OBG ≠∴>=⨯⨯⨯=====∆∆∆∆∆∆∆(4)如果 45,=∠∆BED BDE 因为为直角三角形,①当三点重合此时时M E F EBD ,,,90 =∠,如图27 – 2.//,,DC BF x DC x BF ∴⊥⊥轴轴∴此时四边形BDCF 为直角梯形.(7分) ②当,90时=∠EBD 如图27 – 3.//,,.//,DC BF x DC x AB CF BD OD CF ∴⊥⊥∴⊥轴轴又∴此时四边形BDCF 为平行四边形.(8分)下证平行四边形BDCF 为菱形:[法一]在222,BD OD OB BDO +=∆中,,221,4)1(221412222=+∴++-++=+∴t t t t tt t t [方法①]OD BD t t 在 ,01222=+-上方121,12;21,12-=+=+=-=tt t t 或解得(舍去).得),12,12(+-B [方法②]由②得:.222221=-=-+=tt BD 此时,2==CD BD∴此时四边形BDCF 为菱形(9分) [法二]在等腰EDB Rt OAE Rt ∆∆与等腰中)9(.,2].[.221,122,22)22(2.22,2,分为菱形此时四边形此时法一以下同即则BDCF CD BD tt t t t t t BE AE AB T BD ED t OE t AE OA ∴===+=-∴-=-+=+=∴-=====28.(1)①3;(1分)②9447<≤x ; (2分) (2)①证明:[法一]设n n x n n x ,2121,+<≤->=<则为非负整数; (3分) m n m n m x m n +++<+≤-+且又,21)(21)(为非负整数,.><+=+>=+∴<x m m n m x (4分)[法二]设b x k b k x ,,的整数部分为+=为其小数部分.)3(..,,)(,,5.001分为其小数部分的整数部分为时当><+>=+∴<+>=+∴<++++=+∴>=<<≤x m m x km x m b x m k m b k m x m k x b)4(.:.,1.,,)(,1,5.02分综上所述为其小数部分的整数部分为则时当><+>=+<><+>=+∴<++>=+∴<++++=++>=<≥x m m x x m x m k m m x b x m k m b k m x m k x b②举反例:0.60.7112,0.60.7 1.31,<>+<>=+=<+>=<>=而><+>>=<+∴<>+>≠<<+>∴<y x y x ,7.06.07.06.0不一定成立.(5分)(3)[法一]作x y x y 34,=>=<的图象,如图28 (6分) (注:只要求画出草图,如果没有把有关点画成空心点,不扣分)。

2024年江苏省无锡市中考数学真题(含答案)

2024年江苏省无锡市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是正确的。

)1.4的倒数是( )A.14B.﹣4C.2D.±22.在函数y=x−3中,自变量x的取值范围是( )A.x≠3B.x>3C.x<3D.x≥33.分式方程1x=2x+1的解是( )A.x=1B.x=﹣2C.x=12D.x=24.一组数据:31,32,35,37,35,这组数据的平均数和中位数分别是( )A.34,34B.35,35C.34,35D.35,345.下列图形是中心对称图形的是( )A.等边三角形B.直角三角形C.平行四边形D.正五边形6.已知圆锥的底面圆半径为3,母线长为4,则圆锥的侧面积为( )A.6πB.12πC.15πD.24π7.《九章算术》中有一道“凫雁相逢”问题(凫:野鸭),大意如下:野鸭从南海飞到北海需要7天,大雁从北海飞到南海需要9天.如果野鸭、大雁分别从南海、北海同时起飞,经过多少天相遇?设经过x天相遇,则下列方程正确的是( )A.17x+19x=1B.17x−19x=1C.9x+7x=1D.9x﹣7x=18.如图,在△ABC中,∠B=80°,∠C=65°,将△ABC绕点A逆时针旋转得到△AB′C′.当AB′落在AC上时,∠BAC′的度数为( )A.65°B.70°C.80°D.85°9.如图,在菱形ABCD中,∠ABC=60°,E是CD的中点,则sin∠EBC的值为( )A .35B .75C .2114D .571410.已知y 是x 的函数,若存在实数m ,n (m <n ),当m ≤x ≤n 时,y 的取值范围是tm ≤y ≤tn (t >0).我们将m ≤x ≤n 称为这个函数的“t 级关联范围”.例如:函数y =2x ,存在m =1,n =2,当1≤x ≤2时,2≤y ≤4,即t =2,所以1≤x ≤2是函数y =2x 的“2级关联范围”.下列结论:①1≤x ≤3是函数y =﹣x +4的“1级关联范围”;②0≤x ≤2不是函数y =x 2的“2级关联范围”;③函数y =kx(k >0)总存在“3级关联范围”;④函数y =﹣x 2+2x +1不存在“4级关联范围”.其中正确的为( )A .①③B .①④C .②③D .②④二、填空题(本大题共8小题,每小题3分,共24分)11.分解因式:x 2﹣9=  .12.在科技创新的强力驱动下,中国高铁事业飞速发展,高铁技术已经领跑世界.截至2023年底,我国高铁营业里程达到45000km .数据45000用科学记数法表示为  .13.正十二边形的内角和等于  度.14.命题“若a >b ,则a ﹣3<b ﹣3”是 命题.(填“真”或“假”)15.某个函数的图象关于原点对称,且当x >0时,y 随x 的增大而增大.请写出一个符合上述条件的函数表达式:  .16.在△ABC 中,AB =4,BC =6,AC =8,D ,E ,F 分别是AB ,BC ,AC 的中点,则△DEF 的周长为 .17.在探究“反比例函数的图象与性质”时,小明先将直角边长为5个单位长度的等腰直角三角板ABC 摆放在平面直角坐标系中,使其两条直角边AC ,BC 分别落在x 轴负半轴、y 轴正半轴上(如图所示),然后将三角板向右平移a 个单位长度,再向下平移a 个单位长度后,小明发现A ,B 两点恰好都落在函数y =6x 的图象上,则a 的值为  .18.如图,在△ABC 中,AC =2,AB =3,直线CM ∥AB ,E 是BC 上的动点(端点除外),射线AE 交CM 于点D .在射线AE 上取一点P ,使得AP =2ED ,作PQ ∥AB ,交射线AC 于点Q .设AQ =x ,PQ =y .当x =y 时,CD = ;在点E 运动的过程中,y 关于x 的函数表达式为  .三、解答题(本大题共10小题,共96分。

2010年中考模拟试卷 数学参考答案及评分标准[002]

2010年中考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案CABBBADCAA二、填空题(每小题4分,共24分) 11.-- 2,例如22- 等 12.6, 13.231a14.-2<a ≤-1 15.3 16.),(24245--P ,),(2010201020P ,2512三、解答题(6+6+6+8+8+10+10+12=66分)17(本题6分)解:(1).原式233133--+=-1(3分) (2)原式=()()21222---+a a a a (1分)=()()()2222-++-a a a a =()()222-+-a a a (1分)=21+a (1分) 18(本题6分)解:(1)S=πrl=50×20π=1000π……..……………………….(2分)(2)θ=0001443605020360.=⨯=lr…………………………………………………(2分) 剪去的扇形纸片的圆心角=360°-2×144°=72°………………………………………(2分)19(本题6分)解:(1)当射线BA 绕点B 按顺时针方向旋转45度时与⊙O 相切……(1分) ⊥BF ,在直角三角形OBF 中,︒=∠=∠∴==45,4,22BOF OBF OB OF ∴∠ABF=45°..(2分) (2)(2)过O 画OH ⊥MN 于H ,易知∠AOB=30°,∴OH=21OB=2 在直角三角形OMH 中,OM ︒=∠︒=∠∴=90,45,22MON MOH …………………(1分)()()422221224122-=⨯-⨯=-=∴∆ππMON MON S S S 扇形弓形∴线段MN 与⌒MN 所围成图形的面积为2π-4………………………………………………(2分) 20. (本题8分)(1)用直尺和圆规作△ABC …………………(4分) (2)① 作ACB ∠的平分线交AB 于D ;……………………(1分)② 过D 点作DE ⊥BC ,垂足为E .……………................(1分) (3)△ADC ≌△EDC ;△ACD ∽△ABC .(每写对一对得1分)21.(本题8分)(1)80 ,25%、40%、30%4分(2)补全条形图(如右图)………2分(3)520…………………………….2分22.(本题10分)(1) 1 , 2 。

2010年江苏省南京市中考数学真题试卷及答案(word版)

南京市2010年初中数学毕业生学业考试数 学注意事项:1.本试卷共6页.满分120分.考试时间为120分钟,考生答题全部答在答题卡,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.(2010江苏南京,1,2分)-3的倒数是( )A .-3B .3C .13D .13【答案】C2.(2010江苏南京,2,2分)计算a 3·a 4的结果是( )A .a 5B .a 7C .a 8D .a 12【答案】B3.(2010江苏南京,3,2分)如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根【答案】C4.(2010江苏南京,4,2分)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃【答案】B5.(2010江苏南京,5,2分)如图,在平面直角坐标系中,菱形OABC 的顶点C 的坐标是(3,4),则顶点A 、B 的坐标分别是( )A .(4,0)(7,4)B .(4,0)(8,4)C .(5,0)(7,4)D .(5,0)(8,4)【答案】D6.(2010江苏南京,6,2分)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图象大致为( )【答案】A二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.(2010江苏南京,7,2分)-2的绝对值的结果是_____.【答案】28.(2010江苏南京,8,2分)函数11y x =-中,自变量x 的取值范围是_____. 【答案】x ≠19.(2010江苏南京,9,2分)南京地铁2号线(含东延线)、3号线南延线开通后,南京地铁总里程约为85000m ,将85000用科学记数法表示为_____.【答案】8.5×10410.(2010江苏南京,10,2分)如图,O 是直线l 上一点,∠AOB =100°,则∠1+∠2=_____°.【答案】8011.(2010江苏南京,11,2分)计算28a a g (a ≥0)的结果是_____.【答案】4a12.(2010江苏南京,12,2分)若反比例函数的图象经过点(-2,-1),则这个函数的图象位于第_____象限.【答案】一、三13.(2010江苏南京,13,2分)甲、乙两人5次射击命中的环数如下:甲7 9 8 6 10乙7 8 9 8 8则这两人5次射击命中的环数的平均数x甲=x乙=8,方差2s甲_____2s乙.(填“>”、“<”或“=”)【答案】>14.(2010江苏南京,1,2分)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点.若两圆的半径分别为3cm和5cm,则AB的长为_____cm.【答案】815.(2010江苏南京,1,2分)如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A/OB/,旋转角为α(0°<α<180°).若∠AOB=30°,∠BCA/=40°,则∠α=_____°.【答案】11016.(2010江苏南京,16,2分)如图,AB⊥BC,AB=BC=2 cm,ºOA与»OC关于点O中心对称,则AB、BC、»CO、ºOA所围成的图形的面积是_____ cm2.【答案】2三、解答题(本大题共12小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2010江苏南京,17,6分)解方程组24,2 5.x yx y+=+=⎧⎨⎩【答案】解法一:②×2,得2x+4y=10.③③-①,得3y=6.解这个方程得y=2.将y=2代入①,得x=1.所以原方程组的解为12x y ==⎧⎨⎩. 解法二:由①,得y =4-2x .③将③代入②,得x +2(4-2x )=4,解这个方程得x =1.将x =1代入③,得y =2.所以原方程组的解为12x y ==⎧⎨⎩. 18.(2010江苏南京,18,6分)计算2211()a b a b ab --÷. 【答案】2211()a b a bab --÷=()()b a a b a b ab ab -+-÷=()()b a ab ab a b a b -+-g =()()a b ab ab a b a b --+-g =1()a b -+. 19.(2010江苏南京,19,6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额...最大的水果品种是( );A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?【答案】(1)A ;(2)140÷7×30=600(千克).答:估计一个月该水果店可销售苹果600千克.20.(2010江苏南京,20,7分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【答案】如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=AE DE,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8 m.21.(2010江苏南京,21,7分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.【答案】(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.(2)∵△ABC≌△BAD,∴AC=BD.又∵OA=OB,∴∠OCD=∠ODC.∵∠AOB=∠COD,∠CAB=1802AOB-∠,∠ACD=1802COD-∠,∴∠CAB=∠ACD,∴AB∥CD.22.(2010江苏南京,22,7分)已知点A(1,1)在二次函数y=x2-2ax+b的图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.【答案】(1)因为点A(1,1)在二次函数y=x2-2ax+b的图象上,所以1=1-2a+b,可得b=2a.(2)根据题意,方程x2-2ax+b=0有两个相等的实数根,所以4a2-4b=4a2-8a=0,解得a=0,或a=2.当a=0时,y=x2,这个二次函数的顶点坐标为(0,0);当a=2时,y=x2-4x+4,这个二次函数的顶点坐标为(2,0).所以,这个二次函数的顶点坐标为(0,0)或(2,0).23.(2010江苏南京,23,9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你交转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.在用文字说明和扇形的圆心角的度数.2.结合转盘简述获奖方式,不需说明理由.)【答案】(1)该抽奖方案符合厂家的设奖要求.分别用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=110.即顾客获得大奖的概率为10%,获得小奖的概率为90%.(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.24.(2010江苏南京,24,8分)甲车从A 地出发以60km /h 的速度沿公路匀速行驶,0.5h 后,乙车也从A 地出发,以80km /h 的速度沿该公路与甲车同向匀速行驶,求乙车出发几小时追上甲车. 请建立一次函数关系........解决上述问题.【答案】本题答案不唯一,下列解法供参考.设乙车出发xh 后,甲、乙两车离A 地的路程分别是y 1km 、y 2km .根据题意,得y 1=60(x +0.5)=60x +30,y 2=80x .当乙车追上甲车时,y 1= y 2,即60x +30=80x .解这个方程得x =1.5(h ).答:乙车出发1.5h 追上甲车.25.(2010江苏南京,25,8分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB .(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)直线CD 与⊙O 相切.如图,连接OD .∵OA =OD ,∠DAB =45°,∴∠ODA =45°,∴∠AOD =90°.∵CD ∥AB ,∴∠ODC =∠AOD =90°,即OD ⊥CD .又∵点D 在⊙O 上,直线CD 与⊙O 相切.(2)∵BC ∥AD ,CD ∥AB ,∴四边形ABCD 是平行四边形,∴CD =AB =2.∴S 梯形OBCD =()(12)13222OB CD OD ++⨯==g ,∴图中阴影部分的面积为S 梯形OBCD -S 扇形OBD = 313212424ππ-⨯=-.26.(2010江苏南京,26,8分)学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,_____. 试说明Rt △ABC ∽Rt △A /B /C /.【答案】(1)一个锐角对应相等,两直角对应成比例; (2)斜边和一条直角边对应成比例.在Rt △ABC 和Rt △A /B /C /中,∠C =∠C /=90°,////AB AC A B A C =. 解法一:设////AB AC A B A C==k ,则AB = k A /B /,AC = k A /C /. 在Rt △ABC 和Rt △A /B /C /中,222//22//2////2//2//2//2BC AB AC k A B k A C k B C A B A C A B A C --===--,∴//////AB AC BC A B A C B C==, ∴Rt △ABC ∽Rt △A /B /C /.解法二:如图,假设AB >A /B /,在AB 上截取AB //= A /B /,过点B //作B //C //⊥AC ,垂足为C //.∵∠C =∠AC //B //,∴BC ∥B //C //,∴Rt △ABC ∽Rt △A /B //C //,////AC AB AC AB =. ∵AB //= A /B /,∴////AC AB AC A B=. 又∵////AB AC A B A C =,∴//AC AC=//AC A C ,∴AC //=A /C /. ∵AB //= A /B /,∠C =∠AC //B //=90°,∴Rt △AB //C //≌Rt △A /B /C /,∴Rt △ABC ∽Rt △A /B /C /.27.(2010江苏南京,27,8分)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元.(1)填表(不需要化简)(2)如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?【答案】(1)80-x ,200+10x ,800-200-(200+10x );(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )] -50×800=9000.整理,得x 2-20x +100=0,解这个方程得x 1= x 2=10,当x =10时,80-x =70>50.答:第二个月的单价应是70元.28.(2010江苏南京,28,8分)如图,正方形ABCD 的边长是2,M 是AD 的中点.点E 从点A出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连接EG 、FG .(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长.【答案】(1)当点E与点A重合时,x=0,y=12×2×2=2;当点E与点A不重合时,0<x≤2.在正方形ABCD中,∠A=∠ADC=90°,∴∠MDF=90°,∴∠A=∠MDF.∵AM=DM,∠AMF=∠DMF,∴△A M E≌△DMF,∴ME=MF.在Rt△AME中,AE=x,AM=1,ME=21x+.∴EF=2MF=221x+.过点M作MN⊥BC,垂足为N(如图).则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM.∴∠AME+∠EMN=90°.∵∠EMG=90°,∴∠GMN+∠EMN=90°,∴∠AME=∠GMN,∴Rt△AME∽Rt△NMG,∴AM MENM MG=,即12MEMG=,∴MG=2ME21x+∴y=12EF·MG=12×21x+21x+x2+2,∴y =2x2+2,其中0≤x≤2.(2)点P运动路线的长为2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共6页)
2010年江苏省无锡市中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)(2011•南京)的值等于( )
A.3 B.﹣3 C.±3 D.
2.(3分)(2010•无锡)下列运算正确的是( )
A.(a3)2=a5 B.a3+a2=a5 C.(a3﹣a)÷a=a2 D.a3÷a3=1

3.(3分)(2010•无锡)使有意义的x的取值范围是( )

A. B. C. D.
4.(3分)(2010•无锡)下列图形中,是中心对称图形但不是轴对称图形的是( )

A. B. C. D.
5.(3分)(2011•无锡)已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
6.(3分)(2010•无锡)已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d的
取值满足( )
A.d>9 B.d=9 C.3<d<9 D.d=3
7.(3分)(2010•无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是( )
A.两边之和大于第三边
B.有一个角的平分线垂直于这个角的对边
C.有两个锐角的和等于90°
D.内角和等于180°
8.(3分)(2010•无锡)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取
前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这
13名同学成绩的( )
A.中位数 B.众数 C.平均数 D.极差
9.(3分)(2010•无锡)若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的
值增加2时,y的值( )
A.增加4 B.减小4 C.增加2 D.减小2
10.(3分)(2010•无锡)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,

过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值( )
第2页(共6页)

A.等于2 B.等于 C.等于 D.无法确定
二、填空题(共8小题,每小题2分,满分16分)
11.(2分)(2012•贺州)﹣5的相反数是 .
12.(2分)(2010•无锡)上海世博会“中国馆”的展馆面积为15 800m2,这个数据用科学记
数法可表示为 m2.
13.(2分)(2010•无锡)分解因式:4a2﹣1= .
14.(2分)(2010•无锡)方程x2﹣3x+1=0的解是 .
15.(2分)(2010•无锡)如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD
交⊙O于C,则∠A= 度.

16.(2分)(2010•无锡)如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,
则∠BCE= 度.

17.(2分)(2010•无锡)如图,梯形ABCD中,AD∥BC,EF是梯形的中位线,对角线
AC交EF于G,若BC=10cm,EF=8cm,则GF的长等于 cm.

18.(2分)(2010•无锡)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而
售价没变,所以该商品的销售利润率变成了 %.【注:销售利润率=(售价﹣进
价)÷进价】.

三、解答题(共10小题,满分84分)
19.(8分)(2010•无锡)计算:(1)
第3页(共6页)

(2).
20.(8分)(2010•无锡)(1)解方程:;
(2)解不等式组:.
21.(6分)(2010•无锡)小刚参观上海世博会,由于仅有一天的时间,他上午从A﹣中国
馆、B﹣日本馆、C﹣美国馆中任意选择一处参观,下午从D﹣韩国馆、E﹣英国馆、F﹣德
国馆中任意选择一处参观.
(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);
(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.
22.(6分)(2010•无锡)学校为了解全校1600名学生到校上学的方式,在全校随机抽取了
若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能
不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
23.(8分)(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码
头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的
北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏
东60°,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

24.(10分)(2010•无锡)如图,矩形ABCD的顶点A、B的坐标分别为(﹣4,0)和(2,
0),BC=.设直线AC与直线x=4交于点E.
第4页(共6页)

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一
定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动
点,求△CMN面积的最大值.

25.(8分)(2010•无锡)某企业在生产甲、乙两种节能产品时需用A、B两种原料,生产
每吨节能产品所需原料的数量如下表所示:
原料 节能产品 A 原料(吨) B原料(吨)

甲种产品
3 3
乙种产品
1 5
本次销售甲、乙两种产品的利润m(万元)与销售量n(吨)之间的函数关系如图所示.已
知该企业生产了甲种产品x吨和乙种产品y吨,共用去A原料200吨.
(1)写出y与x满足的关系式;
(2)为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B原
料多少吨?

26.(10分)(2010•无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)
上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:
AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线
上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=
时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
第5页(共6页)

27.(10分)(2010•无锡)如图,已知点,经过A、B的直线
l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以
每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)用含t的代数式表示点P的坐标;
(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半
径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.

28.(10分)(2010•无锡)如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角
形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形
ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进
行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧
面全部包贴满.
(1)请在图2中,计算裁剪的角度∠BAD;
(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.
第6页(共6页)

2010年江苏省无锡市中考数学试卷
参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.A; 2.D; 3.C; 4.B; 5.C; 6.D; 7.B; 8.A; 9.A; 10.B;

二、填空题(共8小题,每小题2分,满分16分)
11.5; 12.1.58×104; 13.(2a+1)(2a-1); 14.x1=,x2=; 15.40;
16.50; 17.3; 18.40;

三、解答题(共10小题,满分84分)
19. ; 20. ; 21. ; 22. ; 23. ;

24. ; 25. ; 26.; 27. ;
28. ;

相关文档
最新文档