铁氧体磁心高频变压器的设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁氧体磁心高频变压器设计(二)

2009-07-20 11:33:29| 分类:电子制作|字号订阅

来源:工程部作者:华奥盛2008-04-16 点击:251

3 高频变压器设计基础

与电源变压器不同,高频变压器工作在放大器电路中,是放大器的组成部分。而且,工作在有一定带宽的频段上,其参数与放大器电路参数有关。因此,分析与设计高频变压器时,必须与放大器电路相结合,并根据其特点确定电参数。3.1 高频变压器的主要作用

3.1.1 阻抗匹配

变换信号电压,使前、后级放大器达到阻抗匹配,保证信号不失真、高效的传输。

3.1.2 隔离

使用高频变压器可将两个电路隔离。

3.1.3 倒相

通过改变变压器的极性,使输出信号的相位与输入信号的相位相反;或变为两个大小相等、相位相反的信号。

3.1.4 多路信号迭加或分解

利用变压器可将两路或多路信号相迭加,或将一个信号分成几个信号传输给负载。

3.2 高频变压器的等效电路

高频变压器的主要作用是将某一量值的阻抗变换成另一量值,使两个电路间达到阻抗匹配或使放大器获得最佳负载阻抗。利用变压器所得到的阻抗,与一个具体的电阻不同,它是包含了变压器自身参数(自感、漏感、分布电容、铜阻)在内的一个网络,其电抗成分会随着频率的变化而变化。在不同频率下的各种电路中,变压器可等效为一个具体的网络,称为等效电路。图8为高频变压器的等效电路,它与电源变压器等效电路的区别在于补充了电源内阻Ri,并把初、次级漏感合并在一起用LS表示,定义为初次级总漏感。

图中:r1——初级铜阻;

r2′——换算到初级的次级铜阻;

C1——初级分布电容;

C2′——换算到初级的次级分布电容;

L1——初级自感(H);

LS——次级短路,从初级端测得的漏感(H);

Ri——电子管或晶体管内阻;

R2′——换算到初级的次级负载电阻;

rC——铁损分量等效电阻;

U1——信号源电压(V);

U2′——换算到初级的次级电压(V)。

图8基本上反映了高频变压器的各个参数,但直接用来进行计算是有一定困难的,也是不符合实际的,需要区别不同情况加以简化。通常将工作频带分成低、中和高三个频段,把信号源内阻与负载电阻分为高阻和低阻,在各个频段上,将L1、LS、C1、C2′ 所呈现的阻抗与R1、R2′ 进行比较,在串联参数中,忽略远小于R1、R2′的参数,在并联参数中,忽略远大于R1、R2′的参数。由此可得到低频、中频、高频三个频段,高阻电路和低阻电路两种情况的简化等效电路。在实际应用中,由于大多数电路为使用半导体器件的电路,R1、R2′均为低阻,因此,在实际应用中,常用的等效电路为四种,见图9、图10、图11 和图12。

由图9电路可知,在低频段,L1的感抗随频率下降而下降,L1的大小直接影响输出电压U2′的大小。因此,L1是决定高频变压器的低频段特性的重要参数。

由图10电路可见,在中频段,只有与频率无关的电阻成分,输出电压U2′与输入电压U1之间的关系仅是简单的电阻分压关系。

在高频段,当R1、R2′均为低阻时,C1、C2′可以忽略,得到图11所示的等效电路。这是最常用的一种高频等效电路,主要用于晶体管放大电路。由图11可见,随着频率升高,漏感抗增大,使输出电压下降,因此,漏感LS的大小直接影响变压器的高频特性。当R1为低阻、R2′为高阻时,C1忽略、C2′ 不能忽略,得到图12所示的等效电路。对于升压比较高的输入变压器,由于C2′不能忽略,故其等效电路也为图12。由图12可见,C2′、LS组成串联谐振电路,在谐振点附近,输出电压会有剧烈的起伏,因此,回路的谐振特性影响高频变压器在高频段的特性。

3.3 高频变压器的输入阻抗及其频率特性

当变压器次级接上负载阻抗R2时,经阻抗变换后,从初级端看,呈现在初级两端子之间的阻抗为Z,我们称Z为变压器初级输入阻抗。对放大器而言,变压器的初级输入阻抗Z就是放大器的负载阻抗Ra ,即Ra = Z,如图13所示。

对每一个放大器,都存在着一个最佳负载。在最佳负载时,放大器的输出功率最大,电压的波形失真最小。若偏离最佳负载,则输出功率减小,电压的波形失真增大。如图14。所以,我们希望变压器的输入阻抗Z等于放大器最佳负载阻抗Ra,偏离会加大波形失真。为使放大器不产生过大的波形失真,负载阻抗即变压器输入阻抗的变化范围要加以限制,一般不超过10%~30%的范围。

由于变压器等效电路中存在电抗部分,引起输入阻抗Z随频率而变化。输入阻抗的相对变化量Z/R2′与频率的关系曲线称为输入阻抗频率特性曲线。图15为R1、R2′均为低阻的等效电路(图9、10和11)时的输入阻抗频率特性曲线。

由图15可见,在低频段,当工作频率f下降时,输入阻抗下降,但L1大的比L1小的下降慢;在高频段,当工作频率f

上升时,输入阻抗上升,但LS小的比LS大的上升慢。为控制放大器的波形失真,变压器需从输入阻抗允许变化量的角度来计算自感L1和漏感LS。

在图12的等效电路中,LS和C2′构成串联谐振回路,在谐振频率f0 附近,输入阻抗会出现谷点,其起伏程度与回路Q 值有关,如图16所示。

3.4 频率幅度特性

变压器所在的放大器,输入信号的幅度固定,改变信号频率,得到各种不同频率下变压器输出电压与中间频率(简称为中频)下的输出电压之比,称为变压器的频率幅度特性,又称频率响应或频率失真。为表示其相对关系,常用失真系数M来表示,并可按下式计算

式中M——频率失真系数(dB);

U0——变压器在中间频率时的输出电压(V);

Uf——变压器在某一频率下的输出电压(V)。

R1、R2′均为低阻的等效电路(图9、10和11)时的频率响应曲线见图17,而图12等效电路的频率响应曲线见图18。

3.5 设计高频变压器所需的电路参数和变压器的主要技术要求

3.5.1 阻抗

①信号源内阻R1;

②变压器初级输入阻抗Ra及允许变化范围;

③次级负载阻抗R2或匝数比n。

3.5.2 电压或功率

①输入电压U1;

②输出功率P2。

3.5.3 工作情况和电路图

①放大器工作状态(甲类、甲乙类、乙类……);

②直流电压和电流;

③电路图。

3.5.4 变压器技术指标

①频率特性;

②效率;

相关文档
最新文档