2018-山东省-济南市-历下区--初三-下学期-中考一模
山东省济南市历城区2024届九年级下学期中考一模数学试卷(含答案)

2024年九年级学业水平模拟测试(一)数学试题(2023.4)一、选择题(本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.)1.下列几何体的主视图和俯视图完全相同的是( )2.根据中国航天局提供的资料,天和核心舱组合体运行轨道参数是:远地点高度约394900米;近地点高度约384000米;将数据394900用科学记数法可以表示为( )A. 39.49×10⁴B. 0.3949×10⁶D. 3.949×10⁶3. 如图, 已知直线AB∥CD, EG平分∠BEF, ∠1=36°,则∠2的度数是( )A. 70°B. 72°C. 36°D. 54°4.实数a,b,c在数轴上的对应点的位置如图所示,则下列式子正确的是( )A. a+c<0B. a+b<a+cC. ac>bcD. ab>ac5.下列运算中,正确的是( )A.x⁹÷x³=x³D.x³+x=x6.每年的4月22日是世界地球日,2023年世界地球日的主题是“众生的地球” 某校在此期间组织学生开展“爱护地球”图标设计征集活动,如图所示图标是中心对称图形的是( )7.如图,正比例函数. 的图象与反比例函数y2=k2(k2鈮?)的图x象相交于A ,B 两点,已知点B 的横坐标为3,当y ₂<y ₁时,x 的取值范围是 ( )A. x<-3或0<x<3B. x<-3C. x>3D. -3<x<0或x>38.在项目化学习中,“水是生命之”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是 ( )A. B. C.12 D. Error! Cannot insertreturn character.9. 如图, 在△ABC 中, 分别以A, B 为圆心, 以大于 Error! Digitexpected.的长为半径作弧,两弧相交于F ,G 两点,作直线 FG 分别交AB, BC 于点M, D; 再分别以A, C 为圆心,以大于 Error! Digit expected.的长为半径作弧,两弧相交于H ,I 两点,作直线HI分别交AC, BC于点N, E; 若 BD =32,DE =2,EC =52,则AC 的长为 ( ) A.3102B.332C.352D.32210. 阅读材料: 已知点P(x ₀, y ₀) 和直线y=kx+b, 则点P 到直线y=kx+b 的距离d 可用公式 d =|kx 0―y 0+b|1+k 2计算.例如:求点P(-2,1)到直线y=x+1的距离.其中k=1,b=1.所以点P (-2, 1) 到直线y=x+1的距离为 d =|kx 0―y 0+b|1+k 2=|ln(―2)―1+1|1+12=22=2.根据以上材料,有下列结论:①点(2,0) 到直线y=-2x 的距离是 LJ②直线y=-2x 和直线y=-2x+6的距离是 ʏ③抛物线 y =x²―4x +3上存在两个点到直线y=-2x 的距离是. Error! Digit expected.④若点 P 是抛物线 y =x²―4x +3上的点,则点P 到直线y=-2x 距离的最小值是 ÿ其中,正确结论的个数是 ( ) A. 1B. 2C. 3D. 4二、填空题(本题共6小题,每小题4分,共24分.)11. 分解因式: m 2―4m +4=.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.13. 方程Error! Digit expected.的解为.14. 如图, 正八边形ABCDEFGH的边长为3, 以顶点A为圆心, AB的长为半径画圆, 则阴影部分的面积为(结果保留π)15.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y₁(km)与时间x(h)之间的函数关系,线段AN表示轿车离西昌距离y₂(km)与时间x(h)之间的函数关系,则货车出发小时后与轿车相遇.16. 如图, 正方形ABCD中, AB=4, 点E为AD上一动点, 将三角形ABE沿BE折叠, 点A落在点F处,连接DF并延长,与边AB交于点G,若点G为AB中点,则AE=.三、解答题(本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. (6分) 计算:18. (6分) 解不等式组并写出其所有整数解.19.(6分)如图, 在▱ABCD中, E, G, H, F分别是AB, BC, CD, DA上的点, 且BE=DH,AF=CG.求证:EF=GH.20.(8分)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知( CD=8m,CD的坡度为i=13,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为:(1) 求DE的长;(2) 求塔AB的高度. (结果精确到1m)(参考数据:21.(8分)某校开展“图书月”活动,为了解七年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关数据进行了收集、整理、描述和分析.下面是其中的部分信息:a.将学生每天阅读时长数据分组整理,绘制了如下两幅不完整的统计图表.七年级学生每天阅读时长情况统计表组别每天阅读时长(单位: 分钟)人数(单位: 人)A 0≤x<308B 30≤x<60nC 60≤x<9016D90≤x<1208b. 每天阅读时长在60≤x<90的具体数据如下: 60, 60, 66, 68,69, 69, 70, 70, 72,73, 73, 73, 80, 83, 84, 85根据以上信息,回答下列问题:(1) 表中n=, 图中m=;(2)C 组这部分扇形的圆心角是°;(3)每天阅读时长在60≤x<90这组具体数据的中位数是 ,众数是;(4)各组每天平均阅读时长如表:组别A 0≤x<30B 30≤x<60C 60≤x<90D 90≤x<120平均阅读时长(分钟)204575.599求被调查学生的平均阅读时长.22.(8分)如图, AB 是⊙O 的直径, C 是⊙O 上一点, 过点C 作⊙O 的切线CD, 交AB 的延长线于点D ,过点A 作.于点 E.(1) 若 ∠DAC =25°,求的度数;(2) 若( OB =4,BD =2,求CE 的长.23.(10分)2023年中国新能汽车市场火爆.某汽车销售公司为抢占先机,计划购进一批新能汽车进行销售.据了解,1辆A型新能汽车、3辆B型新能汽车的进价共计55万元;4辆A型新能汽车、2辆B 型新能汽车的进价共计120万元.(1)求A,B型新能汽车每辆进价分别是多少万元.(2)公司决定购买以上两种新能汽车共100辆,总费用不超过1180万元,该汽车销售公司销售1辆A型新能汽车可获利0.9万元,销售1辆B型新能汽车可获利0.4万元,若汽车全部销售完毕,那么销售A型新能汽车多少辆时获利最大?最大利润是多少?24.(10分) 如图, 在平面直角坐标系xOy中, 直线y=2x+4与函数的图象交于点A(1,m), 与x轴交于点B.(1) 求m, k的值;(2) 过动点P (0, n) (n>0) 作平行于x轴的直线, 交直线y=2x+4于点C,交函数的图象于点D,①当n=2时,求线段CD的长;②若CD鈮?OB,,结合函数的图象,直接写出n的取值范围.25.(12分) 如图所示, 中, 若D是内一点,将线段CD绕点C顺时针旋转Error! Digit expected.得到CE, 连结AD, BE.(1) ①如图1,判断AD与BE的位置关系并给出证明;②如图2, 连接AE, BD, 当. AE=AB时,请直接用等式表示线段BD和CD的数量关系;(2) 如图3,O是斜边AB的中点,M为BC上方一点,且CM与斜边AB的交点在线段OA上, 若求. BM的长.26.(12分)如图,在平面直角坐标系中,二次函数. y =x²+bx +c 的图象与x 轴交于点. A (―1,0)和点B (3, 0), 与y 轴交于点C.(1)求二次函数的表达式;(2)如图,二次函数图象的顶点为.对称轴与直线BC 交于点D ,在直线BC 下方抛物线上是否存在一点 M (不与点 N 重合),使得 S NDC =S MDC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)将线段AB 先向右平移一个单位,再向上平移6个单位,得到线段EF ,若抛物线与线段EF 只有一个公共点,请直接写出a 的取值范围.2024年九年级学业水平模拟测试(一)数学试题(答案)一、选择题12345678910D C B D C C A B A D二、填空题11.;12. 6;13.;14.;15. 1.8;16. .三、解答题17.原式=……………………………………………………………………………4分==………………………………………………………………………………………………………………6分18.解:解不等式①得:,………………………………………………………………………………2分解不等式②得:,..........................................................................................4分该不等式组的解集为:, (5)分该不等式组的整数解为:.………………………………………………………………………6分19.证明:∵四边形ABCD为平行四边形,∴∠A=∠C,AB=CD,…………………………………………………………………………………………2分又∵BE=DH,∴AB-BE=CD-DH,∴AE=CH, (3)分在△AEF和△CHG中,∴△AEF≌△CHG(SAS) (5)分∴EF=HG. (6)分20. (1)解:在Rt△DCE中,的坡度为,,∴, (1)分∴.即的长为. (2)分(2)解:设,在Rt△DCE中,,∴.…………………………………………………………………3分在Rt△BCA中,由,,,则.∴.…………………………………………………………………………………4分即的长为.如图,过点作,垂足为.根据题意,,∴四边形是矩形.∴,.可得.………………………………………………………………………………5分在中,,∴,………………………………………………………………………………………………6分解得:………………………………………………………………………………………………7分15m答:塔的高度约为. (8)分21. (1); (2)分(2)72; (3)分(3),; (5)分(4)20×10%+45×60%+75.5×20%+99×10%=54(分钟). (8)分22.(1)解:连接OC,∵O与CD相切于点C,∴OC⊥CD,∠OCD=90°,……………………………………1分∵于点,∴,∴∠AEC=∠OCD,∴AE∥OC,∴∠EAC=∠ACO,…………………………………………………………………………………………2分又∵OA=OC,∴∠DAC=∠ACO,……………………………………………………………………………………3分∴∠EAC=∠DAC=25°…………………………………………………………………………………4分(2)解:,,,.…………………………………………………………………………………5分,, (6)分,……………………………………………………………………………………………………7分. (8)分23. (1)设A型新能汽车每辆进价为a万元,B型新能汽车每辆进价为b万元.…………………1分由题意,得……………………………………………………………………………………3分解得 (4)分答:A型新能汽车每辆进价为25万元,B型新能汽车每辆进价为10万元.…………………………5分(2)设购买A型新能汽车x辆,则购买B型新能汽车辆.………………………………6分由题意,得.解得.……………………………………………………………………………………………………7分设销售A型新能汽车x辆所获利润为W万元.则.…………………………………………………………………………8分∵,∴W随x的增大而增大.∴当时,W有最大值46万元.…………………………………………………………………………9分答:当销售A型新能汽车12辆时获利最大,最大利润为46万元.……………………………………10分24. 解:(1)直线经过点,,………………………………………………………………………………………………1分反比例函数的图象经过点,;………………………………………………………………………………………………2分(2)①当时,点的坐标为,当时,,解得,点D的坐标为,……………………………………………………………………………………4分当时,,解得,点C的坐标为,……………………………………………………………………………………6分;……………………………………………………………………………………………7分②的取值范围为(1分)或(2分).………………………………………………10分25. 解:(1)AD⊥BE…………………………………………………………………………………………1分延长AD交CB于O点,交BE于H点.∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,由旋转的性质得:CD=CE,∠DCE=90°,∵∠ACD+∠DCB=90°,∠BCE+∠DCB=90°,∴∠ACD=∠BCE,又∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),…………………………………………………………………………3分∴∠CAD=∠CBE又∵∠AOC=∠BOH;∴△AOC∽△BOH,∴∠BHO=∠ACO=90°;∴AD⊥BE.…………………………………………………………………………………………5分(2)BD=CD;………………………………………………………………………………8分(3)解:如图,过点O作ON⊥OM,且ON=OM,连接NM、NC,N C交BM于点H,ON交MB于F点,连接OC,则∠NOM=90°,∵△ABC是等腰直角三角形,O是斜边AB的中点,∴CO⊥AB,CO=AB=OB,∴∠COB=∠NOM=90°,∴∠NOC=∠MOB,∴△NOC≌△MOB(SAS),………………………………………………………………………………9分∴CN=BM,∠ONC=∠OMB,又∵∠OFM=∠HFN,∴∠MHN=∠MOF=90°,∵∠BMC=45°,∴△CMH是等腰直角三角形,∴CH=MH=CM=12,……………………………………………………………………………10分在Rt△NOM中,NM=OM==13,…………………………………………………11分在Rt△NHM中,NM=13,MH=12,∴NH=5∴CN=CH+HN=17,∴BM=CN=17………………………………………………………………………………………………12分(此题方法不唯一,阅卷组可根据不同方法设置不同标准.)26.解:(1)把A(-1,0),B(3,0)代入二次函数y=x2+bx+c可得,,…………………………………………………………………………………………2分解得:,…………………………………………………………………………………………3分∴二次函数的表达式为y=x2-2x-3.………………………………………………………………………4分(2)由题意可得:N(1,-4),…………………………………………………………………………5分∵S△NDC=S△MDC,∴过点N作CD的平行线,与抛物线交于点M,由B(3,0),C(0,-3)可得直线DC的表达式为,……………………………………6分∵MN∥DC,N(1,-4),∴直线MN的表达式为,…………………………………………………………………7分∴,解得:,………………………………………………………………………8分∴M(2,-3).…………………………………………………………………………………………9分(3)………………………………………………………………………12分(答出一种情况得1分)。
山东省九年级下学期数学中考一模联考试卷

山东省九年级下学期数学中考一模联考试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题4分,共40分.) (共10题;共40分)1. (4分)(2016·聊城) 在实数﹣,﹣2,0,中,最小的实数是()A . ﹣2B . 0C . ﹣D .2. (4分)(2018·辽阳) 如图所示几何体是由五个相同的小正方体搭成的,它的左视图是()A .B .C .D .3. (4分)下列计算正确的是()A . a3+a2=a5B . a3•a2=a6C . (a3)2=a9D . a6÷a2=a44. (4分) (2020七下·横县期末) 下列选项中,显示部分在总体中所占百分比的统计图是()A . 扇形统计图B . 条形统计图C . 折线统计图D . 直方图6. (4分) (2020七下·天府新期中) 下列长度的3条线段,能首尾依次相接组成三角形的是().A . 1,3,5B . 3,4,6C . 5,6,11D . 8,5,27. (4分)(2017·信阳模拟) 方程(x﹣2)(x+1)=x﹣2的解是()A . x=0B . x=2C . x=2或x=﹣1D . x=2或x=08. (4分)(2016·淄博) 已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(-,y1)、(-,y2)、(-,y3),y1、y2、y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y29. (4分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A . 2∠A=∠1+∠2B . ∠A=∠1+∠2C . 3∠A=2∠1+∠2D . 3∠A=2(∠1+∠2)10. (4分)(2018·洛阳模拟) 如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B 和点A,与反比例函数y=-(x<0)的图像交与点C,若BA∶AC=2∶1,则a的值为()A . -3B . -2C . 3D . 2二、填空题(本题有6题,每小题5分,共30分) (共6题;共30分)11. (5分) (2020八上·渝北月考) 计算: ________.12. (5分) (2019九上·邢台开学考) 某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是________。
2024年山东省济南市历下区中考数学一模试卷(含解析)

2024年山东省济南市历下区中考数学一模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2024的绝对值是( )A.﹣2024B.2024C.D.2.(4分)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A.B.C.D.3.(4分)海水淡化是解决全球水资源危机的战略手段,根据《海水淡化利用发展行动计划(2021﹣2025年)》,到2025年我国海水淡化总规模将达到2900000吨/日以上.数字2900000用科学记数法表示为( )A.0.29×107B.2.9×106C.29×105D.290×104 4.(4分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°5.(4分)我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.(4分)实数a,b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是( )A.|a|<|b|B.2a>2b C.ab>0D.a<﹣17.(4分)有四张大小和背面完全相同的不透明卡片,正面分别印有“前”、“程”、“朤(lǎng)”、“朤(lǎng)”四个汉字,将这四张卡片背面朝上洗匀,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人抽到汉字可以组成“朤朤”的概率是( )A.B.C.D.8.(4分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为点O,点C,D分别在OA,OB上,已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长与内边缘的长的差为( )A.B.C.D.9.(4分)如图,在△ABC中,AB=AC,∠BAC=108°,分别以点A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN分别交BC,AC于点D,E,连接AD,以下结论不正确的是( )A.∠BDA=72°B.BD=2AE C.D.CA2=CD•CB 10.(4分)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1,3)与点(,2)都是函数y=2x+1图象的“3阶方点”.若y关于x的二次函数y=(x﹣n)2+n2﹣6的图象存在“n阶方点”,则n的取值范围是( )A.B.C.2≤n≤3D.1≤n≤3二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)分解因式:xy﹣y2= .12.(4分)若分式有意义,则x的值可以是 .(写出一个即可)13.(4分)如图,矩形ABCD内的图形来自中国古代的太极图,已知AB长为6,BC长为8.一小球在矩形ABCD内自由地滚动,并随机停留在某区域,它最终停留在黑色区域的概率为 .(结果保留π)14.(4分)如图所示,在△ABC中,AB=AC=4,∠A=90°,以点A为圆心,以AB的长为半径作,以BC为直径作半圆,则阴影部分的面积为 .15.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6cm,AC=10cm,点D为AC的中点,过点B作EB⊥BD,连接EC,若EB=EC,连接ED交BC于点F,则EF= cm.16.(4分)如图,已知矩形ABCD,AB=6,AD=8,点E为边BC上一点,连接DE,以DE为一边在与点C的同侧作正方形DEFG,连接AF.当点E在边BC上运动时,AF的最小值是 .三、解答题(本大题共10个小题,共86分,请写出文字说明、证明过程或演算步骤.)17.(6分)计算:|﹣2|﹣(π﹣2)0+()﹣1﹣4tan45°.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.20.(8分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x<100随机抽取n名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是 °;(2)n= ,并补全图2中的频数分布直方图;(3)在笔试阶段中,n名学生成绩的中位数是 分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.笔试展演甲9289乙909521.(8分)数学兴趣小组用所学的数学知识来解决实际问题,实践报告如下:活动课题遮阳篷前挡板的设计问题背景我们所在的社区服务中心在境外安装了遮阳篷,结果发现夏日正午时纳凉面积不够,现在为使房前的纳凉区域增加到2.76m 宽,计划在遮阳篷前端加装一块前挡板(前挡板垂直于地面),如图1,现在要计算所需前挡板的宽度BC 的长.测量数据抽象模型我们实地测量了相关数据,并画出了侧面示意图,如图2,遮阳篷AB 长为4m ,其与墙面的夹角∠BAD =70°,其靠墙端离地高AD为3.5m .通过查阅资料,了解到本地夏日正午的太阳高度角(太阳光线与地面夹角∠CFE )最小为60°,若假设此时房前恰好有2.76m 宽的阴影DF ,如图3,求出BC 的长即可.解决思路经过讨论,我们准备按照如下步骤解决问题:(1)运用所学的三角函数的相关知识,构造直角三角形,先求出遮阳篷前端B 到墙面AD 的距离;(2)继续构造直角三角形,求出∠CFE为60°时,BC的长度.运算过程…该报告运算过程还没有完成,请按照解决思路,帮助兴趣小组完成该部分.(结果精确到0.01m,参考数据:sin70°≈0.940,cos70°≈0.342,tan70°≈2.747,≈1.732)22.(8分)如图,AB为⊙O的直径,点D为⊙O上一点,点E是的中点,连接BE,AE,过点A的切线与BE的延长线交于点C,弦BE,AD相交于点F.(1)求证:∠ADE=∠CAE;(2)若∠ADE=30°,AE=,求BF的长.23.(10分)“体育承载着国家强盛、民族振兴的梦想,体育强则中国强,国运兴则体育兴.”为引导学生在体育锻炼中享受乐趣、增强体质,学校开展大课间活动,七年级五班拟组织学生参加跳绳活动,需购买A,B两种跳绳若干,已知购买3根A种跳绳和1根B种跳绳共需105元;购买5根A种跳绳和3根B种跳绳共需215元.(1)求A,B两种跳绳的单价;(2)如果班级计划购买A,B两型跳绳共48根,B型跳绳个数不少于A型跳绳个数的2倍,那么购买跳绳所需最少费用是多少元?24.(10分)如图,在平面直角坐标系xOy中,△ABC的顶点B,C在x轴上,顶点A在y轴上,AB=AC.反比例函数的图象与边AC交于点E (1,4)和点F(2,n).点M为边AB上的动点,过点M作直线MN∥x轴,与反比例函数的图象交于点N.连接OE,OF,OM和ON.(1)求反比例函数的表达式和点A的坐标;(2)求△OEF的面积;(3)求△OMN面积的最大值.25.(12分)【问题情境】如图1,在四边形ABCD中,AD=DC=4cm,∠ADC=60°,AB=BC,点E 是线段AB上一动点,连接DE.将线段DE绕点D逆时针旋转30°,且长度变为原来的m倍,得到线段DF,作直线CF交直线AB于点H.数学兴趣小组着手研究m为何值时,HF+mBE的值是定值.【探究实践】老师引导同学们可以先通过边、角的特殊化,发现m的取值与HF+mBE为定值的关系,再探究图1中的问题,这体现了从特殊到一般的数学思想.经过思考和讨论,小明、小华分享了自己的发现.(1)如图2,小明发现:“当∠DAB=90°,m=时,点H与点A恰好重合,的值是定值”.小华给出了解题思路,连接BD,易证△DEB∽△DFC,得到CF与BE的数量关系是 ,的值是 .(2)如图3,小华发现:“当AD=AB,m=时,的值是定值”.请判断小明的结论是否正确,若正确,请求出此定值,若不正确,请说明理由.【拓展应用】(3)如图1,小聪对比小明和小华的发现,经过进一步思考发现:“连接DB,只要确定AB的长,就能求出m的值,使得HF+mBE的值是定值”,老师肯定了小聪结论的准确性.若,请直接写出m的值及HF+mBE的定值.26.(12分)在平面直角坐标系xOy中,直线与y轴交于点A,与x轴交于点B,抛物线M:y=ax2+bx+c经过点A,且顶点在直线AB上.(1)如图,当抛物线的顶点在点B时,求抛物线M的表达式;(2)在(1)的条件下,抛物线M上是否存在点C,满足∠ABC=∠ABO.若存在,求点C的坐标;若不存在,请说明理由;(3)定义抛物线N:y=bx2+ax+c为抛物线M的换系抛物线,点P(t,p),点Q(t+3,q)在抛物线N上,若对于2≤t≤3,都有p<q<1,求a的取值范围.2024年山东省济南市历下区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2024的绝对值是( )A.﹣2024B.2024C.D.【分析】依据题意,根据绝对值的意义进行计算可以得解.【解答】解:由题意得,|2024|=2024.故选:B.2.(4分)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图如选项C所示,故选:C.3.(4分)海水淡化是解决全球水资源危机的战略手段,根据《海水淡化利用发展行动计划(2021﹣2025年)》,到2025年我国海水淡化总规模将达到2900000吨/日以上.数字2900000用科学记数法表示为( )A.0.29×107B.2.9×106C.29×105D.290×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:2900000=2.9×106.故选:B.4.(4分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°【分析】由平行线的性质可得∠ACD=∠1=56°,再由三角形的外角性质即可求解.【解答】解:如图,由题意得:AB∥CD,∴∠ACD=∠1=56°,∵△ACD是△CDE的外角,∠E=30°,∴∠2=∠ACD﹣∠E=26°.故选:A.5.(4分)我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】直接根据轴对称图形的定义和中心对称图形的定义逐项判断即可.【解答】解:A.该图形是轴对称图形,也是中心对称图形,故此选项符合题意;B.该图形不是轴对称图形,但是中心对称图形,故此选项不符合题意;C.该图形不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,但不是中心对称图形,故此选项不符合题意.故选:A.6.(4分)实数a,b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是( )A.|a|<|b|B.2a>2b C.ab>0D.a<﹣1【分析】由题可知,a=﹣b,从数轴上可知,a<0<1<b,据此逐一判断各选项.【解答】解:由题可知,a+b=0,∴a=﹣b,从数轴上可知,a<0<1<b,A、∵a=﹣b,∴|a|=|b|,故选项A不符合题意;B、∵a<b,∴2a<2b,故选项B不符合题意;C、∵a<0<b,∴ab<0,故选项C不符合题意;D、∵a=﹣b,a<0<1<b,∴﹣b<﹣1,∴a<﹣1,故选项D符合题意;故选:D.7.(4分)有四张大小和背面完全相同的不透明卡片,正面分别印有“前”、“程”、“朤(lǎng)”、“朤(lǎng)”四个汉字,将这四张卡片背面朝上洗匀,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人抽到汉字可以组成“朤朤”的概率是( )A.B.C.D.【分析】利用列表法或树状图法解答即可.【解答】解:画树状图如下:一共有16种等可能的情况,其中两人抽到汉字可以组成“朤朤”有4中可能的结果,∴P(两人抽到汉字可以组成“朤朤”)==,故选:B.8.(4分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为点O,点C,D分别在OA,OB上,已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长与内边缘的长的差为( )A.B.C.D.【分析】根据线段的和差得到OA=OC+AC,然后根据弧长公式即可得到结论.【解答】解:∵OC=12m,AC=4m,∴OA=OC+AC=12+4=16(m),∵∠AOB=120°,∴弯道外边缘的长为=(m),内边缘的长为==(m),∴弯道外边缘的长与内边缘的长的差为=π(m),故选:B.9.(4分)如图,在△ABC中,AB=AC,∠BAC=108°,分别以点A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN分别交BC,AC于点D,E,连接AD,以下结论不正确的是( )A.∠BDA=72°B.BD=2AE C.D.CA2=CD•CB 【分析】先由AB=AC,∠BAC=108°得∠B=∠C=36°,由作图可知MN 为AC的垂直平分线,则AD=CD,进而得∠DAC=∠C=36°,由此可求出∠BAD的度数,进而可对选项A进行判断;由MN为AC的垂直平分线得AC=2AE,则AB=2AE,证∠BAD=∠BDA=72°得AB=BD,由此可对选项B进行判断;设CD=x,CB=a,则BD=CB﹣CD=a﹣x,AC=AB=BC=a﹣x,证△CDA和△CAB相似得CD:CA=CA:CB,即x:(a﹣x)=(a﹣x):a,整理得x2﹣3ax+a2=0,由此解出,则,由此可对选项C 进行判断;由△CDA∽△CAB得CD:CA=CA:CB,由此可对选项D进行判断,综上所述即可得出答案.【解答】解:∵AB=AC,∠BAC=108°,∴∠B=∠C=1/2(180°﹣∠BAC)=(180°﹣108°)=36°,由作图可知:MN为AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=108°﹣36°=72°,故选项A正确,不符合题意;∵MN为AC的垂直平分线,∴AC=2AE,∵AB=AC,∴AB=2AE,∵∠DAC=∠C=36°,∴∠BDA=∠DAC+∠C=72°,∵∠BAD=72°,∴∠BAD=∠BDA=72°,∴AB=BD,∴BD=2AE,故选项B正确,不符合题意;设CD=x,CB=a,则x<a则BD=CB﹣CD=a﹣x,∴AC=AB=BC=a﹣x,∵∠DAC=∠B=36°,∠DCA=∠ACB,∴△CDA∽△CAB,∴CD:CA=CA:CB,即x:(a﹣x)=(a﹣x):a,整理得:x2﹣3ax+a2=0,解得:x1=,x2=(不合题意,舍去),∴,∴,即,故选项C不正确,符合题意;∵△CDA∽△CAB,∴CD:CA=CA:CB,∴CA2=CD•CB,故选项D正确,不符合题意.故选:C.10.(4分)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(1,3)与点(,2)都是函数y =2x +1图象的“3阶方点”.若y 关于x 的二次函数y =(x ﹣n )2+n 2﹣6的图象存在“n 阶方点”,则n 的取值范围是( )A .B .C .2≤n ≤3D .1≤n ≤3【分析】由二次函数解析式可知其顶点坐标在抛物线y =x 2﹣6上移动,作出简图,由函数图象可知,当二次函数图象过点 (n ,﹣n )和点(﹣n ,n )时为临界情况,求出此时n 的值,由图象可得n 的取值范围.【解答】解:∵二次函数y =(x ﹣n )2+n 2﹣6的顶点坐标为(n ,n 2﹣6),∴二次函数n 2﹣6的顶点在抛物线y =x 2﹣6上移动,∵y 关于x 的二次函数y =(x ﹣n )2+n 2﹣6的图象存在“n 阶方点”,∴二次函数二次函数y =(x ﹣n )2+n 2﹣6的图象与以顶点坐标为(n ,n ),(n ,﹣n ),(﹣n ,n ),(﹣n ,﹣n )的正方形有交点,如图,当y =(x ﹣n )2+n 2﹣6过点(﹣n ,n ) 时,将(﹣n ,n )代入y =(x ﹣n )2+n 2﹣6得:4n 2+n 2﹣6=n ,解得:n =或n =﹣1(舍去),当y =(x ﹣n )2+n 2﹣6过点(n ,﹣n ) 时,将(﹣n ,n )代入y =(x ﹣n )2+n 2﹣6得:4n 2+n 2﹣6=﹣n ,解得:n=1,n=﹣(舍去),由图可知,由图象可得n的取值范围是:1.故选:A.二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)分解因式:xy﹣y2= y(x﹣y) .【分析】直接提取公因式y,进而得出答案.【解答】解:xy﹣y2=y(x﹣y).故答案为:y(x﹣y).12.(4分)若分式有意义,则x的值可以是 2(答案不唯一) .(写出一个即可)【分析】根据分母不为0可得x+1≠0,然后进行计算即可解答.【解答】解:∵分式有意义,∴x+1≠0,∴x≠﹣1,∴x的值可以是2,故答案为:2(答案不唯一).13.(4分)如图,矩形ABCD内的图形来自中国古代的太极图,已知AB长为6,BC长为8.一小球在矩形ABCD内自由地滚动,并随机停留在某区域,它最终停留在黑色区域的概率为 .(结果保留π)【分析】根据几何概率的计算方法解答即可.【解答】解:由题意,可知:黑色区域的面积=圆面积的一半,∴P(最终停留在黑色区域)==.故答案为:.14.(4分)如图所示,在△ABC中,AB=AC=4,∠A=90°,以点A为圆心,以AB的长为半径作,以BC为直径作半圆,则阴影部分的面积为 8 .【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积﹣扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:在△ABC中,AB=AC=4,∠A=90°,∴BC==4,∴S扇形ACB==4π,S半圆CBF=π×(2)2=4π,S△ABC=×4×4=8;所以阴影面积=S半圆CBF+S△ABC﹣S扇形ACB=4π+8﹣4π=8,故答案为:8.15.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6cm,AC=10cm,点D为AC的中点,过点B作EB⊥BD,连接EC,若EB=EC,连接ED交BC于点F,则EF= cm.【分析】根据勾股定理得出BC=8cm,进而利用直角三角形的性质得出BD=5cm,进而利用勾股定理得出BE,进而解答即可.【解答】解;∵∠ABC=90°,AB=6cm,AC=10cm,∴BC=(cm),∵点D为AC的中点,∴BD=AC=5cm,∵EB=EC,∴BF=BC=4cm,DF=(cm),设EF=x,在Rt△EBF中,BE2=EF2+BF2,∵EB⊥BD,在Rt△BED中,BE2=ED2﹣BD2,即x2+42=(x+3)2﹣52,解得:x=,∴EF=cm,故答案为:.16.(4分)如图,已知矩形ABCD,AB=6,AD=8,点E为边BC上一点,连接DE,以DE为一边在与点C的同侧作正方形DEFG,连接AF.当点E在边BC上运动时,AF的最小值是 10 .【分析】过点E作EH⊥AD于点H,过点F作FK⊥BE,交BE的延长线于点K,交AB的延长线于点M,利用矩形的判定与性质,正方形的性质,直角三角形的性质和全等三角形的判定与性质得到KF=EH=6,KE=HD,设AH=x,则HD=EK=8﹣x,MH=x,利用勾股定理,配方法以及非负数的意义解答即可得出结论.【解答】解:过点E作EH⊥AD于点H,过点F作FK⊥BE,交BE的延长线于点K,交AB的延长线于点M,如图,∵四边形ABCD为矩形,∴AB=CD=6,AD=BC=8,∠C=∠ADC=90°,∵EH⊥AD,∴四边形CDHE为矩形,∴EH=CD=6,∵四边形DEFG为正方形,∴EF=ED,∠FED=90°.∴∠KEF+∠HED=90°.∵FK⊥BE,∴∠KFE+∠KEF=90°,∴∠KFE=∠HED.在△KFE和△HED中,,∴△KFE≌△HED(AAS),∴KF=EH=6,KE=HD.∵∠BAH=∠AHE=∠MKH=90°,∴四边形AHKM为矩形,∴AH=MK,AM=HK,∠M=90°,设AH=x,则HD=EK=8﹣x,MH=x,∴AM=HK=HE+EK=14﹣x,MF=KF+MK=6+x,在Rt△AFM中,∵AM2+MF2=AF2,∴AF==,∵2(x﹣4)2≥0,∴当x=4时,AF取得最小值为=10.∴AF的最小值是10.故答案为:10.三、解答题(本大题共10个小题,共86分,请写出文字说明、证明过程或演算步骤.)17.(6分)计算:|﹣2|﹣(π﹣2)0+()﹣1﹣4tan45°.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+3﹣4×1=2﹣1+3﹣4=0.18.(6分)解不等式组:,并写出它的所有整数解.【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案.【解答】解:解不等式3(x+2)>x+4得x>﹣1,解不等式得,x<3,∴不等式组的解集为﹣1<x<3.∴不等式组的整数解为0,1,2.19.(6分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【解答】证明:∵四边形ABCD为矩形,∴AC=BD,则BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.20.(8分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x<100随机抽取n名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是 54 °;(2)n= 20 ,并补全图2中的频数分布直方图;(3)在笔试阶段中,n名学生成绩的中位数是 85.5 分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.笔试展演甲9289乙9095【分析】(1)根据E组的人数所占的百分比进行计算即可;(2)由笔试成绩D组的人数及所占的百分比可得n的值,即可补全图2中的频数分布直方图;(3)根据中位数的定义即可求解;(4)根据加权平均数的计算方法即可得出答案.【解答】解:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是360°×(1﹣5%﹣5%﹣20%﹣45%﹣10%)=54°,故答案为:54;(2)n=9÷45%=20,展演成绩中B:75≤x<80的人数为20﹣2﹣6﹣4﹣3﹣1=4,补全图2中的频数分布直方图:故答案为:20;(2)将抽取的20名学生的笔试成绩从小到大排列,处在中间位置的两个数的平均数为=85.5,故答案为:85.5;(3)乙同学能获得“环保之星”称号,理由如下:甲同学的总成绩为=90.2(分),乙同学的总成绩为=93(分),93>90.2,∴乙同学能获得“环保之星”称号.21.(8分)数学兴趣小组用所学的数学知识来解决实际问题,实践报告如下:活动课题遮阳篷前挡板的设计问题背景我们所在的社区服务中心在境外安装了遮阳篷,结果发现夏日正午时纳凉面积不够,现在为使房前的纳凉区域增加到2.76m 宽,计划在遮阳篷前端加装一块前挡板(前挡板垂直于地面),如图1,现在要计算所需前挡板的宽度BC 的长.测量数据抽象模型我们实地测量了相关数据,并画出了侧面示意图,如图2,遮阳篷AB 长为4m ,其与墙面的夹角∠BAD =70°,其靠墙端离地高AD为3.5m .通过查阅资料,了解到本地夏日正午的太阳高度角(太阳光线与地面夹角∠CFE )最小为60°,若假设此时房前恰好有2.76m 宽的阴影DF ,如图3,求出BC 的长即可.解决思路经过讨论,我们准备按照如下步骤解决问题:(1)运用所学的三角函数的相关知识,构造直角三角形,先求出遮阳篷前端B到墙面AD的距离;(2)继续构造直角三角形,求出∠CFE为60°时,BC的长度.运算过程…该报告运算过程还没有完成,请按照解决思路,帮助兴趣小组完成该部分.(结果精确到0.01m,参考数据:sin70°≈0.940,cos70°≈0.342,tan70°≈2.747,≈1.732)【分析】过点B作BG⊥AD,垂足为G,延长BC交DE于点H,根据题意可得:BG=DH,BH=DG,BH⊥DE,然后在Rt△ABG中,利用锐角三角函数的定义求出AG和BG的长,从而求出DG和FH的长,最后在Rt△CFH中,利用锐角三角函数的定义求出CH的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:过点B作BG⊥AD,垂足为G,延长BC交DE于点H,由题意得:BG=DH,BH=DG,BH⊥DE,在Rt△ABG中,AB=4m,∠BAG=70°,∴AG=AB•cos70°≈4×0.342=1.368(m),BG=AB•sin70°≈4×0.94=3.76(m),∴BG=DH=3.76(m),∵AD=3.5m,∴DG=BH=AD﹣AG=3.5﹣1.368=2.132(m),∵DF=2.76m,∴FH=DH﹣DF=3.76﹣2.76=1(m),在Rt△CFH中,∠CFH=60°,∴CH=FH•tan60°=(m),∴BC=BH﹣CH=2.132﹣1.732=0.40(m),∴BC的长度约为0.40m.22.(8分)如图,AB为⊙O的直径,点D为⊙O上一点,点E是的中点,连接BE,AE,过点A的切线与BE的延长线交于点C,弦BE,AD相交于点F.(1)求证:∠ADE=∠CAE;(2)若∠ADE=30°,AE=,求BF的长.【分析】(1)根据切线的性质可得∠OAC=90°,从而可得∠CAE+∠BAE=90°,再利用直径所对的圆周角是直角可得∠AEB=90°,从而可得∠BAE+∠B=90°,然后利用同角的余角相等可得∠B=∠CAE,再根据同弧所对的圆周角相等可得∠B=∠D,从而利用等量代换可得∠D=∠CAE,即可解答;(2)利用(1)的结论可得∠ADE=∠B=30°,然后在Rt△ABE中,利用锐角三角函数的定义求出BE的长,再根据已知易得=,从而可得AE=DE,然后利用等腰三角形的性质可得∠EAD=∠D=30°,最后在Rt△AEF 中,利用锐角三角函数的定义求出EF的长,从而利用线段的和差关系进行计算,即可解答.【解答】(1)证明:∵AC与⊙O相切于点A,∴∠OAC=90°,∴∠CAE+∠BAE=90°,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠B=90°,∴∠B=∠CAE,∵∠B=∠D,∴∠D=∠CAE;(2)解:∵∠ADE=30°,∴∠ADE=∠B=30°,在Rt△ABE中,AE=,∴BE===3,∵点E是的中点,∴=,∴AE=DE,∴∠EAD=∠D=30°,在Rt△AEF中,EF=AE•tan30°=×=1,∴BF=BE﹣EF=3﹣1=2,∴BF的长为2.23.(10分)“体育承载着国家强盛、民族振兴的梦想,体育强则中国强,国运兴则体育兴.”为引导学生在体育锻炼中享受乐趣、增强体质,学校开展大课间活动,七年级五班拟组织学生参加跳绳活动,需购买A,B两种跳绳若干,已知购买3根A种跳绳和1根B种跳绳共需105元;购买5根A种跳绳和3根B种跳绳共需215元.(1)求A,B两种跳绳的单价;(2)如果班级计划购买A,B两型跳绳共48根,B型跳绳个数不少于A型跳绳个数的2倍,那么购买跳绳所需最少费用是多少元?【分析】(1)设A种跳绳的单价为x元,B种跳绳的单价为y元,根据题意列出二元一次方程组,解方程组即可得到答案;(2)设购进A种跳绳a件,总费用为w元,根据B种跳绳个数不少于A型跳绳个数的2倍,求出a的取值,再根据一次函数的性质,即可得到答案.【解答】解:(1)设A种跳绳的单价为x元,B种跳绳的单价为y元,,解得:,答:A种跳绳的单价为25元,B种跳绳的单价为30元;(2)设购进A种跳a件,总费用为w元,∵B种跳绳个数不少于A型跳绳个数的2倍,则2a≤48﹣a,解得:a≤16,w=25a+30(48﹣a)=﹣5a+1440,∵﹣5<0,∴w随a的增大而减小,当a=16时,w有最小值为1360元,答:购买跳绳所需最少费用是1360元.24.(10分)如图,在平面直角坐标系xOy中,△ABC的顶点B,C在x轴上,顶点A在y轴上,AB=AC.反比例函数的图象与边AC交于点E (1,4)和点F(2,n).点M为边AB上的动点,过点M作直线MN∥x轴,与反比例函数的图象交于点N.连接OE,OF,OM和ON.(1)求反比例函数的表达式和点A的坐标;(2)求△OEF的面积;(3)求△OMN面积的最大值.【分析】(1)根据反比例函数的图象与边AC交于点E(1,4)和点F(2,n),得到k=1×4=4,于是得到反比例函数的解析式为y=,把F(2,n)代入y=,得到F(2,2),设直线AC的解析式为y=mx+n,解方程组得到直线AC的解析式为y=﹣2x+6,于是得到A(0,6);(2)根据三角形的面积公式即可得到结论;(3)根据等腰三角形的性质得到OB=OC=3,求得B((﹣3,0),得到直线AB的解析式为y=2x+6,设M(m,2m+6),N(n,),根据三角形的面积公式和二次函数的性质即可得到结论.【解答】解:(1)∵反比例函数的图象与边AC交于点E(1,4)和点F(2,n),∴k=1×4=4,∴反比例函数的解析式为y=,把F(2,n)代入y=,得n==2,∴F(2,2),设直线AC的解析式为y=mx+n,∴,解得,∴直线AC的解析式为y=﹣2x+6,当x=0时,y=6,∴A(0,6);(2)△OEF的面积=△AOF的面积﹣△AOE的面积==3;(3)在y=﹣2x+6中,当y=0时,x=3,∴C(3,0),∵AB=AC,AO⊥BC,∴OB=OC=3,∴B((﹣3,0),∴直线AB的解析式为y=2x+6,设M(m,2m+6),N(n,),∵MN∥x轴,∴2m+6=,∴n=,∴△OMN面积=(n﹣m)×(2m+6)=(﹣m)(2m+6)=﹣m2﹣3m+2=﹣(m+)2+,∴△OMN面积的最大值为.25.(12分)【问题情境】如图1,在四边形ABCD中,AD=DC=4cm,∠ADC=60°,AB=BC,点E 是线段AB上一动点,连接DE.将线段DE绕点D逆时针旋转30°,且长度变为原来的m倍,得到线段DF,作直线CF交直线AB于点H.数学兴趣小组着手研究m为何值时,HF+mBE的值是定值.【探究实践】老师引导同学们可以先通过边、角的特殊化,发现m的取值与HF+mBE为定值的关系,再探究图1中的问题,这体现了从特殊到一般的数学思想.经过思考和讨论,小明、小华分享了自己的发现.(1)如图2,小明发现:“当∠DAB=90°,m=时,点H与点A恰好重合,的值是定值”.小华给出了解题思路,连接BD,易证△DEB∽△DFC,得到CF与BE的数量关系是 CF=BE ,的值是 4 .(2)如图3,小华发现:“当AD=AB,m=时,的值是定值”.请判断小明的结论是否正确,若正确,请求出此定值,若不正确,请说明理由.【拓展应用】(3)如图1,小聪对比小明和小华的发现,经过进一步思考发现:“连接DB,只要确定AB的长,就能求出m的值,使得HF+mBE的值是定值”,老师肯定了小聪结论的准确性.若,请直接写出m的值及HF+mBE的定值.【分析】(1)根据已知条件得出BD为AC垂直平分线,再根据相似三角形的判定得出△DFC∽△DEB,从而得出CF=BE,最后根据HF+BE=HF+CF=HC=AC,即可得出答案;(2)连接AC,BD交于O点,根据已知先得出四边形ABCD为菱形,得出∠BDC=∠ADC=30°,在等腰△DCB中,根据BD=CD,得出=,再根据DF=DE,得出==,再证出△DEB∽△DFC,得出HF+ BE=HF+CF=HC,∠HCB=90°,在Rt△HCB中,再根据已知条件得出HC=4,从而得出答案;(3)连接BD,交AC于O,交HC于,由(1)得出△ADC为等边三角形,得出AD=CD=AC=4,再根据勾股定理得出OB和DO得的值,再根据△。
山东省济南市 中考历史一模试卷

中考历史一模试卷一、选择题(本大题共25小题,共50.0分)1.“天有十日,人有十等,故王臣公,公臣大夫,大夫臣士,士臣皂,皂臣僚,僚臣仆,仆臣台。
”这段史料反映了西周的()A. 禅让制B. 王位世袭制C. 分封制D. 土地国有制2.在治理国家问题上,儒家主张教化百姓,以“礼”治国;法家强调用“刑罚”加强统治;道家反对“礼”治,也反对“法”治,他们提出“无为而治”。
这些内容反映的现象是()A. 诸侯争霸B. 变法运动C. 百家争鸣D. 民族交融3.中国古代有这样一位君主,他“南取百越之地……使蒙恬北筑长城而守藩篱(指边界、屏障)……废先王之道,焚百家之言”,他是()A. 秦孝公B. 秦穆公C. 秦始皇D. 汉武帝4.如图是东汉某一时期的社会现象,下列表述正确的是()A. 形成“光武中兴”局面B. 表明外戚宦官交替专权C. 皇帝年老昏庸造成乱象D. 皇帝依靠外戚掌权治国5.《宋书》记载:“江南……地广野丰,民勤本业,一岁或稔,则数郡忘饥……丝绵布帛之饶,覆衣天下。
”这段史料反映了当时()A. 南方荒蛮落后B. 经济重心出现南移趋势C. 科技领先世界D. 政治重心南移6.“贫苦子弟,类皆廉谨自勉,埋首窗下……即纨绔子弟,亦知苦读,以获科第,否则虽富不荣。
”与材料相关的制度是()A. 世袭制B. 郡县制C. 科举制D. 行省制度7.宋朝儿童念的《神童诗》,一开头就是“天子重英豪,文章教尔曹;万般皆下品,唯有读书高”。
当时民间还流行着这样的俗话“做人莫做军,做铁莫做针”。
材料主要表明,宋朝()A. 等级森严B. 商业繁荣C. 重农抑商D. 重文轻武8.某同学在浏览历史网页时,找出了几个古代著名人物的画像。
将画像人物按先后顺序排列,正确的是()A. ①④②③B. ①③②④C. ②①④③D. ④①②③9.下列史实与“中外交流”主题不符的是()A. 鉴真东渡B. 玄奘西游C. 文成公主入藏D. 郑和下西洋10.历史图片被称为“凝固的历史”,对下列图片信息解读不正确的是()A. 图①反映了商朝高超的青铜铸造工艺B. 图②中的发明对航海事业产生重要影响C. 图③反映了宋代活字印刷技术的高超水平D. 图④中的著作被称为“中国17世纪的工艺百科全书”11.下列所示内容反映的历史发展趋势是()A. 君主专制的强化B. 中央集权弱化C. 地方权力加强D. 社会秩序动荡12.)西藏新疆台湾 D. 南海13.我国的疆域版图是在漫长的历史演进中形成的。
2024年山东省济南市历下区中考一模化学试题(含答案)

2024年九年级学业水平第一次模拟考试化学试题(LX2024.3)注意事项:1.本试题共8页,选择题部分40分,非选择题部分60分,满分100分。
考试用时60分钟。
2.答题前。
请考生务必将自己的姓名、座号写在答题卡的规定位置,并同时将考点、姓名、准考证号、座号写在试题的规定位置。
3.答选择题时,必须使用2B铅笔填涂答题卡上对应题目的答案标号,修改时,须用橡皮擦干净。
答非选择题时,必须使用0.5毫米黑色签字笔书写。
要求笔迹清晰、字体工整,务必在答题卡上题号所指示的答题区域内作答。
直接在试题上作答无效。
4.考试结束后,请将本试题、答题卡按要求提交。
5.本考试不允许使用计算器。
相对原子质量:H1 C12 N14 O16 Na23 Mg24 S32 Cl35.5 K39 Ca40 Fe56Cu64 Zn65 Ag108 Ba137第Ⅰ卷选择题部分(共40分)一、单项选择题:(本大题共10小题,每小题2分,共20分。
每小题给出的四个选项中,有一个选项最符合题目的要求。
)1.济南是一座具有悠久历史的文化古城。
下列“济南记忆”中,主要涉及物理变化的是( )A.炭火熬胶B.摩崖石刻C.烧制黑陶D.汉代冶铁2.2024年中国环境日的主题为“全面推进美丽中国建设”。
下列做法中。
不合理的是( )A.节约能源,禁用化石燃料B.合理施肥,维护生态平衡C.布袋购物。
读少“白色污染”D.垃圾分类,资源循环利用3.化学与人类的健康密切相关。
下列有关说法中,不合理的是( )A.凉菜调制,食醋调味B.健康生活,远离烟草C.海鲜保存,甲醛浸泡D.食品防腐,充入氮气4.具备基本的化学实验技能是进行探究活动的基础和保证。
下列实验操作中,不正确的是( )A.稀释浓硫酸时,将水倒入盛有浓硫酸的烧杯中B.加热试管中液体时。
不能将试管口朝向有人的方向C.蒸发结晶时,蒸发皿内出现较多固体时,立即停止加热D.洒出的酒精在实验桌上燃烧起来,立即用湿抹布盖灭5.如图分别为元素周期表的部分内容(图①)和某些微观粒子的结构示意图(图②)。
山东省济南市历下区2018年中考数学第三次模拟考试试题

2018年九年级学业水平第三次模拟考试数学试题考试时间:120分钟满分:150分第I卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求的。
)1.是介于下列哪两个整数之间()A. 0与1B. 1与2C. 2与3D. 3与42.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()主视方向 A B C D 3.2018年4月8日-11日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”。
开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元。
6000亿用科学记数法可以表示为()A.6×10³亿 B. 6×亿 C. 0.6×亿 D. 0.6×亿4.如图,将三角形的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是()A.30° B. 40° C. 45° D. 50°5.下列计算正确的是()A. +=B. ·=C. =D. =-6.一个不透明的袋子中有2个红球和3个黄球(除颜色外其余均相同),从中随机摸出一个球,则摸到红球的概率是()A. B. C. D.7.一个多边形,其余内角和是外角和的3倍,则这个多边形的边数为()A. 6B. 7C. 8D. 98.若解分式方程=时产生增根,则m=()9.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长度为()A. B. C. D.第10题图10.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30日,在A点测得D点的仰角∠EAD=45°,在B点测得D点的仰角为∠CBD=60°,测得甲、乙这两座建筑物的高度分别为()米A. 10,30B. 30,30C. 30-3,30D. 30-30,3011.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”。
山东省济南市历下区2018年最新中考第二次模拟考试数学试题及答案
2018年济南市历下区第二次模拟考试数学试题一、选择题(本大题共12小题,每小题4分,满分48分) 1.15的相反数是( ) A .15 B .一15C .5D .一52.加图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( ) A .35° B .50° C .60° D .85°3.数据4402万用科学记数法表示正确的是( )A. 4.402×107B. 44.02×108C. 44.02×107D. 4.402×1084.下列图形中,是轴对称图形但不是中心对称图形的是( ) A .平行四边形 B .等腰三角形 C .矩形 D .正方形 5.下列各式中,计算正确的是( )A. 3x +5y =8xyB.x 6÷x 3=x 2C .x 3·x 5=x 8D.(-x 3)3=x 66.化简a +1a 2-a ÷a +1a 2-2a +1的结果是( )A .a +1a B.aa -1 C.1a -1D. a -1a7.如图,有一直角三角形纸片ABC ,∠C =90°,∠B =30°,将该直角三角形纸片沿DE 折叠,使点B 与点A 重合,DE =1,则BC 的长度为( ) A .2 B .3+2 C.3 D .238.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差9.某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x 人,学生有y 人,则可列方程组为( )A .⎩⎨⎧x +y =25100x +62.5y =1700B .⎩⎨⎧x +y =2580x +50y =1700C .⎩⎨⎧x +y =25100x +50y =1700D .⎩⎨⎧x +y =2580x +62.5y =170010.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A.πcmB.2πcmC. 3πcmD.5πcm11.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是x =-1.下列结论:①ab >0;②b 2>4ac ;③a -b +2c <0;④8a +c <0.其中正确的是( )A .③④B .①②③ C.①②④ D .①②③④12.邻边不相等的矩形纸片,剪去一个正方形,余下一个四边形,称为第一次操作;在余下的四边形中减去一个正方形,又余下一个四边形,称为第二次操作;…,以此类推,若第n次操作后余下的四边形是正方形,则称原矩形是n阶矩形.如图,矩形ABCD中,若AB=1,AD=2,则矩形ABCD是1阶矩形.已知一个矩形是2阶矩形,较短边长为2,则较长边的长度为( )A.6B.8 C.5或8 D.3或6二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.)13.因式分解4m2-n2=__________________;14(π-1)0=__________________;15.在一个不透明的口袋中装有6个红球.2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为__________________;16.正六边形的中心角为__________________度;17.如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则∠BAC的正切为__________________;18.在平面直角坐标系中,已知点A(0,-2)、B(0,3),点C是x轴正半轴上的一点,当∠BCA=45°时,点C的坐标为__________________;三、解答题(本大题共9个小题,共78分懈答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)先化简,再求值:x(x一2)+(x+1)2,其中x=-1.20.(本题满分6分)在平面直角坐标系中,直线,经过点A (-1,3)和点B (23,8),请问将直线l 延长线x 轴平移几个单位时,正好经过原点?21.(本题满分6分)已知:如图,在矩形ABCD 中,点E 在边AB 上,点F 在边BC 上,且BE =CF ,EF ⊥DF . 求证:BF =C D.22.(本题满分8分)2018年1月25日,济南至成都方向的高铁线路正式开通,高铁平均时速为普快平均时速的4倍,从济南到成都的高铁运行时间比普快列车减少了26小时.已知济南到成都的火车行车里程约为2288千米,求高铁列车的平均时速.23.(本题满分8分)在大课问活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=_________,b=_________,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,请用树状图或列表法求出所选两人正好都是甲班学生的概率是多少?24.(本题满分10分)如图,在△ABC中,过点A作AD⊥BC,垂足为点D,以AD为半径的⊙A分别与边AC、AB交于点E和点F,DE∥AB,延长CA交⊙A于点G,连接BG.(1)求证:BG是⊙A的切线;(2)若∠ACB=30°,AD=3,求图中阴影部分的面积.25.(本题满分10分)如图,一次函数y=-33x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△AB C.(1)若点C 在反比例函数y =kx的图象上,求该反比例函数的解析式;(2)点P (23,m )在第一象限,过点P 作x 轴的垂线,垂足为D ,当△P AD 与△OAB 相似时,P 点是否在(1)中反比例函数图象上?如果在,求出P 点坐标;如果不在,请加以说明.26.(本题满分12分)在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE . 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)27.(本题满分12分)已知直线y =2x +m 与抛物线y =ax 2+ax +b 有一个公共点M (1,0),且a <b . (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N .①若-1≤a ≤一12,求线段MN 长度的取值范围;②求△QMN 面积的最小值.2018年九年级学业水平第二次模拟考试数学试题答案一、选择题(本大题共12小题,每小题4分,满分48分.)1.B2.B3.A4.B5.C6.D7.C8.D9.A 10.C 11.C 12.D 二、填空题(本大题共6个小题.每小题4分,共24分.)13.(2m +n )(2m -n ) 14.3 15.16.60 17.2118.(6,0) 三、解答题(本大题共9个小题.共78分.) 19. (本题满分6分) 解:原式=x 2-2x +x 2+2x +1=2x 2+1……………………………………………………………………3分当x =-1时,原式=2×(-1)2+1=3. ………………………………………………………………6分 20. (本题满分6分)解:设直线l 的解析式为y =kx +b ……………………………………………1分 把点A (-1,3)和点B (,8)代入得+b =3+b =8解得: k =3b =6……………………………………………3分∴y =3x +6……………………………………………………4分 当y =0时,3x +6=0解得x =-2∴直线l 过点(-2,0)…………………………5分∴直线l 沿x 轴向右平移两个单位时,经过原点. …………………………6分 由(2)得 x ≤1 ……………………………………………………4分 得 -25<x ≤1……………………………………………………5分 ∴x 可取的整数值是-2,-1,0,1. ……………………………………………………6分 21. (本题满分6分)解:∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BFE+∠BEF=90°,……………………………………………………1分∵EF⊥DF,∴∠DFE=90°,即∠BFE+∠DFC=90°,……………………………………………………2分∴∠BEF=∠DFC. ……………………………………………………3分在△BEF与△CFD中,∠BEF=∠DFC,∠B=∠C,BE=CF,∴△BEF≌△CFD,……………………………………………………5分∴BF=CD.……………………………………………………6分22. (本题满分8分)解:设高铁列车的平均时速为x千米/小时,根据题意得……………………………………………………3分解得x=66……………………………………………………5分经检验,x=66不是增根,……………………………………………………6分∴原方程的解为x=66∴4x=66×4=264……………………………………………………7分答:高铁列车的平均时速为264千米/小时. ………………………………………………8分23. (本题满分8分)解:(1)a=0.3,b=4……………………………………………………3分(2)180(0.350.20)99⨯+=(人)……………………………………………………4分(3)甲乙1乙2甲1甲2甲3乙甲1甲2甲3乙甲1甲2甲3乙∵一共有12种等可能性,两人都是甲班学生的情况有3中∴31124p==……………………………………………………8分24. (本题满分10分)(1)∵DE∥AB∴∠BAD=∠ADE,∠GAB=∠AED∵AD=AE∴∠AED=∠ADE∴∠BAD=∠GAB在△GAB和△DAB中AG=AD∠BAD=∠GABAB=AB∴△GAB≌△DAB……………………………………………………3分∴∠AGB =∠ADB……………………………………………………4分∵AD⊥BC∴∠ADB=90°∴∠AGB=90°……………………………………………………5分∴BG是⊙A的切线. ……………………………………………………6分(2)连接FD∵∠ACB=30°,∠ADC=90°∴∠CAD=60°∵AD=AE∴△ADE为等边三角形∴DE=AE=AF又∵DE∥AB∴四边形AFDE为菱形∴AE∥FD……………………………………………………8分∴S△AFD= S△EFD∴S阴影= S扇形AFD……………………………………………………9分∵∠F AD=60°,AD=3∴S阴影= S扇形AFD=……………………………………………………10分25. (本题满分10分)解:在中,令可解得,令可得,,,,,,,………………………………………………….……1分△是等边三角形,,,………………………………………………….……2分在△中,由勾股定理可得,,………………………………………………….……3分,,………………………………………………….……4分点C在反比例函数的图象上,,反比例函数解析式为;………………………………………………….……5分,在第一象限,,,当△∽△时,则有,即,解得,此时P点坐标为,………………………………………….……7分当△∽△时,则有,即,解得,此时P点坐标为,;………………………………………….……9分把,代入可得,,不在反比例函数图象上,把,代入反比例函数解析式得,,在反比例函数图象上;综上可知P点坐标为,.………………………………………….……10分26. (本题满分12分),解:如图,,成立,理由如下:………………………………………….……1分过点P作于点M,,,,,点P是BF的中点,,………………………………………….……3分又,.………………………………………….……4分如图3,,成立,理由如下:………………………………………….……5分过点F作于点D,过点P作于点M,连接PD,, ,在△ 和△ 中,,△ ≌△ ,,………………………………………….……6分在△ 和△ 中,,△ ≌△ ,,………………………………………….……7分, , ,,,点P 是BF 的中点,,又 ,,又 ,.………………………………………….……9分当k 为 时,△ 总是等边三角形. ………………………………………….……12分27. (本题满分12分)(1)∵M (1,0),∴b =-2a ,……………………………………………………1分∴y =ax 2+ax +b=ax 2+ax -2a=a (x +)2- 1294a∴顶点Q的坐标为(-,-). ……………………………………………………3分(2)由直线y=2x+m经过点M(1,0),可得m=-2.∴y=2x-2∴ax2+(a-2)x-2a+2=0∴△=(a-2)2-4×a×(-2a+2)=(3a-2)2………………………………4分∵2a +b=0,a<b∴a<0……………………………………………………5分∴△>0……………………………………………………6分∴方程有两个不相等的实数根,∴直线与抛物线有两个交点. ……………………………………………………7分(3)把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0,即x2+(1-)x-2+=0,∴(x-1)(x+2-)=0,解得x1=1,x2 =-2,∴点N(-2,-6). ………………………………………8分(i)根据勾股定理得,MN2=[(-2)-1]2+(-6)2=20()2,………………………………………9分∵-1≤a≤-,∴-2≤≤-1,∴<0,∴MN(),1294a2a2a2a2a2a4a2a4a132a-121a132a-312a-∴MN ≤……………………………………………………10分 (ii )作直线x =- 交直线y =2x -2于点E , 把x =-代入y =2x -2得,y=-3, 即E (-,-3), ∵M (1,0),N (-2,-6),且由(2)知a<0,∴S △QMN =S △QEN +S △QEM =— = ,………11分 即27a 2+(8S -54)a +24=0,∵关于a 的方程有实数根,∴△=(8S-54)2-4×27×24≥0,即(8S-54)2≥( )2,又∵a<0,∴S=> , ∴8S-54>0,∴8S-,即S≥ , 当S=a=- 满足题意. ∴△QMN 面积的最小值为.……………………………………………………12分1212122a 4a2732748a a --2732748a a --2742742+2742+32742+。
山东省济南市重点中学2018届中考数学模拟试卷及答案
山东省济南市重点中学2018届九年级中考数学模拟试卷班级:_______姓名:________考号:_______成绩______第I卷(选择题)一、单选题1.﹣的相反数是()A. 3B. ﹣3C.D. ﹣2.下列运算正确的是()A. a2•a3=a6B. (a2)4=a6C. a4÷a=a3D. (x+y)2=x2+y23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A. B. C. D.4.函数y=中自变量x的取值范围是A. x≥3B. x≥﹣3C. x≠3D. x>0且x≠35.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70° B.75° C.80° D.85°6.下列一元二次方程中,有两个相等实数根的是A. x2﹣8=0B. 2x2﹣4x+3=0C. 5x+2=3x2D. 9x2+6x+1=07.抛物线的对称轴是A. 直线x=1B. 直线x= -1C. 直线x=-2D. 直线x=28.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为A. 4B. ﹣4C. 16D. ﹣169.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为()A. 2B.C.D.10.如图,已知A,B是反比例函数y= kx(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.第II卷(非选择题)二、填空题11.分解因式:29a-=.12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__.13.如图,等腰三角形ABC的顶角为1200,底边BC上的高AD= 4,则腰长为____.14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.15.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为____.16.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于.17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).18.如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;②;③MN=;④.其中正确结论的序号是_____.三、解答题19.计算:.20.解不等式组:21.,其中x=.22.某校学生利用双休时间去距学校10 km的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(2016四川省攀枝花市)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数kyx=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.(1)求反比例函数kyx=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.26.如图,点P是⊙O 外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=163cm,AC=8cm,求图中阴影部分的面积;(3)在(2)的条件下,若点E是弧AB的中点,连接CE,求CE的长.27.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE 的长.28.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,94),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.参考答案与解析1.C【解析】分析:相反数的概念.解析:﹣的相反数是.故选C.点睛:求一个数或者一个式子的相反数,也可以再这个数或者式子前面加负号.2.C【解析】A、a2•a3=a5,故A错误;B、(a2)4=a8,故B错误;C、a4÷a=a3,故C正确;D、(x+y)2=x2+2xy+y2,故D错误.故选:C.3.C【解析】分析:立方体的组合,可以投影到不同的平面,画出三视图.详解:这个组合体左视图是两个竖着的正方形,主视图是上面一个正方形,下面三个正方形,俯视图是三个横着的正方形,所以选C.点睛:画三视图要注意把图象投影到平面,画出轮廓,如果能看到轮廓线,就画实线,看不到就画虚线.4.A【解析】分析:利用二次根式的定义求范围.详解:x-3,x 3.故选A.点睛:二次根式的定义一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,无意义.5.A【解析】试题分析:根据平行线的性质求出∠3的度数,根据对顶角相等得到答案.∵a∥b,∴∠1+∠3=180°,∴∠3=180°﹣∠1=70°,∴∠2=∠3=70°,考点:平行线的性质.6.D【解析】分析:利用一元二次方程的判别式,判断根的情况,如果是直接可以求解的,就直接求解.详解:选项A. x2﹣8=0 ,x=,选项B. 2x2﹣4x+3=0 ,无解.选项C. 5x+2=3x2 , ,两个不同的实数根.选项D. 9x2+6x+1=0,,有两个相同的实数根.故选D.点睛:一元二次方程的根的判别式是,△=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.△>0说明方程有两个不同实数解,△=0说明方程有两个相等实数解,△<0说明方程无实数解.7.B【解析】分析:利用二次函数的对称轴公式求解.详解:a=1,b=2,x==-1.故选B.点睛:二次函数y =ax 2+bx +c ()的顶点是(-,)其中对称轴x =,最值是y =.8.D【解析】分析:把目标整式化为包含已知的形式,整体代入计算. 详解:x 2﹣3y =5,则6y ﹣2x 2﹣6=-2(x 2-3y )-6=-16.故选D.点睛:整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等. 9.C【解析】解:连接BD .在△ABC 中,∵∠C =90°,AC =4,BC =3,∴AB =5.∵将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE =4,DE =3,∴BE =1.在Rt △BED 中,BD =.故选C .点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练. 10.A【解析】试题分析::设∠AOM=α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S==a 2•cosα•sinα•t 2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为k ,保持不变,故本段图象应为与横轴平行的线段;当点P 从B 运动到C 过程中,OM 的长在减少,△OPM 的高与在B 点时相同,故本段图象应该为一段下降的线段;故答案选A . 考点:函数图像. 11.()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式. a 2-9=a 2-32=(a+3)(a-3). 故答案为(a+3)(a-3).考点:因式分解-运用公式法.12.4.51×107【解析】分析:利用科学记数法表示.详解:45100000=4.51×107点睛:科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数)13.8【解析】分析:根据等腰三角形的性质,求出底角度数,再利用特殊三角函数值或者30°角所对边是斜边一半,求腰长.详解:顶角是120°,所以∠B=30°,AD=4,所以AB=8.点睛:(1)直角三角形中,30°角所对的边是斜边的一半.(2)特殊三角函数值14.【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.15.600【解析】分析:利用圆内接四边形的性质和圆周角定理列方程求解.详解:,解得∠D=60°.点睛:(1)圆周角定理指是一条弧所对圆周角等于它所对圆心角的一半.(2)圆的内接四边形对角互补.16.π310cm.【解析】试题分析:已知扇形的半径为6cm,面积为10πcm2,设扇形的弧长为lcm,根据扇形的面积公式可得π1021=l,解得π310=lcm.考点:扇形面积的计算.17.一4【解析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.详解:因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MB tan30°=4.所以CD=4-4.点睛:利用三角函数的定义解直角三角形,(1)sinB=,cosB=,tanB=,(2)熟悉三角函数定义变形,AC=AB sinB,BC=AB cosB,AC=BC tanB.18.①、②、③【解析】分析:(1)利用等腰三角形的性质,可以得到∠AME度数,(2)证明△AEM∽△ADE,可以得到,(3)利用勾股定理求MN的长度,(4)最后求BE=CE=AD.详解:∵∠BAE=∠AED=108°,∵AB=AE=DE,∴∠ABE=∠AEB=∠EAD=36°,∴∠AME=180°-∠EAM-∠AEM=108°,故①正确;∵∠AEN=108°-36°=72°,∠ANE=36°+36°=72°,∴∠AEN=∠ANE,∴AE=AN,同理DE=DM,∴AE=DM,∵∠EAD=∠AEM=∠ADE=36°,∴△AEM∽△ADE,∴,∴AE2=AM•AD;∴AN2=AM•AD;故②正确;∵AE2=AM•AD,∴22=(2-MN)(4-MN),∴MN=3-,;故③正确;在正五边形ABCDE中,∵BE=CE=AD=1+,故④错误;①、②、③正确.点睛:(1)等腰三角形的性质,底角相等.(2)两个角相等的三角形相似 ,利用相似比求边的关系.19.2【解析】分析:利用绝对值,0次幂计算.详解:解:原式= 3-2 + 1=2点睛:(1)=a,=.(2)(a.20.【解析】分析:分别求不等式的解,再找公共部分也就是不等式组的解.详解:解:由①式得:x>3.由②式得:x.∴不等式组的解集为:点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b.此乃“相交取中”,如图所示:④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空”如图所示:21.,【解析】分析:先因式分解,再通分,最后把已知量代入,代已知量要注意有理化.详解:解:原式===当x=时,原式==.点睛:分式计算题,一般需要熟练掌握因式分解,通分,约分的技巧.1.因式分解一般方法:提取公因式:,公式法:, (平方差公式), (完全平方公式)十字相乘法:(x+a)(a+b)=.2.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.3.通分:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.4.易错示例:1+;.22.骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.【解析】分析:先设出骑车的速度和骑车的速度,再利用二者的时间关系,列分式方程解应用题,最后注意要检验.详解:解:设骑电瓶车学生的速度为x km/h,汽车的速度为2x km/h,可得:,解得x=15,经检验,x=15是原方程的解,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.点睛:分式方程一般题目内有两个相关量,设一个,再设出另外一个量与这个量的关系,再根据题设条件列方程,要注意和差倍分问题,统一时间的单位,最后一定要双检验,检验是否是方程的解和是否满足题意.23.(1)详见解析;(2).【解析】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF=,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.考点:全等三角形的判定与性质;平行四边形的性质.24.(1) 20%;(2)见解析;(3)490名【解析】分析:(1)用A的人数除以总共的人数.(2)用总人数减去A,B,D 人数 .(3)用样本中唱歌人数的百分比×总人数.详解:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:36.(2)由题意可得,选择C 的人数有:﹣36﹣30﹣44=70(人)补全的图②柱状图正确(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.点睛:应用题中,这几个式子变形一定要非常熟练(1),(2)=,(3)部分=总体.一般计算同理:,,,可以是数也可以是式子).需熟练掌握.25.(1)4yx=;(2;(3)132y x=-+.【解析】试题分析:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(3)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,32m+).∵点C、点D均在反比例函数kyx=的函数图象上,∴4{322k mmk=+=⨯,解得:1{4mk==,∴反比例函数的解析式为4yx =.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴=cos∠OAB=ABOA==2.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有22{14a ba b=+=+,解得:1{23ab=-=,∴经过C、D两点的一次函数解析式为132y x=-+.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.26.(1)证明见解析; (2)阴影部分的面积为5242π-2;(3)CE 的长是【解析】(1)连接OC ,证明△PAO ≌△PCO ,得到∠PAO =∠PCO =90 º,证明结论;(2)证明△ADO ∽△PDA ,得到成比例线段求出BC 的长,根据S 阴=S 半⊙O -S △ACB 求出答案; (3)连接AE ,BE ,过点B 作BM ⊥CE 于点M ,分别求出C M 和EM 的长,求和得到答案. 证明: ⑴如图,连接OC , ∵PA 切⊙O 于A . ∴∠PAO =90º. ∵OP ∥BC ,∴∠AOP =∠OBC ,∠COP =∠OCB . ∵OC =OB ,∴∠OBC =∠OCB , ∴∠AOP =∠COP . 又∵OA =OC ,OP =OP ,∴△PAO ≌△PCO (SAS ). ∴∠PAO =∠PCO =90 º, 又∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. ⑵解法一:由(1)得PA ,PC 都为圆的切线,∴PA =PC ,OP 平分∠APC ,∠ADO =∠PAO =90 º, ∴∠PAD+∠DAO =∠DAO+∠AOD , ∴∠PAD =∠AOD , ∴△ADO ∽△PDA . ∴AD DOPD AD=, ∴2AD PD DO =⋅, ∵AC =8, PD =163, ∴AD =12AC =4,OD =3,AO =5, 由题意知OD 为△ABC 的中位线, ∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭.答:阴影部分的面积为22548cm 2π-. 解法二:∵AB 是⊙O 的直径,OP ∥BC , ∴∠PDC =∠ACB =90º. ∵∠PCO =90 º,∴∠PCD +∠ACO =∠ACO +∠OCB =90 º, 即∠PCD =∠OCB . 又∵∠OBC =∠OCB , ∴∠PCD =∠OBC , ∴△PDC ∽△ACB ,∴PD DC PCAC CB AB==. 又∵AC =8, PD =163,∴AD =DC =4,PC 221620433⎛⎫+= ⎪⎝⎭.∴16204338CB AB==,∴CB =6,AB =10,∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭.答:阴影部分的面积为22548cm 2π-. (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ∴∠CMB =∠EMB =∠AEB =90º, 又∵点E 是的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB=BE =ABcos45º=∴ EM∴CE =CM +EM=()cm .“点睛”本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.7.(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3).【解析】试题分析:(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.试题解析:解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.考点:四边形综合题.28.(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+=,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.考点:二次函数综合题.。
济南市九年级下学期一模数学试卷
济南市九年级下学期一模数学试卷姓名:________ 班级:________ 成绩:________一、选择题(满分30分) (共10题;共30分)1. (3分) (2019七上·桂林期末) 若m的相反数是n,下列结论正确的是()A . m一定是正数B . n一定是负数C . m+n=0D . m一定大于n2. (3分) (2018九上·青海期中) 下列图形中,是中心对称图形的是()A .B .C .D .3. (3分) (2016七下·恩施期末) 把不等式组的解集表示在数轴上,下列选项正确的是()A .B .C .D .4. (3分)(2018·吉林模拟) 如图,D,E分别是AB、AC的中点,则S△ADE:S△ABC=()A . 1:2B . 1:3C . 1:4D . 2:35. (3分)(2019·金华模拟) 某中学在举行“弘扬中华传统文化读书月”活动结束后,对八年级(1)班40位学生所阅读书籍数量情况的统计结果如表所示:阅读书籍数量(单位:本)1233以上人数(单位:人)121693这组数据的中位数和众数分别是()A . 2,2B . 1,2C . 3,2D . 2,16. (3分) (2017七下·淮安期中) 一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A . 10B . 11C . 12D . 以上都有可能7. (3分) (2019七下·鼓楼月考) 如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A . 50°B . 40°C . 30°D . 20°8. (3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论:①当m=-3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有()A . ①④B . ①③④C . ①②④D . ①②③④9. (3分)若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是()A . 6πcm2B . 12πcm2C . 18πcm2D . 24πcm210. (3分)(2017·永康模拟) 抛物线先向右平移1个单位,再向下平移3个单位得到的抛物线解析式为()A .B .C .D .二、填空题(满分18分) (共6题;共18分)11. (3分)(2018·平南模拟) 分解因式: =________.12. (3分)计算:=________13. (3分)(2016·开江模拟) 命题“等腰三角形两底角的平分线相等”的逆命题________14. (3分)(2017·邵阳模拟) 一次函数y=kx+2(k为常数,且k≠0)的图象如图所示,则k的可能值为________(写一个即可)15. (3分)如图,P是⊙O外的一点,PA、PB分别与⊙O相切于点A、B,C是上的任意一点,过点C的切线分别交PA、PB于点D、E,若△PDE的周长是10,则PA= ________16. (3分)(2017·丹东模拟) 如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B 的坐标为(1,4),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为________.三、解答题(满分102分) (共9题;共102分)17. (9分)(2012·贵港)(1)计算:|﹣ |+2﹣1+ (π﹣)0﹣tan60°;(2)解分式方程:.18. (9分) (2017七上·弥勒期末) 如图,已知是直线上一点,是一条射线,平分,在内,,,求的度数.19. (10分)(2018·潮南模拟) 先化简,再求值:()÷ .其中a=-120. (10.0分)某校八年级学生参加地理、生物学科中考模拟考试,现从中随机抽取了部分学生的地理考试成绩,进行统计后分为“优秀”、“良好”、“及格”、“不及格”四个等级,并将统计结果绘制成如下的统计图.请你结合图中所提供的信息,解答下列问题:(说明:90分以上为优秀,89﹣75分为良好,74﹣60分为及格,60分以下为不及格.)(1)请把条形统计图补充完整;(2)扇形统计图中“不及格”等级所占的百分比是________;(3)扇形统计图中“优秀”等级所在的扇形的圆心角度数是________;(4)若该校初三共有950名学生,试估计该年级“优秀”和“良好”等级的学生共约为多少人.21. (12分)(2018·山西模拟) 永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑,位于太原市城区东南向山脚畔.数学活动小组的同学对其中一个塔进行了测量.测量方法如下:如图所示,间接测得该塔底部点B到地面上一点E的距离为48 m,塔的顶端为点A,且AB⊥CB,在点E处竖直放一根标杆,其顶端为D,在BE的延长线上找一点C,使C,D,A三点在同一直线上,测得CE=2 m.(1)方法1,已知标杆DE=2.2 m,求该塔的高度;(2)方法2,测量得∠ACB=47.5°,已知tan47.5°≈1.09,求该塔的高度;(3)假如该塔的高度在方法1和方法2测得的结果之间,你认为该塔的高度大约是多少米?22. (12分) (2015七下·孝南期中) 已知,AB∥CD,AB,CD被直线l所截,点P是l上的一动点,连接PA,PC.(1)如图①,当P在AB,CD之间时,求证:∠APC=∠A+∠C;(2)如图②,当P在射线ME上时,探究∠A,∠C,∠APC的关系并证明;(3)如图③,当P在射线NF上时,直接写出∠A,∠C,∠APC三者之间关系.23. (12分)(2017·润州模拟) 如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1) m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.24. (14.0分)(2017·海口模拟) 如图,已知抛物线与x轴交于A(﹣1,0),B(3,0),与y轴交于点C (0,3).(1)求该抛物线所对应的函数关系式;(2)设抛物线上的一个动点P的横坐标为t(0<t<0),过点P作PD⊥BC于点D.①求线段PD的长的最大值;②当BD=2CD时,求t的值;(3)若点Q是抛物线的对称轴上的动点,抛物线上存在点M,使得以B、C、Q、M为顶点的四边形为平行四边形,请求出所有满足条件的点M的坐标.25. (14.0分)(2014·宁波) 木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.参考答案一、选择题(满分30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(满分18分) (共6题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(满分102分) (共9题;共102分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-3、25-1、25-2、25-3、。
山东省济南市2018年最新九年级学业水平数学模拟试卷(一)及答案
2018年济南市九年级学业水平模拟考试数学试题考试时间:120分钟满分150分第I 卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分。
在每小题列出的四个选项中,只有一项是符合题目要求的。
)1.-2的绝对值是()A.2 B.-2 C.21D.-212.2017年济南市GDP 总量实现历史性突破,生产总值达386000000000元,首次跃居全市第二。
将386000000000用科学计数法表示为()A.3.86×1010B.3.86×1011C.3.86×1012D.3.86×1093.下图是由4个相同的正方体搭成的几何体,则其俯视图是A .B .C .D .4.下列运算正确的是()A .x 2+x 3=x 5B .(x ﹣2)2=x 2﹣4C .(x 3)4=x 7D .2x 2⋅x 3=2x 55.如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=()A .40°B .50°C .60°D .70°6.关于x 的一元二次方程mx 2﹣(m+1)x+1=0有两个不等的整数根,第5题图m 为整数,那么m 的值是()A .﹣1B .1C .0D .±17.在△ABC 中,∠C=90°,BC=2,sinA=,则边AC 的长是()A .B .3C .D .第8题图8.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中正确的是()A .a >0B .c <0C .当﹣1<x <3时,y >0D .当x≥1时,y 随x 的增大而增大9.下列说法正确的是()A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、填空题(共3题,每题5分,共15分)
16. 牛顿;压强 16. 17. 连通器;分子 17. 18. (1)不变 18. (2)密度
四、计算题(共2题,每题5分,共10分)
19. (1)超速 19. (2)2×106J (3)4×104W 解析: (1)货车的速度: 所以,货车超速违规; (2)货车沿平直路面匀速行驶,受力平衡, 所以牵引力F=f=2000N, 则牵引力在该路段做功: W=Fs=2000N×1000m=2×106J; (3)牵引力在该路段的功率: 故:(1)计算可知,货车超速违规; (2)牵引力在该路段做了2×106J功; (3)牵引力在该路段的功率是4×104W。
1. 下列各种物质微粒中,空间尺度最小的是( ) 1.
A、
质子
B、
原子
C、
中子
D、
夸克
2. 人类向太空发射地球同步卫星,用于卫星通讯系统,在地球上的人觉得它是静止的。从物理学角度看,人们所选取 2. 的参照物是( )
A、
太阳
B、
地球
C、
月球
D、
卫星
3. 下列光现象中,可用光的反射原理来解释的是( ) 3.
17. 小哲家有一个连体花瓶,如图所示,只需在任何一只花瓶中倒入水且静止后,其余三个花瓶中的水位都会与之相 17. 平,这种花瓶实质上是一种________;家中花香四溢,这一现象说明_________在永不停息地做无规则运动。
18. (1)乒乓球不小心被踩瘪了,但没有破裂,球内气体的质量________(选填“变大”、“不变”或“变小”)。 18. (2)我们常说“铁比木头重”,这句话实质上是指铁块的_________比木块大。
(2)他们为了研究猜想1和猜想2,选用了体积相同、重力不同的三个圆柱形物体A、B、C并测出了它们的重力分别为 4N、4.5N和5N,然后进行了如图2所示的实验:
①比较图中序号为a、b、c的三次实验,得出的结论是:浮力的大小与______________________。 ②比较图中序号为______、_______、______的三次实验可以得出初步结论:浮力的大小与液体的密度有关,液体的密 度越大,物体所受的浮力也越大。 (2)为了研究猜想4,小华将同一块橡皮泥依次捏成圆锥体和圆柱体分别进行实验,实验现象如图3所示。根据此实验 现象,小华得出的结论是:浮力的大小与物体的形状有关。小琳认为小华的结论不可靠,主要原因是 ____________________________________。
A、
漂浮时受到的浮力等于鸡蛋受到的重力
B、
沉底时受到的浮力等于鸡蛋受到的重力
C、
沉底时受到的浮力等于漂浮时受到的浮力
D、
漂浮时受到的浮力小于沉底时受到的浮力
11. 小明进行了如图所示的四次测量,其中读数正确的是( ) 11.
A、
物体的长度为2.23cm
B、
物体A的重力是4.3N
C、
金属块的质量为25g
5kg 20. (1)1.56×10 20. 6 (2)1.56×10 N (3)2.6×104Pa 解析: (1)花岗岩的密度为ρ=2.6×103kg/m3,整个塔身体积V=60m3,
由
得塔身的质量:
m=ρV=2.6×103kg/m3×60m3=1.56×105kg; (2)塔身对水平基座的压力等于塔身的重力, 即:F=G=mg=1.56×105kg×10N/kg=1.56×106N; (3)受力面积S=10m×6m=60m2, 塔身对水平基座的压强: 故:(1)革命烈士纪念塔塔身的质量是1.56×105kg; (2)纪念塔塔身对水平基座的压力是1.56×106N; (3)纪念塔塔身对水平基座的压强是2.6×104Pa。
一、单选题(共11题,每题5分,共55分)
1. D 1. 2. B 2. 3. C 3. 4. C 4. 5. B 5. 6. C 6. 7. C 7. 8. D 8. 9. C 9. 10. A 10. 11. A 11.
二、多选题(共4题,每题5分,共20分)
12. B,C 12. 13. A,B,D 13. 14. A,B,C 14. 15因素有关
B、
坡度越大物体到达斜面底端的速度是否越快
C、
物体到达斜面底端的速度与斜面坡度的关系
D、
物体到达斜面底端的速度与斜面坡度是否有关
10. 如图所示,小飞同学在向水中逐渐加盐的过程中,原来沉在杯底的鸡蛋慢慢变为悬浮,再由悬浮最终变为漂浮。 10. 关于此过程中鸡蛋所受浮力,下列说法正确的是( )
A、
太空中,两名宇航员不能直接对话,因为真空不能 传声 B、 市区“禁鸣喇叭”,这是在噪声的传播环节减弱噪 声的 D、
用大小不同的力拨吉他同一根弦,可以改变声音的响 度 蝙蝠利用超声波确定目标的位置,说明声音能传递信 息
C、
14. 体育运动中涉及到了许多物理知识,下列说法正确的是( ) 14.
A、
C、
倒立放大的实像
D、
正立放大的虚像
5. 如图所示,钓鱼时,钓鱼竿可看成一根杠杆,则下列分析正确的是( ) 5.
A、
省力杠杆,支点是A点
B、
费力杠杆,支点是A点
C、
省力杠杆,支点是B点
D、
费力杠板,支点是B点
6. 一位同学正在进行投掷实心球的训练,以下情境中,他对球做功的是( ) 6.
A、
手拿球静止
五、实验探究题(共2题,每题5分,共10分)
21. 如图1为小群和小兰对“滑动摩擦力的大小与哪些因素有关”这一问题提出猜想时的情景。 21.
(1)小兰收集了几个有关摩擦的事例,其中能支持她自己猜想的事例是_________。 A.车轮上缠绕铁链的汽车在结冰的路面上不会打滑 B.用力压住橡皮,擦错字时擦得净
五、实验探究题(共2题,每题5分,共10分)
21. (1)A 21. (2)匀速直线;拉力 (3)在接触面粗糙程度相同时,压力越大,摩擦力越大 22. (1)3 22. (2)①物体的重力无关;②a;d;e (3)没有控制变量唯一
六、作图题(共2题,每题5分,共10分)
23.
解析:
重力的方向是竖直向下的,过重心画一条带箭头的竖直向下的有向线段,用G表示,大小为0.5N,如图所示:
A、
墙上“孔雀”
B、
缸中“游鱼”
C、
湖面月影
D、
雨后彩虹
4. 如图所示,一束平行光经过一凸透镜,调节光屏的位置直到在屏上得到一个最小、最亮的光斑,小明用此凸透镜 4. 做“探究凸透镜成像规律”的实验,当物体距凸透镜15cm时,重新调节光屏的位置,清晰可得( )
A、
倒立缩小的实像
B、
倒立等大的实像
24.
解析: 小玲受重力的作用点在其重心O上,方向是竖直向下的,表示符号为G,如图所示:
四、计算题(共2题,每题5分,共10分)
19. 在某次运输任务中,空载的货车沿平直路面匀速行驶,某路段50s行驶了1000m,货车在该路段所受阻力为2000N, 19. 取g=10N/kg。通过计算回答: (1)该路段限速60km/h,货车是否超速违规? (2)牵引力在该路段做了多少功? (3)牵引力在该路段的功率是多大?
C.移动很重的石块时铺设滚木更容易 (2)要验证他们的猜想,首先要解决如何测量滑动摩擦力的问题。他们经过讨论一致认为,必须用弹簧测力计拉着物 体,使它沿水平面_________滑动,根据二力平衡条件,此时摩擦力的大小与拉力大小相等。这种通过二力平衡条件, 间接测量摩擦力的方法,在测量物重时也用到过如图2所示,这时也是因为重力与_________是一对平衡力,所以测力 计的示数才等于重力的大小。 (3)为验证小群的猜想,小兰和小群合作做了如图3所示的实验。根据实验数据,可以得出的初步结论是 _____________________________________________。
22. 小华和小琳在老师的指导下,对“浮力的大小与哪些因素有关”进行了实验探究 22. 猜想1:浮力的大小可能与液体的密度有关 猜想2:浮力的大小可能与物体的重力有关 猜想3:浮力的大小可能与排开液体的体积有关 猜想4:浮力的大小可能与物体的形状有关 (1)如图1所示,小琳在家中利用身边的物品做实验,她用手把饮料罐按入水中,水面上升的越高,人会感到越吃 力。这个事实可以支持猜想_______(选填序号)。
B、
手托球水平匀速直线运动
C、
将球举起
D、
抛出后的球在空中继续运动
7. 如图所示,小冯分别用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面,所用的拉力分别为F 7. 甲、F乙,它们的机 械效率分别为η甲、η乙.下列判断正确的是(不计绳重与摩擦)( )
A、
F甲<F乙
B、
F甲=F乙
C、
η甲>η乙
D、
η甲<η乙
篮球投篮出手后如果外力全部消失,将会做匀速直 线运动 B、 多次用力垫起排球,手臂感到疼是因为力的作用是 相互的 D、
踢出去的足球最终会停下来,是因为受到摩擦阻力的 作用 射箭时,箭离开弓弦后由于受到惯性作用仍继续向前 飞行
C、
15. 下列利用矿泉水瓶设计的实验,说法正确的是( ) 15.
A、
甲图,比较海绵形变程度,可研究压力的作用效果 与压力的关系 B、 丙图,通过盖在瓶口的硬纸片不掉落,可以证明大 气压强的存在 D、
-2018-山东省-济南市-历下区--初三-下学期-中考一模
总分:120分 答题时间:120分钟 姓名: 日期:
注:本试卷共24道题,其中单选题11题(每题5分),多选题4题(每题5分),填空题3题(每题5分),计算题2题(每题5 分),实验探究题2题(每题5分),作图题2题(每题5分) 一、单选题(共11题,每题5分,共55分)
D、