汽车起动机的构造及其工作原理简介
起动机的组成结构

起动机的组成结构
起动机通常由以下几个部分组成:
1. 电动机:起动机的核心部分,用于产生旋转动力。
电动机通常是一个直流电机,通过电磁场的相互作用产生转矩,驱动发动机的曲轴转动。
2. 电磁开关:用于控制起动机的工作。
电磁开关包括吸引线圈、保持线圈、接触盘等部分。
当驾驶员启动发动机时,电磁开关会接收信号并将电流传递给电动机。
3. 驱动机构:将电动机的转矩传递给发动机的曲轴。
驱动机构通常包括齿轮减速机构、离合器等部分。
齿轮减速机构用于降低电动机的转速并增加转矩,离合器用于在启动完成后将起动机与发动机的曲轴脱离。
4. 电刷和电刷架:用于向电动机提供电流。
电刷通常由石墨制成,与电动机的换向器接触,将电流引入电动机。
5. 外壳和端盖:起动机的外壳用于保护内部零件并提供支撑。
端盖用于封闭电动机的两端,防止灰尘和杂物进入。
6. 电线和插头:用于连接起动机与车辆的电气系统。
电线将电流从车辆的蓄电池传递给起动机,插头用于与车辆的线束连接。
这些部分协同工作,使得起动机能够在驾驶员启动发动机时提供所需的转矩和转速,帮助发动机顺利启动。
不同类型的起动机可能在结构和组成上略有差异,但基本原理和功能是相似的。
3.1 起动机结构及原理

汽车电器与电子控制技术
1)励磁式定子。
励磁式电动机定子铁心为低碳钢,铁心磁场要靠绕在外面的 励磁绕组通电建立。为使电动机磁通能按设计要求分布,将 铁心制成如图9所示的形状,并用埋头螺栓紧固在机壳上。
励磁绕组由扁铜带 (矩形截面)绕制 而成,其匝数一般 为6~10匝;铜带之 间用绝缘纸绝缘, 并用白布带以半叠 包扎法包好后浸上 绝缘漆烘干而成。
图4-22 弹簧式单向离合器
弹簧式单向离合器具有结构简单、寿命长、成本低等特点。 因扭力弹簧圈数较多,轴向尺寸较大,多用于大中型起动机。
南昌大学·机电工程学院·汽车工程系 曹铭
汽车电器与电子控制技术 (3) 摩擦片式单向离合器
摩擦片式单向离合器是通过主、从动摩擦片的压紧和放松 来实现接合和分离的,其结构如图4-23所示。
U
+ ME
–
Ra — 绕组电阻
–
南昌大学·机电工程学院·汽车工程系 曹铭
汽车电器与电子控制技术
3. 电磁转矩
直流电动机电枢绕组中的电流(电枢电流Ia)与磁通相互作 用,产生电磁力和电磁转矩,直流电机的电磁转矩公式为
T=KT Ia
KT: 与电机结构有关的常数
: 线圈所处位置的磁通
Ia:电枢绕组中的电流
汽车总线技术
起动机的分类
按总体结构不同分为: (1)普通起动机 无特殊结构和装置; (2)永磁起动机 电动机磁极用永磁材料制成; (3)减速起动机 传动机构设有减速装置的起动机。 按控制方式不同可分为: (1)机械控制式 由手拉杆或脚踏联动机直接控制起动机的主电路开关来 接通或切断主电路。 (2)电磁控制式 借点火开关或按钮控制电磁铁,再由电磁铁控制主电路 开关来接通或切断主电路。 按传动机构啮入方式不同可分为: (1)强制啮合式 依靠电磁力或人力拉动杠杆机构,拨动驱动齿轮强制啮 入飞轮齿环。 (2)电枢移动式 依靠磁极磁通的电磁力使电枢产生轴向移动,从而将驱 动齿轮啮入飞轮齿环。 (3)齿轮移动式 依靠电磁开关推动电枢轴孔内的啮合杆,从而使驱动齿 轮啮入飞轮齿环。 (4)惯性啮合式 驱动齿轮借旋转时的惯性力啮入飞轮齿环。
起动机传动机构的工作原理

起动机传动机构的工作原理
起动机传动机构是汽车发动机启动和停止的关键组成部分,其工作原理主要包括起动机工作原理、传动机构构造、工作过程等方面。
起动机工作原理
起动机是汽车发动机起动的装置,工作原理主要依靠电动机的转动带动曲柄轮使发动机转动,从而使其实现启动。
在启动机工作之前,先从电瓶取得电力,通过启动电瓶开关将电能转化成机械能,从而启动汽车发动机。
由于发动机启动时需要较大的扭矩,所以起动机需要具有较大的启动能力。
传动机构构造
起动机传动机构主要由电动机、电磁开关、过载保护器、曲柄轮、传动齿轮、变速齿轮等构成。
电动机是起动机的核心部件,通过转动带动其他机构实现汽车发动机的启动。
电磁开关主要起到断开和闭合电路的作用,过载保护器则用于保护起动机不会因为负载过大而受损。
曲柄轮、传动齿轮和变速齿轮则是起动机转动发动机的关键部分,通过它们的配合实现了发动机的启动。
工作过程
在汽车启动过程中,首先通过钥匙或按钮启动汽车,电瓶输出电能到起动电瓶开关,电磁开关闭合电路,电动机转动,通过传动机构带动曲柄轮转动,从而驱动发动机实现启动。
整个起动机传动机构的工作过程是一个连续的动力传递过程,经过电能到机械能的转化,最终实现了汽车发动机的启动。
总结
起动机传动机构通过电动机带动传动部件的转动,将电能转化成机械能,实现了汽车发动机的启动。
起动机传动机构在汽车启动和停止过程中发挥了关键作用,其工作原理的实现依赖于多个部件的协同配合,形成了一个高效的动力传递系统。
汽车起动机的工作原理、常见故障及检修方法

汽车起动机的工作原理以及常见故障检修方法汽车起动机的工作原理以及常见故障检修方法汽车的启动系统包括:启动机、启动开关、启动继电器及空挡启动开关。
启动发动机所需要的曲轴转矩和最低启动转速取决于发动机的型式、发动机的排量、汽缸数、压缩比、轴承的摩擦力,以及由发动机曲轴带轮所驱动的附加负荷、燃油的供给方式及机油温度等。
通常.随着机油温度的下降.启动机要求的启动转矩和启动转速会升高;所以在设计启动机时上述因素都应予以考虑。
一、概述1.启动机功用汽车发动机是靠外力启动的,必须依靠外力使曲轴旋转,并要求曲轴的旋转达到一定的转速,才能启动内燃机。
汽车发动机常用的启动方式有人力启动和电力启动机启动两种。
人力启动(手摇)最简单,但劳动强度大,且不安全,目前只作为后备启动方式。
电力启动机启动具有操作方便、启动迅速可靠、有重复启动能力等特点,因而被广泛采用。
用于启动内燃机的电动机及附属装置,叫作启动装置o- 2.对启动电动机的基本要求(1)必须有足够的转矩和转速转矩和转速是对电动机最主要的要求,因为:1)要带动发动机旋转,必须克服发动机的阻力矩。
发动机的阻力矩与发动机的工作容积、汽缸数、压缩比等有关。
对于构造一定的发动机来说,当温度降低时,润滑油的黏度增大,阻力矩显著增加;在启动加速过程中,还要克服各运动机件的惯性力,故启动电动机必须具备足够的转矩。
’2)要保证启动发动机除具备足够转矩外,还必须使发动机的转速升至一定程度。
因为转速过低时,对于化油器式发动机来说.化油器中的气流速度过低,低压程度过.小,汽油不易喷出,也不易雾化,造成混合气过稀,发动机便不能发动。
当温度较低(在冬天)时,雾化条件变坏,混合气变得更稀,启动更加因难。
一般要求化油器发动机的启动转速应在40,.-50转/分以上。
(2)转矩应能随转速的升高而降低因为在启动之初,曲轴由静止开始转动时,机’件作加速度运动须克服很大的静止惯性力,同时各摩擦部分处于半干摩擦状态,摩擦阻力较大,这时需要较大的启动转矩,才能带动发动机转动,并使转速很快升高,但随着曲轴转速升高,加速阻力减小,油膜也逐渐形成,所需的转矩相应减小,而当曲轴转速升至启动转速,发动机一旦发动后.自己就能够独立工作,就不需要电动机带着转动了。
起动机的作用和工作原理

起动机的作用和工作原理
起动机是汽车发动机的一个重要配件,它的作用是在发动机启动时,通过驱动曲轴,
使发动机能够正常启动和工作。
起动机是通过电力传动来完成这一任务的,它将电能转换
为机械能,从而实现了发动机的启动。
下面将详细介绍起动机的工作原理和作用。
我们来了解起动机的组成。
起动机通常由电动机、电磁开关、驱动齿轮、弹簧、机械
传动装置等组成。
当司机转动钥匙启动汽车时,电磁铁被激磁,吸引了传动装置,使得起
动机内部的电动机开始转动。
起动机的驱动齿轮与曲轴齿轮齿咬合,通过转动曲轴,引发
了汽油机的启动。
我们来探讨起动机的工作原理。
起动机的核心是电动机,它是通过电能来提供动力的。
当司机扭动钥匙启动汽车时,电磁开关被激磁,使得电能传递到起动机的电动机上,电动
机开始转动。
电动机的转动使得起动机的驱动齿轮与曲轴齿轮之间相互咬合,从而带动曲
轴转动,引发了汽油机的启动。
起动机还具有过载保护功能。
当发动机启动后,由于起动机的电动机还在运转状态,
而汽车的曲轴已经开始转动,如果不及时切断外部电源,会导致起动机过热,严重时甚至
损坏起动机。
起动机内部还设置有过载保护开关,一旦发动机启动后,过载保护开关会断
开电源,停止电动机的运转,从而避免了起动机的过热与损坏。
起动机通过将电能转换为机械能,进而实现了汽车发动机的启动。
它是汽车启动的重
要组成部分,是汽车正常行驶的前提。
起动机的作用和工作原理都是紧密相连的,只有了
解了它的作用和工作原理,才能更好地维护和保养汽车,延长汽车的使用寿命。
起动机工作原理全解

汽车起动机工作原理、一、起动机的组成分类和型号1、组成:直流电动机--产生电磁转矩传动装置(啮合机构)--起动时,啮合传动;起动后,打滑脱开控制装置(电磁开关)--接通、切断电动机与蓄电池之间的电路2、分类)按控制装置分为:1(.直接操纵式电磁操纵式(2)按传动机构的啮合方式分为:惯性啮合式--已淘汰强制啮合式--工作可靠、操纵方便、广泛应用电枢移动式--结构较复杂,大功率柴油车齿轮移动式--电磁开关推动啮合杆减速式--质量体积小,结构工艺复杂3、型号(1)产品代号:qd--表示起动机qdj--表示减速起动机qdy--表示永磁起动机(2)电压等级:1-12v;2-24v(3)功率等级:1-0~1kw;2-1~2kw ;9-8~kw(4)设计序号(5)变型代号:拼音大写字母表示,多表示电气参数的变化qd1225--12v,1~2kw,第25次设计,普通式起动机二、发动机的起动性能和工作特性1、发动机的起动性能评价指标有:(1)起动转矩)最低起动转速2(.(3)起动功率(4)起动极限温度1、起动转矩起动机要有足够大的转矩来克服发动机初始转动时的各种阻力。
起动阻力包括:(1)摩擦阻力矩(2)压缩阻力矩(3)惯性阻力矩2、最低起动转速(1)在一定温度下,发动机能够起动的最低曲轴转速。
汽油机一般约为50~70r/min,最好70~100 r/min以上。
(2)起动机传给发动机的转速要大于发动机的最低转速:若低于这个转速,汽油泵供油不足,气流速度过低,可燃混合气形成不充分,还会使压缩行程的散热损失和漏气损失增加,导致发动机不能起动。
3、起动功率起动机所具有的功率应和发动机起动所必需的起动功率相匹配。
而蓄电池的容量与起动机的容量应成正比p=(450~600)p/u4、起动极限温度当环境温度低于起动极限温度时,应采取起动辅助措施:容量蓄电池)加大1(.)进气加热(2 (3)电喷车低温补偿 2、起动机的工作特性 1、起动机工作特性图、分析2(起动机达到最大,n=nmax,转速时,当i=0m=0,所以,p=0n 空载);(起m=mmaxn=0当i=imax时,,所以,p=0,输出转矩达到最大动机制动)。
《汽车电器与电子技术》第03章起动机解析
磁路饱和后:Ф=常数, 电动机转矩为:
M=CmФIS
由上面两个公式可知, 串激式直流电动机的电 磁转矩在磁路未饱和时, 与电枢电流的平方成正 比;在磁路饱和后,磁 通Φ几乎不变,电磁转 矩才与电枢电流成线性 关系,如图所示。
这是串激式直流电动机的一个重要特点,即在 电枢电流相同的情况下串激式直流电动机的转 矩要比并激式直流电动机大。特别在起动的瞬 间,由于发动机的阻力矩很大,起动机处于完 全制动的情况下,n =0,反电动势Ef=0。此时 电枢电流将达最大值(称为制动电流),产生 最大转矩(称为制动转矩),从而使发电机易 于起动。这是起动机采用串激电动机的主要原 因之一。
3.5.2 起动机运转无力
故障现象 起动时,驱动齿轮能啮人飞轮齿环, 但起动机转速明显偏低甚至停转。 故障原因 1)电源故障 2)起动机故障 故障诊断
3.5.3 起动机空转
故障现象 起动时,起动机转动,但发动机不转。 故障原因 单向离合器打滑;飞轮齿环的某一部 分严重缺损。 故障诊断
E f Ce n
式中 Ce —— 与电机结构有关的常数 (Ce=PZ/60α); n —— 电动机转速。
由于反电动势的存在,直流电源加在电枢上的 电压,一部分用来平衡反电动势,另一部分则 降落在电枢绕组的电阻上,称为电压平衡方程 式,即
U E f I s Rs
式中 RS——电枢回路的电阻,它包括电枢绕 组的电阻以及电刷与换向器的接触电阻。 可求出电枢电流:
2. 起动机的特性曲线
起动机的转矩、 转速、功率与 电流的关系称 为起动机的特 性曲线,如图 所示为QDl24型 起动机的特性 曲线。
起动机的结构及工作原理
起动机的结构及工作原理嘿呀!今天咱们来聊聊起动机的结构及工作原理!这可是个超有趣的话题呢!首先呢,咱们得搞清楚起动机到底是啥呀?简单来说,起动机就是让发动机从静止状态开始运转起来的重要部件。
哎呀呀,没有它,车子可就发动不起来啦!说起起动机的结构,那可是有不少关键部分哟!1. 直流电动机,这可是起动机的动力来源呢!它就像一个充满力量的小马达,不停地转动呀。
2. 传动机构,哇,它负责把电动机产生的动力传递给发动机的飞轮,让发动机开始工作,是不是很神奇呀?3. 控制装置,这个就像是起动机的大脑,控制着整个启动过程,什么时候开始工作,什么时候停止,全靠它指挥呢!接下来,咱们再深入了解一下起动机的工作原理。
哎呀呀,这可有点复杂,但别怕,我慢慢给您讲清楚。
当我们转动钥匙启动车辆时,控制装置接收到信号,然后下达指令。
哇!直流电动机就开始飞快地转动起来啦!产生的强大转矩通过传动机构传递给发动机的飞轮。
嘿,这时候发动机的飞轮就被带动起来,开始旋转。
随着转速的提高,发动机内部的气缸开始进行吸气、压缩、做功和排气的循环,哎呀呀,发动机就这样成功启动啦!在这个过程中,每个部件都发挥着至关重要的作用呢!比如说直流电动机,它得有足够的功率和转矩,才能顺利带动发动机呀。
传动机构得保证动力传递的平稳和可靠,不能出现卡顿或者故障哟!控制装置更是要精准地控制启动时间和电流大小,不然可能会出现启动失败或者损坏起动机的情况呢!哇塞!了解了起动机的结构和工作原理,是不是感觉汽车的启动过程不再那么神秘啦?哎呀呀,其实汽车上还有很多这样有趣又重要的部件等待我们去探索呢!总之,起动机虽然看起来只是汽车中的一个小部件,但它的作用可不容小觑呀!没有它,我们的汽车就只能停在原地不动啦!怎么样,您对起动机的结构及工作原理是不是有了更清晰的认识呢?。
起动机和发电机的原理构造
起动机和发电机的原理构造
起动机是一种利用电能驱动发动机转动的装置,用于启动发动机工作。
起动机的构造主要由电动机部分和弹簧式啮合器组成。
电动机部分: 起动机的电动机部分主要由直流电动机组成。
它由电枢、永磁体、电刷和电动机壳体组成。
当电流通过电枢时,产生的磁场与永磁体的磁场相互作用,使得电枢旋转。
电动机壳体起到固定电枢和提供支撑的作用。
弹簧式啮合器:起动机的弹簧式啮合器位于电动机部分的末端,用于将起动机的输出轴与发动机的飞轮连接起来。
当起动机电动机启动时,弹簧式啮合器上的弹簧将起动机的输出轴与发动机的飞轮连接在一起,使得发动机随之转动。
当发动机启动后,弹簧释放,断开起动机与发动机的连接。
发电机是一种将机械能转换为电能的装置。
发电机的构造主要由转子和定子部分组成。
转子部分:发电机的转子部分主要由永磁体(永磁发电机)或电枢(交流发电机)组成。
当转子旋转时,永磁体或电枢产生的磁场与定子部分的线圈相互作用,使得定子内的电荷产生运动,从而产生电流。
定子部分:发电机的定子部分主要由固定不动的线圈和铁芯组成。
定子的线圈连接到外部电路上,通过定子线圈内的电荷运动产生电流。
发电机和起动机的原理基本上都是利用电场和磁场之间的相互作用来实现能量转换的。
起动机将电能转换为机械能,通过弹簧式啮合器将机械能传递给发动机;而发电机则将机械能转换为电能,通过定子线圈产生电流供给外部电路使用。
汽车起动机
b、电磁铁机构线圈电路接通; Ⅰ.吸引线圈电路:
Ⅱ.保持线圈电路:
c、驱动齿轮与飞轮啮合: d、电动机电路接通,起动机带动发动机转动。 e、当两齿轮相抵时,离合 器的锥形(啮合)弹簧起作用, 保证先接通,后啮合。
f、电动机电路接通时,吸引线圈被短路,固定铁芯只 靠保持线圈电流的磁场吸 力将活动引铁吸住。
g、在电动机电路 接通同时或稍早,附
加电阻线被短路。
②、起动开关断开:
a、起动继电器线圈电路断电; b、保持线圈电流改道, (吸、保线圈电流方 向相反)起动机 停止工作。
③、两齿咬死不能分离时:分离弹簧起作用,使电动 机开关先断开,以保证驱动齿轮与飞轮可靠分离。
减速起动机的刷和换向器配合使用用来连接磁场绕组和 电枢绕组的电路,并使电枢轴上的电磁力矩保 持固定方向。 • 电刷装在端盖上的电刷架中,电刷弹簧使电刷 与换向片之间具有适当的压力以保持配合
二、工作原理
直流电动机的基本工作原理是通电的导体在磁场中会受 电磁力作用,电磁力的方向遵循左手定则。
三、 直流电机的铭牌数据
指轴上输出 电动机 指电刷间输出的 发电机 额定条件下电机 的机械功率 额定电功率 所能提供的功率
额定功率PN
额定电压U N
在额定工况下,电机 出线端的平均电压
额定电流I N
额定转速 nN
在额定电压下,运行于 额定功率时对应的电流
发电机:是指输出额定电压; 电动机:是指输入额定电压。
在额定电压、额定电流下,运 行于额定功率时对应的转速
③点火装置能发出足够能量的火花。
汽油机在0~20℃时,其最小起动转速一般为35~40r/min。为了 能更低转速下工作,一般50~70r/min。
柴油机的最低起动转速比汽油机要高,一般为100~200r/min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
.
汽车起动机的构造及其工作原理简介
汽车发动机的起动离不开起动机,其控制装置包括点火起动
开关、起动继电器和电磁开关等部件,其中的电磁开关与起动机
是在一体的。
一、关于起动继电器
起动继电器由电磁铁机构和触点总成组成。线圈分别与壳体
上的点火开关端子和搭铁端子“E”连接,固定触点与起动机端子“S”
连接,活动触点经触点臂和支架与电池端子“BAT”相连。起动继
电器触电为常开触点,当线圈通电时,继电器铁心便产生电磁力,
使其触点闭合,从而将继电器控制的吸引线圈和保持线圈电路接
通。
二、 关于电磁开关
1. 结构特点
电磁开关主要由电磁铁机构和电动机开关两部分组成。电磁
铁机构由固定铁心、活动铁心、吸引线圈和保持线圈等组成。固
定铁心,顾名思义是固定不动的,活动铁心则可以在铜套里做轴
向移动。活动铁心前端固定有推杆,推杆前端安装有开关触盘,
活动铁心后段用调节螺钉和连接销与拨叉连接。铜套外面安装有
复位弹簧,作用是使活动铁心等可移动部件复位。电磁开关接线
的端子的排列位置如图所示
.
.
2. 工作原理
当吸引线圈和保持线圈通电产生的磁通方向相同时,其电磁
吸力相互叠加,可以吸引活动铁心向前移动,直到推杆前端的触
盘将电动开关触点接通势电动机主电路接通为止。
当吸引线圈和保持线圈通电产生的磁痛方向相反时,其电磁
吸力相互抵消,在复位弹簧的作用下,活动铁心等可移动部件自
动复位,触盘与触点断开,电动机主电路断开。
三、示例:东风EQ1090型汽车起动电路
东风EQ1090型汽车使用的是QD124型起动机,为电磁控制
强啮合式起动机,采用滚动式单向离合器、驱动齿轮为11齿,
额定功率为1.5kw,其起动电路如图10-4所示,包括控制电路和
起动机主电路。
1. 控制电路
控制电路包括起动继电器控制电路和起动机电磁开关控制
电路。
起动继电器控制电路是由点火开关控制的,被控制对象是继
电器线圈电路。当接通点火开关起动挡时,电流从蓄电池政界经
过起动机电源接线柱到电流表,在从电流表经点火开关,继电器
线圈回到蓄电池负极。于是继电器铁心产生较强的电磁吸力,是
继电器触点闭合,接通起动机电磁开关的控制电路。
2. 主电路
.
.
电磁开关接通后,吸引线圈3和保持线圈4产生强的电磁引
力,将起动机主电路接通。电路为: 蓄电池正极→起动机电源
接线柱 → 电磁开关→ 励磁绕阻 → 电枢绕阻→ 搭铁→ 蓄电池
负极,于是起动机产生电磁转距,起动发动机。
四、起动机的工作特性及实验
(一) 直流串励式电动机的特性
1. 转矩特性:起动瞬间:IMAX ,n=0, 处于完全制动状
转矩M与I2 成正比,在起动瞬间,转矩很大,使发动机易
于起动。
2. 转速特性:串励式电动机具有轻载转速高,重载转速低
的特性,可以保证起动安全可靠,但轻载或空载时,易造成“飞
车”事故。对于功率很大的直流串励式电动机,不允许轻载或空
载下运行。
3. 功率特性:
完全制动时:P和n=0时,MMAX
空载时: Imax,nmax , P=0
当I=0.5I ,PMAX
4. 影响起动机功率的因素:
1) 接触电阻和导线的影响:
R大,L长,A(横截面积)小,会使P减小
2) 蓄电池容量的影响
.
.
容量越小,功率越小
3) 温度的影响
直接影响蓄电池的内阻
T减小 ,r增加, P减小
(二)起动机的实验
1. 空载试验
测量起动机的空载电流和空载转速并与标准值比较
说明: 电流值>标准值,n<标准值,表明装配过紧或电枢绕
组和励磁绕组内有短路或搭铁现象。
电流值<标准值,n<标准值,表明内部电路有接触不良的地
方。
注意: 每次空载试验不要超过1分钟,以免起动机过热。
2. 全制动试验
在空载试验后,通过测量起动机完全制动时的电流和转矩来
检验其动机的性能良好与否,需进行全制动试验。
说明: 电流大,转矩小,表明此磁场绕组或电枢绕组有短
路或搭铁的不良现象。
电流小,转矩小,表明起动机接触内阻过大。
注意:时间小于5秒,以免烧坏电动机,对蓄电池使用寿命
造成不利影响。