【新人教版九年级数学上册同步测试及答案全套27份】25.1 第1课时 随机事件

合集下载

人教版九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率测试题附答案

人教版九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率测试题附答案

人教版九年级数学上册练习题25.1.2 概率1.抛掷一枚均匀的硬币,前两次都正面朝上,第三次正面朝上的概率( ) A .大于12B .等于12C .小于12D .无法确定2.如图25­1­8所示,从中任取一个图形是中心对称图形的概率是( )图25­1­8A.14B.12C.34D .13.从装有4个红球的袋中随机摸出一个球,若摸到白球的概率是P 1,摸到红球的概率是P 2,则( )A .P 1=1,P 2=1B .P 1=0,P 2=1C .P 1=0,P 2=14D .P 1=P 2=144.下面四个转盘中,C ,D 转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A B C D5.如图25­1­9所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为____.图25­1­96.毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是____.7.如图25­1­10,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )图25­1­10A.613 B.513 C.413D.3138.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13.求从袋中取出黑球的个数.9.端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘(转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转转盘的机会,如果转盘停止后,指针正好对准红色、黄色或绿色区域,顾客就可以分别获得玩具熊、童话书、水彩笔.小明和妈妈购买了125元的商品,请你分析计算:图25­1­11(1)小明获得奖品的概率是多少?(2)小明获得玩具熊、童话书、水彩笔的概率分别是多少?10.已知⊙O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图25­1­12所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,求P 1P 2.图25­1­12参考答案1.B 2.C 3.B 4.A 5.13 6.257.B8.(1)P (黄球)=14. (2)从袋中取出了2个黑球.9.(1)P (获得奖品)=38. (2)P (获得玩具熊)=116,P (获得童话书)=216=18,P (获得水彩笔)=316.10.P 1P 2=2π.。

人教版九年级上册数学 25.1基础检测题及答案

人教版九年级上册数学 25.1基础检测题及答案

人教版九年级数学上册同步练习:25.1--25.3基础检测含答案25.1随机事件与概率一.选择题1.下列事件中,必然事件是()A.打开电视,正在播放综艺节目《声临其境》B.早晨的太阳从东方升起C.在红绿灯路口遇到黑灯D.任意掷一枚均匀的硬币,正面朝上2.下列事件中是不可能事件的是()A.抛掷一枚硬币50次,出现正面的次数为40次B.从一个装有30只黑球的不透明袋子中摸出一个球为黑球C.抛掷一枚质地均匀的普通正方体骰子,出现点数之和等于13D.从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K3.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“画一个三角形,其内角和一定等于180°”是必然事件4.一个布袋里装有2个白球和3个黑球,它们除颜色外其余都相同,从袋子里任意摸出1个球,摸到黑球的概率是()A.B.C.D.15.关于随机事件A发生的频率与概率,下列说法正确的是()A.事件A发生的频率就是它发生的概率B.在n次试验中,事件A发生了m次,则比值称为事件A发生的频率C.事件A发生的频率与它发生的概率无关D.随着试验次数大量增加,事件A发生的频率会在P(A)附近摆动6.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是()A.B.1 C.D.7.下列事件中,必然事件是()A.打开电视机,正在播“新冠肺炎”相关新闻B.明天会下雨C.小明今天至少走了 100 米D.太阳从东方升起8.如图,小亮有一个卡片藏在9块瓷砖中的某一块下面(每块瓷砖除图案外其它均相同),那么卡片藏在瓷砖下的概率为()A.B.C.D.9.在一副52张扑克牌(没有大、小王)中任意抽取一张牌,抽出的这张牌是方块的概率是()A.B.C.D.10.一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定二.填空题(共5小题)11.一只不透明的布袋中有三种小球(除颜色以外其余都相同),分别是2个红球,3个白球和5个黑球,搅匀之后,摸出一只小球是红球的概率是.12.“若a2=b2,则a=b”这一事件是.(填“必然事件”“不可能事件”或“随机事件”)13.不透明袋子中装有12个球,其中有5个红球、4个绿球和3个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.“正方形既是矩形又是菱形”是事件.(填“必然”、“随机”、“不可能”)15.在一个不透明的袋子中装有2个红球和若干个黑球,这些球除颜色外其余均相同,将袋子中的球搅匀,从中任意摸出一个球,是黑球的概率为,则袋中原有黑球的个数是.三.解答题(共2小题)16.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?17.一个不透明的袋子里有红、黄、白三种颜色的球共50个,它们除了颜色不同外都相同,其中黄球的个数比白球的个数少5个,已知从袋子里随机摸出一个球是红球的概率是.(1)求袋子里红球的个数;(2)求从袋子里随机摸出一球是白球的概率,说明理由.参考答案1.解:A、打开电视,正在播放综艺节目《声临其境》,是随机事件,不合题意;B、早晨的太阳从东方升起,是必然事件,符合题意;C、在红绿灯路口遇到黑灯,是不可能事件,不合题意;D、任意掷一枚均匀的硬币,正面朝上,是随机事件,不合题意.故选:B.2.解:“抛掷一枚硬币50次,出现正面的次数为40次为”随机事件;“从一个装有30只黑球的不透明袋子中摸出一个球为黑球”为必然事件;“抛掷一枚质地均匀的普通正方体骰子,出现点数之和等于13”为不可能事件;“从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K“为随机事件.故选:C.3.解:A、可能性很大的事情不一定是必然发生的,本选项说法错误;B、可能性很小的事情是可能发生的,本选项说法错误;C、“掷一次骰子,向上一面的点数是6”是随机事件,本选项说法错误;D、“画一个三角形,其内角和一定等于180°”是必然事件,本选项说法正确;故选:D.4.解:∵布袋里装有2个白球和3个黑球,共5个小球,其中黑球有3个,∴从袋子里任意摸出1个球,摸到黑球的概率是,故选:C.5.解:在n次试验中,事件A发生了m次,则比值称为事件A发生的频率,因此选项B不符合题意;概率则是经过无数次试验,随着试验次数的增加,事件A发生的频率越稳定在某个常数附近摆动,这个常数称为事件A发生的概率,因此选项A不符合题意;概率和频率是有一定关系的,一般地,事件A发生的概率越大,其试验的频率也越大,因此选项C不符合题意;根据概率和频率的关系可得选项D符合题意;故选:D.6.解:∵不透明的盒子中装有2个红球,1个白球和1个黄球,共有4个球,∴摸到红球的可能性是=;故选:C.7.解:A.打开电视机,正在播“新冠肺炎”相关新闻,是随机事件;B.明天会下雨,是随机事件;C.小明今天至少走了 100 米,是随机事件;D.太阳从东方升起,是必然事件.故选:D.8.解:卡片藏在瓷砖下的概率==.故选:C.9.解:一副52张没有大小王的扑克牌中方块有13张,任意抽取一张牌,那么抽到方块的概率是:=.故选:D.10.解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.11.解:∵不透明的布袋中有三种小球(除颜色以外其余都相同),分别是2个红球,3个白球和5个黑球,∴摸出一只小球是红球的概率是=;故答案为:.12.解:若a2=b2,则a=±b,故若a2=b2,则a=b,这一事件是随机事件.故答案为:随机事件.13.解:不透明袋子中装有12个球,其中有5个红球、4个绿球和3个蓝球,∴从袋子中随机取出1个球,则它是红球的概率是;故答案为:.14.解:“正方形既是矩形又是菱形”是必然事件.故答案为必然.15.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故答案为:4.16.解:(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.17.解:(1)袋子里红球的个数为:50×=15(个);(2)设白球的个数为x个,根据题意得:x+x﹣5+15=50,解得x=20,所以摸出白球的概率==.25.2用列举法求概率一.选择题1.两个不透明的袋子中分别装有标号1,3,5和标号2,4的五个小球,五个小球除标号外其余均相同,随机从两个袋子中各抽取一个小球,则其标号数字组成的两位数能被4整除的概率是()A.B.C.D.2.在如图所示的电路中,随机闭合开关S1、S1、S3中的两个,能让灯泡L1发光的概率是()A.B.C.D.3.有5名自愿献血者,其中3人血型为O型,2人血型为A型,现从他们当中随机挑选2人参与献血,抽到的两人均为O型血的概率为()A.B.C.D.4.下列说法中不正确的是()A.抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B.随机选择一户二孩家庭,头胎、二胎都是男孩的概率为C.任意画一个三角形内角和为360°是随机事件D.连续投两次骰子,前后点数之和为偶数的概率是5.如图,△ABC中,AB=BC=AC,点D,E,F分别是AB,BC,AC边的中点.依次以A,B,C为圆心,AD长为半径画弧,得到,,.若在△ABC区域随机任取一点,则该点取自阴影部分的概率是()A.B.C.D.6.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是()A.B.C.D.7.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为0的概率是()A.B.C.D.8.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为()A.B.C.D.9.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.10.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格的形状大小质地完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率是()A.B.C.D.二.填空题11.一个不透明的口袋中装有4个除颜色外,其他都一样的小球,其中有2个黄球,2个蓝球,现从中随机摸出2个球,则这2个球为同色的概率是.12.有4张正面分别标有数字﹣2,﹣3,0,5的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,数记为a,不放回,再从剩余卡片中随机抽取一张,数记为b,则使a+b能被5整除的概率为.13.为了防止输入性“新冠肺炎”,某医院成立隔离治疗发热病人防控小组,决定从内科3位骨干医师中(含有甲)抽调2人组成.则甲一定会被抽调到防控小组的概率是.14.在平面直角坐标系xOy中,点P的坐标为(x,y).现将背面完全相同,正面分别标有1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,该数的倒数作为点P的纵坐标,则点P 落在直线y=﹣x+3 上方的概率为.15.如图,点O为正方形的中心,点E、F分别在正方形的边上,且∠EOF=90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是.三.解答题16.在一个不透明的盒子中装有4个小球,4个小球上分别标有数字1,2,3,4,这些小球除数字外都相同,将小球搅匀.(1)从盒子中任意摸出一个小球,恰好摸出奇数号小球的概率是;(2)先从盒子中随机摸出一个小球,再从余下的3个小球中随机摸出一个小球,请用列表法或树状图法求两次摸出的小球标注数字之和大于4的概率.17.现有三张形状和大小完全相同的不透明卡片,其中卡片的正面分别标有字母A、B、C,将这三张卡片背面朝上洗匀,从中随机抽取一张,记录字母后不放回,再从剩余卡片中随机抽取一张.请用画树状图(或列表)的方法,求恰好抽到字母A和B的概率.18.近些年来,“校园安全”受到全社会的广泛关注,为了了解学生对于安全知识的了解程度,学校采用随机抽样的调查方式,根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为.(2)请补全条形统计图;(3)若该中学共有学生1200人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.19.某数学小组为调查重庆实验外国语学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图如图:共有12个等可能的结果,标号数字组成的两位数能被4整除的结果有3个,∴标号数字组成的两位数能被4整除的概率==;故选:C.2.【解答】解:画树状图得:∵共有6种等可能的结果,能让灯泡L1发光的有2种情况,∴能让灯泡L1发光的概率为=.故选:B.3.【解答】解:画树状图如图:共有20个等可能的结果,抽到的两人均为O型血的结果有6个,∴抽到的两人均为O型血的概率为=;故选:B.4.【解答】解:A、抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关,故选项A不符合题意;B、画树状图如图:共有4个等可能的结果,头胎、二胎都是男孩的结果有1个,∴随机选择一户二孩家庭,头胎、二胎都是男孩的概率为,故选项B不符合题意;C、任意画一个三角形内角和为180°,不是360°,是确定性事件,不是随机事件,故选项C符合题意;D、画树状图如图:共有36个等可能的结果,前后点数之和为偶数的结果有18个,∴连续投两次骰子,前后点数之和为偶数的概率是=,故选项D不符合题意;故选:C.5.【解答】解:∵AB=BC=AC,∴∠A=∠B=∠C=60°,设△ABC的底为2,则△ABC的高为,∴△ABC的面积是=,∵,,,∴BE=EC=CF=AF=BD=AD,∴阴影部分的面积是:×3=,∴该点取自阴影部分的概率是=;故选:A.6.【解答】解:将黄色区域平分成三部分,画树状图得:∵共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,∴两次指针都落在黄色区域的概率为;故选:D.7.【解答】解:画树状图如下:由图知,共有12种等可能结果,其中抽取的两张卡片上数字之积为0的有6种结果,∴抽取的两张卡片上数字之积为0的概率为=,故选:A.8.【解答】解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,∴两个转盘的指针都指向3的概率为,故选:D.9.【解答】解:由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:第一次选择,它有3种路径;第二次选择,每次又都有2种路径;两次共6种等可能结果,其中获得食物的有2种结果,∴获得食物的概率是=,故选:C.10.【解答】解:设每个格点正方形的边长为1,则阴影部分的面积为:42﹣×(1×4+2×4+2×3)=7,所以当蚂蚁停下来时,停在地板中阴影部分的概率是,故选:B.二.填空题11.【解答】解:画树状图如图:从中随机摸出2个球,共有12个等可能的结果,这2个球为同色的结果有4个,∴从中随机摸出2个球,则这2个球为同色的概率是=;故答案为:.12.【解答】解:画树状图如图:共有12个等可能的结果,使a+b能被5整除的结果有4个,∴使a+b能被5整除的概率==;故答案为:.13.【解答】解:内科3位骨干医师分别即为甲、乙、丙,画树状图如图:共有6个等可能的结果,甲一定会被抽调到防控小组的结果有4个,∴甲一定会被抽调到防控小组的概率==;故答案为:.14.【解答】解:画树状图为:共有5种等可能的结果,其中点P落在直线y=﹣x+3 上方的结果数为2,所以点P落在直线y=﹣x+3 上方的概率=.故答案为.15.【解答】解:在正方形中,满足点E、F分别在正方形的边上(此处采用极限思想),且∠EOF=90°的图形如图所示:因此EOF的面积是正方形总面积的,因此米粒落在图中阴影部分的概率是.三.解答题16.【解答】解:(1)从盒子中任意摸出一个小球,恰好摸出奇数号小球的概率==;故答案为;(2)画树状图为:共有12种等可能的结果,其中两次摸出的小球标注数字之和大于4的结果数为8,所以两次摸出的小球标注数字之和大于4的概率==.17.【解答】解:根据题意画图如下:共有9种等可能的结果数,其中恰好抽到字母A和B的有2种情况,所以恰好抽到字母A和B的概率是.18.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:360°×=90°;故答案为:60,90°;(2)60﹣15﹣30﹣10=5;补全条形统计图:(3)根据题意得:1200×=400(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为400人;(4)画树状图得:由树状图可知,共有20种等可能的结果,恰好抽到1个男生和1个女生的结果有12种,∴恰好抽到1个男生和1个女生的概率为=.25.3 利用频率估计概率一.选择题1. 在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ).A.16个 B.15个C.13个 D.12个2. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各试验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近3. 小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )A.20 B.300C.500 D.8004. 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中.通过大量重复摸球试验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( )A.16个B.20个C.25个D.30个二.填空题5.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.6.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.2,那么可以推算出n大约是.7.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.三.简答题8.一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球出了颜色外没有任何区别.(1)小王通过大量反复实验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在1/4左右,请你估计袋中黑球的个数.(2)若小王取出的第一个是白球,将它放在桌上,从袋中余下的球中在再任意取一个球,取出红球的概率是多少?9.小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。

2022_2022学年九年级数学上册25.1.1随机事件练习新版新人教版

2022_2022学年九年级数学上册25.1.1随机事件练习新版新人教版

随机事件
根底导练
1.以下事件中,是确定性事件的是〔〕
A.明日有雷阵雨
B.小明的自行车轮胎被钉子扎坏
C.小红买体育彩票
D.抛掷一枚正方体骰子,出现点数7点朝上
2.以下说法正确的选项是〔〕
A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上
B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大
C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖
D.翻开电视,中央一套正在播放?新闻联播?3.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数.以下说法正确的选项是〔〕
A.事件A、B都是随机事件
B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件
D.事件A是必然事件,事件B是随机事件能力提升
小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中的可能性较小.
5.在一个不透明的口袋中,装着10个大小和外形完全相同的小球,其中有5个红球,3个蓝球,2个黑球,把它们搅匀以后,请问:以下哪些事件是必然事件,哪些是不可能事件,哪些是随机事件.
〔1〕从口袋中任意取出一个球,它刚好是黑球.
〔2〕从口袋中一次取出3个球,它们恰好全是蓝球.
〔3〕从口袋中一次取出9个球,恰好红,蓝,黑三种颜色全齐.
〔4〕从口袋中一次取出6个球,它们恰好是1个红球,2个蓝球,3个黑球.
参考答案
1.D
2.B
3.D
4.判断题
5.〔1〕随机事件〔2〕随机事件〔3〕必然事件 (4) 不可能事件。

【新人教版九年级数学上册同步测试及答案全套27份】25.2 第一课时 用列举法求概率(1)

【新人教版九年级数学上册同步测试及答案全套27份】25.2 第一课时   用列举法求概率(1)

25.2用列举法求概率25.2 第一课时 用列举法求概率(1)知识点:用列举法求概率一、 选择题1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A .41 B .21 C .43 D .1.2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法法有( )种. A .4 B .7 C .12 D .81.3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ). A .13 B .112 C .14D .1. 4.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) . A. 25B .310C .320D .155.掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是 ( ) A .和为11 B .和为8 C .和为3 D .和为26.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ). A.61B. 31C.21D. 327. 中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,123453489若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ). A.41B.61C.51D.203 8.用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率为( ). A .35 B .23 C .120 D .1125二、填空题9.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上.则A 与B 不相邻而坐的概率为_____________.10. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________. 11.5个完全相同的白色球全部放入两个完全相同的抽屉,可以有一个抽屉空着,那么两个抽屉中都至少有2个球的概率是_____.12.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为_______________________;数字之积为奇数的概率为______. 三、解答题13.小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负.你认为这个游戏是否公平?说明你的理由.A 圆桌甲乙(4,2)24结果小华抽的扑克小明抽的扑克14.《列子》中《歧路亡羊》写道:杨子之邻人亡羊,既率其党,又请杨子之竖追之。

九年级数学上册 25.1-25.2 同步水平测试题(含答案)

九年级数学上册 25.1-25.2 同步水平测试题(含答案)

人九上25.1~25.2自主学习达标检测一、精心选一选(每小题7分,共35分)1.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是 ( ) (A)点数之和为12. (B)点数之和小于3. (C)点数之和大于4且小于8. (D)点数之和为13. 2.下列说法正确的是 ( ) (A)可能性很小的事件在一次实验中一定不会发生. (B)可能性很小的事件在一次实验中一定发生. (C)可能性很小的事件在一次实验中有可能发生. (D)不可能事件在一次实验中也可能发生. 3.下列事件中,概率是1的是 ( ) (A)太平洋中的水常年不干. (B)男生比女生高. (C)计算机随机产生的两位数是偶数. (D)星期天是晴天.4.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( )(A) . (B) . (C) . (D) . 5.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ( )(A) . (B) . (C) . (D) . 二、耐心填一填(每小题7分,共35分)6.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是.7.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为;哪些事件是必然发生的;哪些事件是不可能发生的(只填序号).8.在四张相同的卡片上标有1、2、3、4四个数字,从中任意抽出两张:①两张都是偶数的概率是;②第一张为奇数第二张为偶数的概率是;③总是出现一奇一偶的概率是.9.某校九年级想举办班徽设计比赛,全班50名学生计划每位同学交设计方案一份,拟评选出10份一等奖,那么该班某位同学获一等奖的概率是.10.某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则电话在响第五声之前被接的概率为 .三、用心想一想(每题10分,共30分)11.说明下列事件的可能性,并标在图上(只标序号). ①北京市举办2008年奥运会; ②一个三角形内角和为181°;③现将10名同学随机分成两组进行劳动,同学甲被分到第一组. 12.某商场设了一个可以自由转动的转盘如图,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区 域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格:121 3 1 4 15 1 41 5 1 6 320(2)请估计,当n 很大时,频率将会接近多少?13.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分,当两张硬纸片上的图形可拼出房子或小山时,季红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?参考答案1.D2.C3.A4.B5.C6.7.④;③;①,②8.① ,② ,③9. 10.0.8 11.略 12.(1)0.68,0.74,0.69,0.705,0.701 (2)0.7 13.(1)这个游戏对双方不公平,∵P(拼成电灯)= ,P(拼成小人)= ,P(拼成房子)= ,P(拼成小山)= ,∴杨华平均每 次得分为 ×1+ ×1= 分,季红平均每次得分为 ×1+ ×1= 分.∵ < , ∴游戏对双方不公平;(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.1 2 1 6 1 3 2 3 1 5 3 10 1 10 3 103 10 3 10 1 104 10 3 10 3 10 6 10 4 10 6 10。

【新人教版九年级数学上册同步测试及答案全套27份】25.1 第2课时 概率

【新人教版九年级数学上册同步测试及答案全套27份】25.1 第2课时  概率

25.1 第2课时概率知识点:⒈对于一个随机事件A,我们把刻画其发生的数值,称为随机事件A发生的概率,记为。

2、一般地,如果在一次实验中,有n种可能的结果,并且他们发生的可能性都,事件A包含其中的m种结果,那么事件A发生的概率P(A)= (0≤P(A)≤1).3、当A是必然发生的事件时P(A)= ;当A是不可能发生的事件时P(A)= ;一、选择题1.下列事件中是随机事件有()个.(1)在标准大气压下水在0℃时开始结成冰;(2)掷一枚六个面分别标有l~6的数字的均匀骰子,骰子停止转动后偶数点朝上;(3)从一副扑克牌中任意抽出一张牌,花色是红桃;(4)打开电视机,正在转播足球比赛;(5)小麦的亩产量为1000公斤.A. 1个 B.2个 C.3个 D.4个2.下列说法:(1)不可能发生和必然发生的都是确定的;(2)可能性很大的事情是必然发生的;(3)不可能发生的事情包括几乎不可能发生的事情;(4)冬天里武汉一定会下雪.其中,正确的个数为().A. 1个B. 2个C. 3个D. 4个3.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是().A.12B.13C.14D. 04.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个5.在中考体育达标跳绳项目测试中,1分钟跳160次为达标。

小敏记录了他预测时1分钟跳的次数分别为145、155、140、162、164,则他在该次预测中达标的概率是( ). A. 25 B. 23 C. 12 D. 16.有两组扑克牌各三张,牌面数字分别为1、2、3,随意从每组中牌中各抽取一张,数字和是奇数的概率是( ).A .29B .13C .49D .597.一个骰子,六个面上的数字分别为1,2,3,4,5,6投掷一次,向上面为数字3的概率及向上面的数字大于3的概率分别是( ). A. 12、16 B. 13、23 C. 14、12 D. 16、128.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ).A .1001B .10001C .100001D .10000111 二、填空题9.粉笔盒中有8支红粉笔,6支黄粉笔1支绿粉笔,从中任取—支,是红粉笔的概率为________.10. 某射手在一次射击中,射中10环、9环、8环的概率分别是0.24、0.28、0.19,那么,这个射手在这次射击中,射中10环或9环的概率为________;不够8环的概率为________.11.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员李明能参加这次活动的概率是 .12.一次抽奖活动中印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么每一位抽奖者(仅买一张奖券)中奖的概率都是_______.13、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是54,则n ▲14、某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是 .15、从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+=的k 值,则所得的方程中有两个不相等的实数根的概率是16、“上升数”是一个数中右边数字比左边数字大的自然数(如:34、568、2469等).任取一个两位数,是“上升数”的概率是 ▲ .三、解答题17.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为多少?18.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?19. 如图所示,每个转盘被分成3个面积相等的扇形,小红和小芳利用它们做游戏:同时自由转动两个转盘,如果两个转盘的指针所停区域的颜色相同,则小红获胜;如果两个转盘的指针所停区域的颜色不相同,则小芳获胜,此游戏对小红和小芳两人公平吗?谁获胜的概率大?20. 如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(—个转盘转出“红”,另一个转盘转出“蓝”,则为配成紫色).在所给转盘中的扇形里,分别填上“红’’或“蓝”,使得到紫色的概率是16.25.1 第2课时概率一、1D;2A;3B;4A;5A;6C; 7D; 8C;二、9.815; 10. 0.52、0.29; 11.14; 12.310;13、8; 14、0.04; 15、0.6 ; 16、25;三、17.1 300.18. 因为已经限定在身高160厘米以上的女生中抽选旗手,在甲班被抽到的概率为13,在乙甲班被抽到的概率为18,∵13>18,∴在甲班被抽到的机会大.19.不公平,小芳获胜的概率(23)大于小红的(13).20.[解答] 本题是一道答案不惟一的开放题,在解这类题时,可从最简单的形式入手.由已知条件及要求只要符合题意即可.如可把其中一个转盘的六个扇形都填“红”,而另一个转盘的一个扇形填“蓝”,即可保证得到紫色的概率为16.如图,一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其他颜色.(注:一个填两个“红”,另一个填三个“蓝”等也可).如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

新人教版九年级数学上册《25-1 概率》同步测试

新人教版九年级数学上册《25-1概率》同步测试1.从只装有4个球且是红球的袋中随机摸出1球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )A .p 1=1,p 2=1B .p 1=0,p 2=1C .p 1=0,p 2=14D .p 1=p 2=142.从1~9这9个自然数中任取1个,是2的倍数的概率是( )A .29B .49C .59 D .23 3.一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其他都相同,搅匀后随机地从中摸出1个球是绿球的概率是( )A .49B .29C .13 D .23 4.分别写有数字0,-1,-2,1,3的5张卡片,除数字不同外其他均相同,从中任抽1张,那么抽到负数的概率是( )A .15B .25C .35D .455.如图,A ,B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大..于.2的概率是( )A .12B .23C .34D .456.从26个英文字母中任意选1个,是C 或D 的概率是__________.7.从-1,1,2三个数中任取一个,作为一次函数y =kx +3的k 值,则所得一次函数中y 随x 的增大而增大的概率是________.8.如图所示,转盘平面被等分成4个扇形,并分别填上红、黄两种颜色,自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为________.9.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是__________.10.在一袋子里装有红、黄、蓝3种颜色的小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球:(1)摸出的球是蓝色球的概率是多少?(2)摸出的球是红色1号球的概率是多少?(3)摸出的球是5号球的概率是多少?能力提升11.如图,正方形ABCD 内接于O ,O 的直径为2dm ,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .2πB .π2C .12πD .2π 12.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的表面展开图的概率是__________.13.一只受伤的小鸟,随意地停在如图所示的正方形草坪内,且E 为AD 的中点,试求小鸟停在阴影部分的概率.14.某超市开展购物摸奖活动,规则为:购物时每消费2元可获得一次摸奖机会,每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同)中摸出1球,若号码是2就中奖,奖品为精美图片一张.(1)摸奖一次时,得到一张精美图片的概率是多少?得不到精美图片的概率是多少?(2)一次,小聪购买了10元钱的物品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中.”你同意他的想法吗?说说你的想法.参考答案复习巩固1.B2.B3.C摸出一个球是绿球的概率是314323=++,故选C.4.B∵5张卡片分别标有0,-1,-2,1,3五个数,数字为负数的卡片有2张,∴从中随机抽取1张卡片数字为负数的概率为25.故选B.5.D点C到表示-1的点的距离不大于...2的概率是134=235-(-)-(-).故选D.6.1 137.2 38.1 49.12观察图形可知,黑色区域的面积占大圆面积的12,所以飞镖落在黑色区域的概率是12.10.解:(1)P(摸出蓝色球)51 153 ==.(2)P(摸出红色1号球)=1 15.(3)P(摸出5号球)31155==.能力提升11.A在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率公式即可解答.∵O2dm,∴O的半径为22dm.∴O的面积为22ππ22⎛⎫=⎪⎪⎝⎭(dm2).连接BD ,∵∠A 是直角,∴BD 必过圆心O ,即BD 是O 的直径.在Rt △ABD 中,可由勾股定理求得正方形的边长AB =1(dm). ∴正方形的面积为12=1(dm 2).∵豆子落在圆内每一个地方是均等的,∴P (豆子落在正方形ABCD 内)=12ππ2ABCD O ==正方形的面积的面积.故选A. 12.47从最上边一行的4个小正方形中任取1个涂上阴影,均能构成正方体的表面展开图. 13.解:设正方形的边长为a ,因为E 为AD 的中点,所以S △ABE =211224a a a ⨯=,S 正方形=a 2. 所以小鸟停在阴影部分的概率为14. 14.解:(1)每次摸奖时,有5种情况,只有号码是2才中奖,奖品为一张精美图片.故得到一张精美图片的概率是15,得不到一张精美图片的概率是45. (2)不同意,因为小聪第5次得到一张精美图片的概率仍是15,所以他第5次不一定中奖.。

数学人教版九年级上册同步教学课件:25. 概 率

解:(1)45 (2)15 (3)25
15.在“六·一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立 了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾 客每购物满100元就能获得一次转动转盘的机会,如果转盘停止后,指 针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50 元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意 转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券.你 认为哪种方式对顾客更合算?请说明理由.
11.在边长为 1 的小正方形组成的网格中,有如图所示的 A,B 两点, 在格点上任意放置点 C,恰好能使△ABC 的面积为 1 的概率为( C )
3 31 5 A.16 B.8 C.4 D.16
12.(习题 5 变式)如图,转盘被等分成八个扇形,并在上面依次标有数 字 1,2,3,4,5,6,7,8.
解:∵一次转动转盘,获得 80 元,50 元,20 元的购物券有概率分别 为210,230,250,∴转转盘一次平均可获得的购物券金额为 80×210+50×230 +20×250=16.5(元).∵16.5>15,∴选择转转盘对顾客更合算
方法技能: 应用 P(A)=mn 求简单事件概率的步骤: ①判断:事件所有可能出现的结果必须是有限的,各种结果出现的可能 性必须相等. ②确定:事件发生的所有结果数 n 和事件 A 发生的所有结果数 m. ③计算:代入公式 P(A)=mn 计算. 易错提示: 对概率的意义理解不清.
(1)自由转动转盘,当它停止转动时,指针指向的数字正好能被 8 整除 的概率是多少?
(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指 向的区域的概率为34.
(注:指针指在边缘处,要重新转,直至指到非边缘处) 解:(1)因为能被 8 整除的数只有 8,故其概率为18 (2)答案不唯一,如:指针指向的数不大于 6

全国统考历年真题解析三年中考真题九年级数学上册25.1随机事件与概率同步练习 新人教版0

25.1 随机事件与概率一.选择题(共20小题)1.(2018•达州)下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%”是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为72.(2018•长沙)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件3.(2018•衡阳)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的4.(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(2018•铜仁市)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.6.(2018•连云港)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.7.(2018•泰州)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球8.(2018•包头)下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形9.(2018•怀化)下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2,0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生10.(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.11.(2018•烟台)下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖12.(2018•昆明)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件13.(2017•天水)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次14.(2017•阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大15.(2017•绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.16.(2017•新疆)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯17.(2016•柳州)小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为()A.B.C.D.18.(2016•南平)下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>019.(2016•广州)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.20.(2016•新疆)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.二.填空题(共10小题)21.(2018•黑龙江)掷一枚质地均匀的骰子,向上一面的点数为5的概率是.22.(2018•湘西州)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.23.(2018•哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.24.(2018•成都)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.25.(2018•湖北)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.26.(2017•黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.27.(2017•镇江)如图,转盘中6个扇形的面积都相等,任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是.28.(2017•黑龙江)在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是.29.(2016•阿坝州)在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为.30.(2016•怀化)一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是.三.解答题(共8小题)31.(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.32.(2018•郴州)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?33.(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.34.(2017•河北)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分.,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.35.(2017•眉山)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.36.(2017•雅安)某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.37.(2016•漳州)国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.38.(2016•雅安)甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S甲2=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2= [(x1﹣)2+(x2﹣)2…(x n﹣)2].参考答案一.选择题(共20小题)1.C.2.C.3.A.4.D.5.C.6.D.7.C.8.C.9.A.10.C.11.A.12.D.13.A.14.D.15.B.16.B.17.A.18.C.19.A.20.C.二.填空题(共10小题)21..22..23..24.6.25..26.5.27..28..29.3.30..三.解答题(共8小题)31.(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.32.(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,3000×=720,估计这3000人中大约有720人是A型血.33.(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.34.(1)第6名学生命中的个数为5×40%=2,则第6号学生的积分为2分,补全条形统计图如下:(2)这6名学生中,命中次数多于5×50%=2.5次的有2、3、4、5号这4名学生,∴选上命中率高于50%的学生的概率为=;(3)由于前6名学生积分的众数为3分,∴第7号学生的积分为3分或0分.35.(1)290×=10(个),290﹣10=280(个),(280﹣40)÷(2+1)=80(个),280﹣80=200(个).故袋中红球的个数是200个;(2)80÷290=.答:从袋中任取一个球是黑球的概率是.36.(1)6÷12%=50(人),50﹣(3+6+13+12)=16(人).答:一周“主动做家务事”3次的人数是16人;(2)(3+6+13)÷50=22÷50=0.44.答:抽到的学生一周“主动做家务事”不多于2次的概率是0.44;(3)500×=160(人).答:估计全校学生一周“主动做家务事”3次的人数是160人.37.(1)60÷20%=300(人)答:此次抽查的学生数为300人,故答案为:300;(2)C组的人数=300×40%=120人,A组的人数=300﹣100﹣120﹣60=20人,补全条形统计图如图所示,(3)该生当天在校体育活动时间低于1小时的概率是=40%;(4)当天达到国家规定体育活动时间的学生有1200×=720人.故答案为:40%,720人.38.(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=;(2)==8.5(环),= [(7﹣8.5)2×2+(8﹣8.5)2×3+(9﹣8.5)2×6+(10﹣8.5)2]==.∵=,<,∴甲的射击成绩更稳定.24.1 圆的有关性质一.选择题(共20小题)1.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.4.(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°6.(2018•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30° D.35°7.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°8.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120°D.125°9.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°10.(2017•张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30° B.45° C.55° D.60°11.(2017•哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43° B.35° C.34° D.44°12.(2017•潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(2017•黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.114.(2017•乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米15.(2017•金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm16.(2017•泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.817.(2016•黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A. cm B.3cm C.3cm D.6cm18.(2016•牡丹江)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.519.(2016•赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.π C.π D.2π20.(2016•巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°二.填空题(共10小题)21.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.22.(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.23.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.24.(2018•梧州)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.25.(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.26.(2017•雅安)⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.27.(2017•湘西州)如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=28.(2017•常州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC= .29.(2017•湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .30.(2016•安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .三.解答题(共5小题)31.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.32.(2017•牡丹江)如图,在⊙O中, =,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.33.(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.34.(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.35.(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.参考答案一.选择题(共20小题)1.C.2.A.3.A.4.C.5.D.6.D.7.A.8.D.9.D.10.D.11.B.12.D.13.C.14.B.15.C.16.B.17.A.18.C.19.B.20.B.二.填空题(共10小题)21.2或14.22.n23.30,10﹣10,24.81.25.(﹣1,﹣2),26.4≤OP≤5.27.10.28.70°.29.60°30.4﹣.三.解答题(共5小题)31.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.32.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.33.解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.34.(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.35.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.。

【九年级数学试题】人教版九年级数学上册第25章全套测试题(含答案)

人教版九年级数学上册第25章全套测试题(含答案)
251概率(第二时)
◆随堂检测
1.王刚的身高将会长到4米,这个事发生的概率为_____
2.盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是__________
3某班的联欢会上,设有一个摇奖节目,奖品为圆珠笔、软皮本和水果,标在一个转盘的相应区域上(转盘被均匀等分为四个区域,如图)转盘可以自由转动参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得圆珠笔和水果的概率分别为__________
4.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,求小明被选中的概率是多少?小明未被选中的概率又是多少?
◆典例分析
掷一个骰子,观察向上一面的点数,求下列事的概率
(1)点数为偶数;(2)点数大于2且小于5.
分析从大量的等可能事的结果中求任一事发生的概率是计算概率的基本题型之一,解决这类问题的关键是确定所有可能的结果数和事发生的结果数,然后用后者比前者
解掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种这些点数出现的可能性相等.
(1)点数为偶数有3种可能,即点数为2,4,6
∴P(点数为偶数);
(2)点数大于2且小于5有2种可能,即点数为3,4
∴P(点数大于2且小于5)= .
◆下作业
●拓展提高
1.在英语句子“。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.1随机事件与概率25.1 第1课时随机事件知识点⒈在一定条件下可能发生的事件,叫随机事件。

2 在一定条件下,一定发生的事件称为,不可能发生的事件称为,这两类事件都称为确定事件。

3一般地,随机事件发生大是有大小的,不同的随机事件发生的可能性的大小。

一、选择题1.下列事件中,是确定性事件的是()A.明日有雷阵雨B.小明的自行车轮胎被钉子扎坏C.小红买体育彩片D.抛掷一枚正方体骰子,出现点数7点朝上2.下列事件中,属于不确定事件的有()○1太阳从西边升起;○2任意摸一张体育彩票会中奖;○3掷一枚硬币,有国徽的一面朝下;○4小勇长大后成为一名宇航员。

A.○1○2○3B.○1○3○4C.○2○3○4D.○1○2○43.下列成语所描述的事件是必然事件的是()A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.下列说法正确的是()A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一套正在播放《新闻联播》5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数。

下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋中有30个球,每次摸一个,摸一次就一定摸到红球,则红球有()A.15个 B. 20个 C. 29个 D.30个二、填空题7.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____。

8.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性_____。

9.小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中_____的可能性较小。

10.3张飞机票2张火车票分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,则取到_____票的可能性较大。

11.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是_____12.在线段AB上任三点x1、x2、x3,则x2位于x1与x3之间的可能性_____(填写“大于”、“小于”或“等于”)x2位于两端的可能性。

13.明天的太阳从西方升起”这个事件属于事件(用“必然”、“不可能”、“不确定”填空)。

三、解答题14.在一个不透明的口袋中,装着10个大小和外形完全相同的小球,其中有5个红球,3个蓝球,2个黑球,把它们搅匀以后,请问:下列哪些事件是必然事件,哪些是不可能事件,哪些是不确定事件.(1)从口袋中任意取出一个球,它刚好是黑球.(2)从口袋中一次取出3个球,它们恰好全是蓝球.(3)从口袋中一次取出9个球,恰好红,蓝,黑三种颜色全齐.(4)从口袋中一次取出6个球,它们恰好是1个红球,2个蓝球,3个黑球.15.(1)已知:甲篮球队投3分球命中的概率为13,投2分球命中的概率为23,某场篮球比赛在离比赛结束还有1min,时,甲队落后乙队5分,估计在最后的1min,内全部投3分球还有6次机会,如果全部投2分球还有3次机会,请问选择上述哪一种投篮方式,甲队获胜的可能性大?说明理由.(2)现在“校园手机”越来越受到社会的关注,为此某校九年级(1)班随机抽查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了统计图(如图所示,图②表示家长的三种态度的扇形图)1)求这次调查的家长人数,并补全图①;2)求图②表示家长“赞成”的圆心角的度数;3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?25.1 第1课时随机事件一、1D;2C;3C;4B;5D;6D;二、7.随机事件 8.相等 9.判断题 10.飞机11.减少有效分中有受贿裁判评分的可能性12.小于 13、不可能三、14 (1)不确定事件(2)不确定事件(3)必然事件 (4) 不可能事件如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

那么,怎样才能学好数学呢,现介绍几种方法以供参考:一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我****,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何提高解数学题的能力任何学问都包括知识和能力两个方面,在数学方面,能力比具体的知识要重要的多。

当然,我们也不能过分强调能力,而忽视知识的学习,我们应当在学习一定数量知识的同时,还应该学会一些解决问题的能力。

能力是什么,心理学中是这样定义的:能力是指直接影响人的活动效率,使活动顺利完成的个性心理特征。

在数学里,我认为,能力就是解决问题的才智。

一、怎样才能提高自己的解题能力首先是模仿。

解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。

其次是实践。

如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。

再次,要提高自己的解题能力,光靠模仿是不够的,你必须要动脑筋。

例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题,有没有其它的解题途径,我认为这才是最重要的东西。

如果你真正领会了人家的解题思路,那么在此基础上你就有所创新,就能够提高你的解题能力。

二、学习数学应注意培养什么样的能力1运算能力。

2空间想象能力。

3逻辑思维能力。

4将实际问题抽象为数学问题的能力。

5形数结合互相转化的能力。

6观察、实验、比较、猜想、归纳问题的能力。

7研究、探讨问题的能力和创新能力。

三、提高数学解题能力的关键是什么?灵活应用数学思想方法是提高解题能力的关键,我们的先辈数学家们,已经为我们创造出了很多的数学思想方法,我们应该很好地体会它,理解它,并且要灵活地应用它。

对于初中数学主要是以下四类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):1转化思想。

2方程思想。

3形数结合思想。

4函数思想。

5.整体思想6分类讨论思想.7统计思想。

只要我们能够深入地理解上述思想方法,并能灵活地应用到具体的解题实践中,就能极大地提高你的解题能力。

提高你的分类讨论能力分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。

临近中考,将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。

概念不清,导致漏解对所学知识概念不清,领会不够深刻,导致答题不完整。

例:已知(a-3)x>6,求x的取值范围。

分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

例:若y2+(k+2)y+16是完全平方式,求k。

分析:完全平方式中有两种情况:(a?b)2=a2?2ab+b2,而同学们往往容易忽略k+2=-8这一解。

思维固定,导致漏解在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

例:若等腰三解形腰上的高等于腰长的一半、求底角。

分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。

而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

例:若直角三角形三条边分别为3、4、c,求c的值。

分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

中考数学作辅助线规律总结(巧计口诀) 人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

相关文档
最新文档