五个吡嗪缩氨基硫脲过渡金属配合物的合成、结构和荧光性质

合集下载

二-2-苯基吡啶-2-(5-醛苯基)吡啶金属铱(Ⅲ)配合物的合成,晶体结构及光电性质研究

二-2-苯基吡啶-2-(5-醛苯基)吡啶金属铱(Ⅲ)配合物的合成,晶体结构及光电性质研究

二-2-苯基吡啶-2-(5-醛苯基)吡啶金属铱(Ⅲ)配合物的合成,晶体结构及光电性质研究邓阳;黄华容;张焜【摘要】One neutral iridium (Ⅲ)complex Ir (ppy)2 (fppy)(ppy =2-phenylpyridine,fppy =4-(2-pyridinyl)benzaldehyde)was synthesized,and the structure was characterized by single crystal X-ray diffraction analysis as well as EA,MS and NMR.The photophysical property of the complex was studied by UV-visible absorption spectroscopy,fluorescence emission spectroscopy and the fluorescence lifetime both in solid state and solution at room temperature.In addition,the electrochemical property of the complex was studied by cyclic voltammetry.%以4-(2-吡啶基)-苯甲醛(fppy)和2-苯基吡啶(ppy)为配体合成了一个中性金属铱(Ⅲ)配合物 Ir (ppy)2(fppy),通过单晶 X -射线衍射分析法测定了晶体结构,并通过元素分析、质谱、核磁等表征手段对配合物进行了结构表征。

研究了室温下配合物的紫外-可见吸收光谱,荧光发射光谱及寿命等光物理性质,此外还利用循环伏安法对配合物的电化学性质进行了研究。

【期刊名称】《中山大学学报(自然科学版)》【年(卷),期】2016(055)005【总页数】6页(P77-81,102)【关键词】铱(Ⅲ)配合物;合成;荧光;晶体结构【作者】邓阳;黄华容;张焜【作者单位】广东工业大学轻工化工学院,广东广州 510006;广东工业大学轻工化工学院,广东广州 510006;广东工业大学轻工化工学院,广东广州 510006【正文语种】中文【中图分类】O634铱(Ⅲ)配合物具有高的发光量子效率,通过对配体的修饰能够有效调控吸收光谱和发光光谱的范围,良好的稳定性及相对长的激发态寿命等特点,已经成为科学研究的一个热点课题[1]。

有机化学第十五章 杂环化合物

有机化学第十五章 杂环化合物

+
N
N
NO 2
N
N S O 3H
Br
B r2/H 2 S O 4
H+
+
N
N
B r 2 /CCl 4
OH -
Br Br
N
K MnO 4 /H +
CO 2 H
N
CO 2 H
H 2/P t N H
易发生亲电取代和氧化
5
8
N
易发生亲核取代和还原3
N +C3 H I
N
+ N C3 H I N
N
Br
+Br2 NH 2 N
1、亲电取代——困难:发生在β 位
混 酸 P hH室 温 P hN2O
混 酸
N2O
3 0 0 ℃ /1 天
N
N
H2SO4/H+g
220℃
N
N
SO3H
C3H N
H 2SO 4/K N3 O
100℃
C3H
C3H N
N2 O C3H
Br2/HcA Br NH 2 N
N—氧化物 δ+
NH 2 N
δ+
N
N+
吡唑和咪唑的分子聚合和互变异构:
b.p
水溶性
N
188
N
H N 263
N H
11 易溶
N
N
H
H
N
N
二聚体
N HN
N HN
N N
H
多聚体
嘌呤
N
N
N
NH
N
N
H 9—H
NH2
N

希夫碱过渡金属配合物的合成及其荧光性能

希夫碱过渡金属配合物的合成及其荧光性能

A s at i n n Sh ae bt c:A lad o ci bs,N, i( , -iho slya eye 一一hnl ei ie r g f Ⅳ 一 s 3 5dcloai ldhd )0pey nd mn b r c l e a
( 2 ) ad tt nio e l o p xsM ( C , i Z ) w r sn e zd M e u— H L , n s r si m t m l e[ L M= u N , n ] e t se . L r f r i a tn ac e eyh i w eo
本文合成了配体 35二氯水杨醛缩邻苯二胺 ,一
( 2 ) H L与 HL ; 2 M( O )( = C N3 M 1
C ,N 和 z ) u i n 反应 , 成 了 3 合
个 希 夫 碱 过 渡
金 属 配 合 物
是 35二氯水杨醛缩胺类希夫碱在 O E ,- L D中的研 究还鲜有报道 。
S n h ss a d Fl o e c nc r o m a e y t e i n u r s e e Pe f r nc
o a sto ea m p e e t c i s fTr n iin M t lCo lx swih S h f Ba e
DI NG o h a, ZHANG a - o g, F Gu - u Xi o s n AN n— i Ru me
ML 其 结 构 经 ,
UV , H NM R ,
ML M (
iZ) , n
a lr a t1
收稿 日期 : 0 91 —9 2 0 。0 1
基金项 目: 广西科学研究与技术开发计划 资助项 目( 桂科能 0 4 0 3 8 ; 8 20 - ) 广西教育厅科研计划 资助项 目(6 0 3 3 070 ) 作者简介 : 丁国华( 9 9 , , 16 一) 男 汉族 , 山西 大同人 , 副教授 , 主要从事功能有机材料的研究 。 . a : i g @gt eu c E m l d gh l .d .a l n i e

2,6-二乙酰基吡啶缩白氨酸铕配合物的合成及荧光性质

2,6-二乙酰基吡啶缩白氨酸铕配合物的合成及荧光性质

金属离子形成配位键 , 对这类多齿配体与各种金属
W U C n —e o g rn,G —h n ,WANG Jn tn AO Xu s e g i—a g
( o eeo cecs N n n nvr t o eh ooy N n n 10 9 C i ) C lg f ine , aj gU i sy f c nl , aj g20 0 , hn l S i e i T g i a
I ,e m n a a s n e a aayi, n ef oecn rp r f h o pee eea oiv sgt . R) l e t nl i a dt r l n l s a dt u r et o et o ecm lxsw r l et ae e ys hm s h l s p y t s n i d
碱分 子 中亚胺 上 N原 子 、 羧基 上 的 O原 子都 可 以 和
发 现稀 土金 属 Shf碱 配 合 物具 有催 化 活 性 、 物 ci 生 活性 , 可作 为位移 试剂 、 物探针 、 光材料 等 IJ 生 发 4. 由于氨基 酸类 Shf碱与 金 属 离 子形 成 配合 物 ci 后荧 光 强 度 变 化 显 著 , 此 被 应 用 在 D A 荧 光 探 因 N 针、 金属 离子 传感 器等 方 面 , 这方 面 的研究 越来越 活 跃. 而 , 然 国内外对 于氨 基酸 类配 合物 的研 究大 多集 中在 以水 杨醛 为原 料 的基础 上 J .
第3 O卷 第 6期 20 0 8年 1 月 1
南 京 工 业 大 学 学 报 ( 然 科 学 版) 自 J U N LO A J G U I E ST FT C N L G ( a rl c neE io ) O R A FN N I N V R IY O E H O O Y N t a S i c d i N u e tn

5-氟尿嘧啶、邻菲罗啉、过渡金属离子三元配合物的合成与表征

5-氟尿嘧啶、邻菲罗啉、过渡金属离子三元配合物的合成与表征


要: . 5氟尿 嘧啶( .U 、 菲罗 啉与过 渡金 属锰 ( 、 (1) 钴 (I 、 ( 、 ( ) 锌 5F ) 邻 Ⅱ) 铁 1 、 1) 镍 Ⅱ) 铜 1 、 I
( ) 1 在水 和 乙醇 的混合 溶剂 中搅拌 回流 , 合成 了一 系列配 位化合 物 , 通过 可 见. 紫外光谱 , 外 红 光谱 , 光光谱 等手段 对配合 物进行 了表 征 . 荧
第O8年 5月 卷第 2期 27 O
淮 阴 师 范学 院学 报 ( 自然 科学 版 )
J U N LO U 1 / E C E SC L E E( A U A CE C DTO O R A FH AYN T A H R O L G N T R LS IN EE IIN)
毒副作用 。 比较明显 . : 如 心脏毒性 , 胃肠道毒性( 频繁呕吐, 腹泻等) 白细胞减少等;) , 2 在人体中代
谢较 快 , 泄快 , 排 吸收少 . 了维持正 常 的血药浓度 , 人必 须服用 更大 的剂量 , 就导致 了更大 的毒 为 病 也
副作 用 .
因此 , 人们一 直在 寻找一 种疗效 高 、 副作用 低 的 5F 毒 .U衍生 物 .日本 Ysiw 在 5F oh aa z .U的氮原 子上 引 入有机硅 化合物 , ]获得 较好 的抗 肿瘤 活性 . 研究 表 明 , 以抗 癌药 物配体 形 成 的金属 配合 物往 往具 有
v 】7 N 2 o . o. Ma .2 O y O8
5氟 尿 嘧啶 、 菲 罗啉 、 渡金 属 离 子 一 邻 过 三 元 配合 物 的 合成 与表征
赵玲 玲 宛 , 瑜 。
2 11 ; 216 2 11 ) 216 (. 州师范大学 化学化工学院 , 苏 徐州 1徐 江

基于5-甲氧基间苯二甲酸构筑的两个金属配位聚合物:晶体结构、荧光和催化性质

基于5-甲氧基间苯二甲酸构筑的两个金属配位聚合物:晶体结构、荧光和催化性质

基于5-甲氧基间苯二甲酸构筑的两个金属配位聚合物:晶体结构、荧光和催化性质张阳;王键【摘要】Two new 1D cadmium/cobalt-based coordinationpolymers,{[Cd2(CH3O-ip)2(ethanol)2(H2O)4]· 3H2O}n (1)and {[Co2(CH3O-ip)2(dmbpy)(H2O)4]· H2O· C2H3N}n (2) (CH3O-H2ip=5-methoxyisophthalic acid,dmbpy=2,2′-dimethyl -4,4′-bipyridine,C2H3N=acetonitrile),were synthesized in mixed solvent and characterized by IR spectroscopy,elemental analysis,thermogravimetric analysis (TGA),powder X-ray diffraction and single-crystal X-ray diffraction.Both complexes are synthesized using dual linkers (CH3O-H2ip and dmbpy).Complex 1 is a wave-like chain and further connected into 2D network through O-H…O hydrogen bonds,whereas 2 shows a ladder chain and further linked into 3D supramolecular framework by O-H…O,O-H…N and C-H…O hydrogen bo nds.Furthermore,the luminescence property of 1 and the catalytic degradation of methyl orange in a Fenton-like process of 1~2 are also DC:1578934,1;1578935,2.%以5-甲氧基间苯二甲酸(CH3O-H2ip),2,2′-二甲基-4,4′-联吡啶(dmbpy)和四水硝酸镉/六水硝酸钴为原料,在混合溶剂中合成2个一维金属有机配位聚合物,{[Cd2(CH3O-ip)2(ethanol)2(H2O)4]·3H2O}n(1)和{[Co2(CH3O-ip)2(dmbpy)(H2O)4]·H2O ·C2H3N}n(2)(C2H3N=乙腈).通过元素分析、红外光谱、差热分析、X射线粉末衍射和X射线单晶衍射等手段对配合物进行了结构表征.结果显示,化合物1为一维浪形结构,通过O-H…O分子间氢键作用构筑成二维结构;而2为一维梯形结构,通过O-H…O,O-H…N和C-H…O分子间氢键作用构筑成三维结构.常温固态下,考察了配合物1的荧光性质,并考查了化合物1和2对甲基橙的催化降解活性.【期刊名称】《无机化学学报》【年(卷),期】2018(034)003【总页数】8页(P589-596)【关键词】配位聚合物;过渡金属;晶体结构;氢键;荧光性质;催化性质【作者】张阳;王键【作者单位】广东石油化工学院化学工程学院,茂名 525000;广东石油化工学院化学工程学院,茂名 525000【正文语种】中文【中图分类】O614.24+2;O614.81+2In recent years, metal-organic coordination polymers (CPs)have received widespread attention due to their modular assembly,structural diversity and fascinating topologies,chemical versatility,as well as their applications in gas storage and separation[1-2],nonlinearoptics[3],catalysis[4],magnetism[5],luminescence[6-7],drugdelivery[8],sensing[9]and detection[10].During the attainment of CPs,many factors can influence the construction progress,e.g.,metal ions,organic ligands,solvents,pH values,reaction temper-atures[11-13].Among many on-going efforts to develop CPs materials,solvent effect is one of the most significant factors that affect the structures and properties of final products[14].Moreover,most of the studies about the effects of solvents on the resultant structures are obtained by changing the types of the solvents[14-16].As part of an on-going study related to functional CPs,5-methoxyisophthalic acid (CH3O-H2ip)and 2,2′-dimethyl-4,4′-bipyridine (dmbpy)were chosen to afford two new CPs in the mixed solvent.Their structural diversities reveal that the solvent media play important role inthe self-assembly processes.These two CPs are characterized by elementalanalyses,IR spectra,thermogravimetric analyses,powder X-ray diffraction and single-crystal X-ray crystallography.Furthermore,the luminescent property of 1 and catalytic properties of 1~2 were also investigated.1 Experimental1.1 Materials and measurementsAll chemicals were commercially available and used as received without further purification.Elemental analyses for C,H,and N were carried out using a Vario ELⅢElemental Analyzer.Infrared spectra were recorded (4 000~400 cm-1)as KBr disks on a Bruker 1600 FTIRspectrometer.Thermogravimetric analyses(TGA)were performed on a simultaneous SDT thermal analyzer (STA449C,Netzsch)under a flow ofN2a t a heating rate of 10℃·min-1between ambient temperature and 800℃.Powder XRD investigations were carried out on a Bruker AXS D8-Advanced diffractometer at 40 kV and 40 mA with Cu Kα (λ=0.154 06 nm)radiation.The 2θ scan range was from 5°to 40°.Luminescence spectra for crystalline samples were recorded atroom temperatureon an Edinburgh FLS920 phosphorimeter.1.2 Synthesis of 1A mixture of Cd(NO3)2·4H2O (0.092 5 g,0.3 mmol),5-methoxyisophthalic acid (0.058 8 g,0.3 mmol),2,2′-dimethyl-4,4′-bipyridine (0.052 2 g,0.3 mmol),H2O (5 mL)and ethanol (5 mL)were sealed in a 23 mL Teflon reactor and kept under autogenous pressure at 150 C for3days.Colorlesssinglecrystalswereobtained (Yield:53%,based on CH3O-ip)upon cooling the solution to room temperature at 5℃·h-1.Anal.Calcd.for C22H38 O19Cd2 (%):C,31.76;H,4.57.Found:C,30.95;H,4.59.IR (KBr,cm-1):3 402(vs),2 972(w),1 614(m),1 555(vs),1 458(m),1 371(vs),1 346(w),1 309(m),1 139(w),1 060(s),935(s),901(w),786(m),740(w),705(w),652(w),599(w),426(w)(Supporting information).1.3 Synthesis of 2A mixture of Co(NO3)2·6H2O (0.087 3 g,0.3 mmol),5-methoxyisophthalic acid (0.058 8 g,0.3 mmol),2,2′-dimethyl-4,4′-bipyridine (0.052 2 g,0.3 mmol),H2O(5 mL)and acetonitrile (5 mL)were sealed in a 23 mL Teflon reactor and kept under autogenous pressure at 150℃for 3 days.Purple single crystals were obtained(Yield:43%,based on CH3O-ip)upon cooling the solution to room temperature at 5℃·h-1.Anal.Calcd.for C32H37O15N3Co2 (% ):C,46.74;H,4.50;N,5.11.Found (%):C,46.85;H,4.59;N,5.02.IR (KBr,cm-1):3 447(vs),3 126(w),2998(w),1 699(vs),1 602 (s),1 463(s),1 412(s),1 279(vs),1 181(w),1 130(s),1 057(s),1 017(w),908(s),883(m),832(m),759(s),699(s),662 (m),616 (w),559 (m),513 (w),441 (w)(Supporting information).1.4 Crystal structure analysisX-ray diffraction for complexes 1~2 was performed on a Bruker SMART ApexⅡCCD diffractometer operating at 50 kV and 30 mA using Mo Kα radiation (λ=0.071 073 nm)at room temperature.Data collection and reduction were performed using the APEXⅡsoftware[17].Multi-scan absorption corrections were applied to all the data sets usingSADABS[17].The structures were solved by direct methods and refined by least squares on F2using the SHELXTL program package[18].All non-hydrogen atoms were located from Fouriermap directly and refined anisotropically.Hydrogen atoms attached to carbon and oxygen were placed in geometrically idealized positions and refined using a riding model.For 1,the ethanol group (C10 and C11)and the free water molecule (O9)disordered,being split into two sets of positions with occupancy ratio of 0.50.Crystal data,as well as details of data collection and refinement for 1~2 are summarized in Table 1.Selected bond lengths and angles for the complexes are given in Table 2.H-bonding parameters for 1~2 are given in Table 3.CCDC:1578934,1;1578935,2.Table 1 Crystal data and structure refinement information for complexes 1~2aR=∑(||Fo|-|Fc||)/∑|Fo|;bwR=[∑w(Fo2-Fc2)2/∑w(Fo)2]1/plex 1 2 Empirical formula C22H38Cd2O19 C32H37CoN3O15 Formula weight 831.32 821.51 Temperature/K 296(2) 293(2)Crystal system Monoclinic Triclinic Space group P21/c P1 a/nm 0.866 80(14)1.010 24(4)b/nm 1.826 0(3) 1.040 62(4)c/nm 1.025 42(15) 1.192 83(5)α /(°) 69.8150(10)β /(°) 94.985(3) 65.396 0(10)γ /(°)66.658 0(10)V/nm3 1.616 9(4) 1.022 18(7)Z 2 1 Dc/ (g·cm3)1.703 1.335 μ/mm-1 1.392 0.876 F (000) 832 424 GOF 1.335 0.931 Reflection collected,unique 13 515,3 616 8 509,4 614 Rint 0.020 4 0.015 1R1a[I>2σ(I)] R1=0.029 3 R1=0.078 6 wR2b (all data) wR2=0.087 6wR2=0.236 2Table 2 Selected bond distances(nm)a nd angles(°)of 1~2Symmetry codes:i-x,-0.5+y,1.5-z for 1;i-1+x,y,z for 2.1 Cd1-O8 0.228 8(2) Cd1-O7 0.229 2(3) Cd1-O6 0.230 4(2)Cd1-O2 0.239(2) Cd1-O1 0.239 7(2) Cd1-O3i 0.241 1(2)Cd1-O4 0.242 7(2)O7-Cd1-O8 173.32(9) O8-Cd1-O6 95.09(10) O7-Cd1-O6 91.22(10)O8-Cd1-O2 84.26(9) O7-Cd1-O2 92.80(9) O8-Cd1-O3i 87.73(9)O7-Cd1-O3i 86.16(9) O2-Cd1-O3i 87.77(7) O8-Cd1-O4i 90.69(9)O7-Cd1-O4i 87.90(9) O3i-Cd1-O4i 53.96(7)2 Co1-N1 0.234 3(5) Co1-O1 0.240 2(5) Co1-O2 0.240 5(6)Co1-O5i 0.232 7(5) Co1-O6 0.234 8(6)O7-Co1-O5i 84.5(2) O7-Co1-N1 89.8(2) O5-Co1-N1 136.6(2)O7-Co1-O6 169.2(2) O5i-Co1-O6 87.72(19) O5i-Co1-O2 78.98(18)N1-Co1-O2 144.2(2) O6-Co1-O2 85.9(2) O7-Co1-O1 88.3(2)O5i-Co1-O1 130.08(19) O2-Co1-O1 53.81(18)Table 3 Hydrogen bond parameters for 1~2Symmetry codes:ii-x,1-y,2-z;iiix,y,1+z;ivx,0.5-y,0.5+z;v-1+x,0.5-y,0.5+z;vi1-x,-0.5+y,1.5-z;vii1+x,0.5-y,0.5+z;viii-x,1-y,1-z;ix1-x,0.5+y,0.5-z for 1;ii2-x,1-y,z;iii1-x,1-y,-z;iv1-x,2-y,-z;vx,y,1+z;vi-1+x,y,1+z for 2.D-H…A d(D-H)/nm d(H…A)/nm d(D…A)/nm ∠DHA/(°)1 O6-H1W…O3ii 0.080 0.216 0.294 4(6) 170 O6-H2W…O10iii 0.084 0.190 0.272 9(7) 170 O7-H3W…O2iv 0.085 0.1830.267 4(4) 170 O7-H4W…O9v 0.085 0.201 0.279 8(6) 153 O9-H5W…O3vi 0.090 0.194 0.278 3(3) 156 O9-H6W…O5vii 0.110 0.185 0.287 8(6) 154 O10-H7W…O1viii 0.085 0.202 0.285 3(7) 170 O10-H8W…O9ix 0.086 0.213 0.292 3(7) 155 2 O6-H1W…O5ii 0.088 0.2210.271 2(4) 116 O6-H2W…O2iii 0.087 0.192 0.276 3(0) 162 O8-H3W···N2 0.084 0.214 0.294 8(6) 161 O8-H4W…O4 0.083 0.208 0.277 8(0) 141 O7-H5W…O1iv 0.090 0.194 0.278 3(3) 156 O7-H6W…O8 0.118 0.151 0.267 2(8) 165 C5-H5…O5 0.093 0.249 0.280 0(4) 100 C16-H16A…O2v 0.096 0.255 0.336 0(1) 142 C16-H16B…O5vi 0.096 0.2570.333 9(4) 1371.5 Catalysis experimentsThe photocatalytic activity of 1~2 were tested using methyl orange solutions.The degradation reaction was carried out with 150 mL aqueous methyl orange solution (10 mg·L-1)containing 5 mg of sodium persulfate and 50 mg of 1 or 2 as catalyst[19].The mixture was placed and stirred in a 250 mL beaker,which was 15 cm vertically below the visible-light source.The container and the light source were placed inside a black box to prevent visible-light leakage.The experiments were performed at 298 K and the pH value was adjusted to 3 with sulfuric acid (1 mol·L-1).The progressofthe reaction wasestimated by monitoring the absorbance characteristic of methyl orange at 506 nm.Aliquots of the reaction mixture were taken periodically during irradiation,and after filtration,they were analyzed by UV-Vis spectrophotometry.This procedure was repeated in the absence of coordination polymers as a blank experiment,and by using equivalent amounts of cobalt salt (cobalt(Ⅱ)nitrate hexahydrate)and cadmium salt (cadmium (Ⅱ)nitrate tetrahydrate)as catalysts instead of the coordination polymers as control experiment,respectively.2 Results and discussion2.1 Structure descriptionSingle-crystal X-ray structure analysis reveals that 1 crystallizes in theP21/c space group and has a 1D wave-like chain structure.As shown in Fig.1a,the asymmetric unit of 1 contains one Cd(Ⅱ)cation,one CH3O-ip anion,two aqua ligands,one ethanol ligand and two lattice water molecules.The seven-coordinated Cd(Ⅱ)center is surrounded by four carboxylate oxygen atoms from two different CH3O-ip anions,two aqua ligands and one ethanol ligand,to give a distorted pentagonal bipyramid geometry with Cd-O distances,and O-Cd-O bond angles ranging from0.228 8(2)to 0.242 7(2)nm and from 53.96(7)°to 173.32(9)°,respectively,all of which are within the range of those found in other seven-coordinated Cd(Ⅱ)complexes with oxygen donating ligands[20-21].Fig.1 (a)View of the asymmetric unit of 1 with atom labeling and30%thermal ellipsoids;(b)View of the 1D wave-like chain of 1;(c)View of the 2D network of 1 formed by O-H…O hydrogen bondsScheme 1 Coordination modes of CH3O-ip and dmbpy ligands in the structures of 1~2The coordination mode of CH3O-ip ligand in 1 is depicted in Scheme 1,the carboxylate groups adopt the μ2bridging-chelating mode to connect two Cd centers.In this manner,the μ2-CH3O-ip ligands link Cd(Ⅱ)ions to give a wave-like chain with the ethanol molecules pointing alternately up and down (Fig.1b).The adjacent Cd…Cd separation within the chain is 0.967 4 nm,and the angle of successive three cadmium ions is 141.40°.The chains are further extended into a layered structure through O-H…O hydrogen bonds involving the aqua ligand,the free water molecules and carboxylate oxygen atoms of CH3O-ip ligands(Fig.1c,Table 3).Fig.2 (a)View of the asymmetric unit of 2 with atom labeling and30%thermal ellipsoids;(b)View of the 1D ladder chain of 2;(c)View of the 3D supramolecular structure of 2 formed by O-H…O,O-H…N and C-H…O hydrogen bondsComplex 2 crystallizes in the triclinic space group P1 and exhibits a 1D ladder-like infinite chain.The asymmetric unit of 2 includes a Co(Ⅱ)ion,half a dmbpy ligand,one CH3O-ip anion,two aqua ligands,one free water molecule and one acetonitrile molecule(Fig.2a).Each Co(Ⅱ)center is six-coordinated by three carboxylate oxygen atoms from two different CH3O-ip ligands,one nitrogen atom from dmbpy ligand and two aqua ligands,adopting a distorted octahedral geometry with Co-O,Co-Ndistances and O-Co-O,O-Co-N bond angles ranging from 0.230 0(6)nm to 0.240 5(6)nm and from 53.81(18)°to 144.2(2)°,respectively,all of which are within the reasonable range of those reported for other six-coordinated Co(Ⅱ)complexes with oxygen and nitrogen donating ligands[22-23].In the polymeric structure of 2,the CH3O-ip ligand adoptthe μ2bridging mode to connect two Co(Ⅱ)ions,whereas the dmbpy ligand acts as a trans-bidentate bridging mode to link pairs of Co(Ⅱ)ions (Scheme 1:modes Ⅱ and Ⅲ).The CH3O-ip ligands link the Co(Ⅱ)ions to construct an infinite chain with the separation of 1.010 2 nm between two Co(Ⅱ)ions,in which these chains are further connectedinto a ladder-like chain though dmbpy ligands (Fig.2b).Finally,the chains are further extended into a 3D supramolecular structure through O-H…O,O-H…N and C-H…O weak hydrogen bonds involving the aqua ligands,acetonitrile molecules,carboxylate oxygen atoms of CH3O-ip ligands and the free water molecules (Fig.2c,Table 3).2.2 IR spectra and TGAThe IR spectra of 1~2 were recorded as KBr pellets (Fig.S1).In the IR spectra,strong,broad bands at 3 402 cm-1for 1 and 3 447 cm-1for 2 can be assigned to the ν(O-H)stretching vibrations of the water molecules.The features at 1 555 and 1 371 cm-1for 1,1 699 and 1 279 cm-1for 2,are associated with the asymmetric (C-O-C)and symmetric (C-O-C)stretching vibrations.The TG curves of 1~2 are shown in plex 1 shows three weight loss steps.The first corresponding to the removal of three free watermolecules and four aqua ligands is observed from 50 to 120℃(Calcd.15.16%,Obsd.16.03% ).The second corresponding to the removal of two ethanol ligands is observed from 170 to 300 ℃(Calcd.10.87%,Obsd.11.02%).The third weight-loss step occurred above 350℃,which corresponds to the decomposition of the framework structure.Finally,complex 1 was completely degraded into CdO with total loss of 69.31%(Calcd.69.09%).For complex 2,the weight loss in the temperature range of 50~100 ℃ corresponds to the removalofonelattice watermoleculeand one acetonitrile molecule(Calcd.7.18%,Obsd.7.30% ).Then it follows a continuous weight loss from 130~180℃attributed to the release of four aqua ligands(Calcd.8.76%,Obsd.8.90%).The complex begins to decompose when the temperature is raised to 250℃.Fig.3 TGA curves of complexes 1~22.3 Powder X-ray diffraction analysisIn order to check the purity of complexes 1~2,bulk sampleswere measured by powderX-ray diffraction at room temperature.As shown in Fig.4,the peak positions of the experimental patterns are in good agreement with the simulated patterns based on the single-crystal structure,which clearly indicates the good purity of the complex.Fig.4 PXRD patterns of complexes 1 (a)and 2 (b)2.4 Luminescent properties of 1Luminescent properties of coordination polymers with d10metal centers have attracted intense interest because of their potential applications[24-26].Herein,we examined the luminescent property of 1 in the solid state at room temperature.As shown in Fig.5,complex 1 display the maxima emission peaks at 433 nm under the excitation wavelengths of 275 nm.The short wavelength band at 433 nm of 1 are almost same as that of the free CH3O-H2ip ligand (λem=421 nm,λex=220 nm,Fig.S2),which suggests that the emissions of 1 probably originate from ligand centered π-π*transitions[27].Fig.5 Emission spectra for complex 1 and CH3O-H2ip ligand in solid state at room temperature2.5 Catalytic properties of 1~2Scheme 2 Possible reaction mechanismHerein,we tested complexes 1~2 as heterogeneous catalysts to activate persulfate anions and to degrade methyl orange.The possible catalytic mechanism[28]was shown in Scheme 2.The photodegradation activity results of 1~2 are compared with the activity of control blank (i.e.non-catalytic).The progress of the catalysis degradation of methyl orange reaction was estimated by monitoring the absorbance characteristic of methyl orange at 506 nm.As shown in Fig.6,the degradation efficiency was 91.0%for 2 after 150 min,whereas that of 1 was 63.2%after 150 min,in contrast to the control experiments (without coordination polymers and with cobalt(Ⅱ),cadmium(Ⅱ)salts),which are 18.2%,10.4%and7.3%,respectively.The degradation efficiency of 1 is lower than 2,which may be due to their different metal centers and supramolecularnetwork[29].Compared to 1,2 performs better at the beginning,the residualrate of methyl orange was decreased to 10%in the first 50min.Subsequently,the reaction continued slowly and nearly ceased at the end.The activity of 1~2 in the degradation of methyl orange may be due to S2O82-,which can be transformed into sulfate radicals (SO4·-)by catalysis of 1~2,whilst M2+was oxidized into M3+[30](Scheme 2).The Cd (Ⅱ) ion is difficult to oxidize or reduce due to its stabled10configuration[31].Fig.6 Experimental results of the catalytic degradation of methyl orange3 ConclusionsIn conclusion,two transition metals-based coordination polymers has been constructed based on 5-m ethoxyisophthalic acid,2,2′-dimethyl-4,4′-bipyridine and metal salts under mixed solvents conditions and structurally characterized.Both of 1 and 2 show 1D infinite chain structures and further connected into 2D and 3D structures through weak hydrogen bonding interactions,respectively.Furthermore,2 shows higher catalytic activities than 1 for the degradation of methyl orange dye in a Fenton-like process. Supporting information is available at http:// References:[1]Yang X,Xu Q.Cryst.Growth Des.,2017,17:1450-1455[2]Li J,Fu H R,Zhang J,et al.Inorg.Chem.,2015,54:3093-3095[3]Gu Z G,Li D J,Zheng C,et al.Angew.Chem.Int.Ed.,2017,56:6853-6858[4]Ding L G,Yao B J,Jiang W L,et al.Inorg.Chem.,2017,56:2337-2344[5]Wu Y,Li B H,Liu J Q,et mun.,2017,82:24-26[6]Xiong C Y,Wang H J,Liang W B,et al.Chem.Eur.J.,2015,21:9825-9832[7]XIAO Bo-An(肖伯安),CHEN Shui-Sheng(陈水生).ChineseJ.Inorg.Chem.(无机化学学报),2017,33(2):347-353[8]Ma D Y,Li Z,Xiao J X,et al.Inorg.Chem.,2015,54:6719-6726[9]Zhang X,Wang W,Hu Z,et al.Coord.Chem.Rev.,2015,284:206-235[10]Guo H,Zheng Z,Zhang Y,et al.Sens.Actuators B,2017,248:430-436[11]Rao A S,Pal A,Ghosh R,et al.Inorg.Chem.,2009,48:1802-1804[12]Liu L,Huang S P,Yang G D,et al.Cryst.Growth Des.,2010,10:930-936[13]LIU Zhi-Qiang(刘志强),HUANG Yong-Qing(黄永清),SUN Wei-Yin (孙为银),et al.Chinese J.Inorg.Chem.(无机化学学报),2017,33(11):1959-1969[14]Li C P,Du mun.,2011,47:5958-5972[15]Singh M K,Banerjee A.Cryst.Growth Des.,2013,13:2413-2425[16]Zlatogorsky S,Ingleson M J.Dalton Trans.,2012,41:2685-2693[17]APEXⅡSoftware,Ver.6.3.1,Bruker AXS Inc,Madison,Wisconsin,USA,2004.[18]Sheldrick G M.Acta Crystallogr.Sect.A:Found.Crystallogr.,2008,A64:112-122[19]Devi L G,Kumar S G,Reddy K M,et al.J.Hazard.Mater.,2009,35:459-467[20]Li J R,Du M,Bu X H,et al.J.Solid State Chem.,2003,173:20-26[21]Murugesapandian B,Roseky P W.Eur.J.Inorg.Chem.,2011,26:4103-4108[22]Berg N,Taylor S M,Prescimone A,et al.CrystEngComm,2012,14:2732-2738[23]Sultan M,Tahir A A,Mazhar M,et al.New J.Chem.,2012,36:911-917[24]An J,Shade C M,Chengelis-Czegan D A,et al.J.Am.Chem.Soc.,2011,133:1220-1223[25]Gole B,Bar A K,Mukherjee P mun.,2011,47:12137-12139[26]Yang X G,Jia L R,Fang S .Nano-Met.Chem.,2013,43:325-331[27]Wang Y L,Fu J H,Jiang Y L,et al.CrystEngComm,2012,14:7245-7252[28]Liu J M,Lin X,Wei C J,et al.Microchim.Acta,2004,148:267-272[29]Chang H N,Hou S X,Cui G H,etanomet.Polym.Mater.,2017,27:518-527[30]Qin L,Zheng X H,Xiao S L,et al.Trans.Met.Chem.,2013,38:891-897[31]Zhao X X,Hao Z C,Hou S X,etanomet.Polym.Mater.,2017,27:934-940。

过渡金属催化_2_2_2_环加成反应合成吡啶衍生物

2 配合后按照 η 方式排列( 侧面配位) 形成配合物 3 ,
· 612 ·




第 22 卷
[ 20 ] 。 分子内反应来实现区域选择性的控制 ( 图 式 4 )
部分分子间反应是将两 个 π 体 系 联 接 起 来, 构成一 或者一分子腈炔与一分 分子二炔与一分子 腈 反 应, 子炔反应;完全分子 内 反 应 则 是 将 两 分 子 炔 和 一 分 其区域选择性相对于前 子腈联接在同一个 分 子 内, 者更容易控制 。
衍生物过程中也先后被发现 ( 图式 2 ) 。但 对 于 钌 催 Kirchner 化合成吡啶的过程, 其机 理 稍 有 不 同, Yamamoto
[ 16 ]

分别从理论和 实 验 上 研 究 了 钌 催 化 1 ,
6-二炔与腈的环 加 成 反 应, 他们发现催化过程中的 中间体并非钌杂环戊二烯, 而是钌杂双环配合物, 桥 键断裂之后生成吡啶化合物, 其机理如图式 3 所示 。 钌催化剂首 先 与 炔 或 二 炔 反 应 生 成 配 合 物 1 , 随后发生 氧 化 偶 联 反 应 形 成 钌 杂 环 戊 二 烯 配 合 物 2, 这一步是整个催化循环的 决 速 步 骤 。 2 与 底 物 腈
第 22 卷 第 4 期 2010 年 4 月




PROGRESS IN CHEMISTRY
Vol. 22 No. 4 Apr. ,2010
2 + 2 + 2] 过渡金属催化[ 环加成 反应合成吡啶衍生物
王春翔 李新成 徐 粉 万伯顺
*
( 中国科学院大连化学物理研究所 摘 要
大连 116023 )
和实验

【国家自然科学基金】_锌金属配合物_基金支持热词逐年推荐_【万方软件创新助手】_20140802


2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
科研热词 配合物 镉 锌双卟啉 锌 荧光猝灭 荧光 能带结构 稀土 电致发光 热稳定性 烟酸 掺杂 循环伏安特性 希夫碱 尾式卟啉 发光性质 分子开关 光诱导电子转移
推荐指数 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
科研热词 推荐指数 锌配合物 3 荧光性质 3 晶体结构 3 谱学性质 2 镍(ⅱ)配合物 1 锌(ⅱ)配合物 1 钴(ⅱ)配合物 1 金属离子的分布 1 金属模板法 1 金 1 量子化学 1 重金属 1 配合物形成率 1 配合物 1 配位聚合物 1 荧光光谱 1 荧光 1 稀土配合物 1 碳酸丙烯酯 1 电化学性质 1 电化学 1 环氧丙烷 1 沉淀率 1 沉淀物 1 氰化物溶液 1 氢氧化物 1 晶体结,荧光性质 1 抑菌性 1 密度泛函 1 存在形态 1 含铜金矿 1 合成与表征 1 双金属氰化物 1 共聚反应 1 二甲基二硫代氨基甲酸 1 二氧化碳 1 π 共轭骨架 1 salen型化合物 1 salen-卟啉型配合物 1 fluorescence spectrum 1 coordination polymer 1 antimicrobial activity 1 1,1′-(1,4-丁二基)双咪唑 1 1,1′-(1,4-butanediyl)bis(imidazole) 1

杂环化合物席夫碱及其配合物的研究进展

杂环化合物席夫碱及其配合物的研究进展王松梅;刘峥;张小鸽【摘要】概述了杂环化合物席夫碱及其配合物的研究现状,重点介绍了杂环化合物席夫碱及其配合物的合成方法及在生物医药领域中的应用,并对其发展趋势进行了展望.【期刊名称】《化学与生物工程》【年(卷),期】2010(027)003【总页数】5页(P13-17)【关键词】杂环化合物;席夫碱;配合物;合成;应用【作者】王松梅;刘峥;张小鸽【作者单位】桂林理工大学化学与生物工程学院,广西,桂林,541004;桂林理工大学化学与生物工程学院,广西,桂林,541004;桂林理工大学化学与生物工程学院,广西,桂林,541004【正文语种】中文【中图分类】O626在配位化学中,席夫碱是一类非常重要的配体,其合成相对容易,能灵活地选择各种胺基及带有羰基的醛或酮反应得到。

改变连接的取代基,便可开拓出许多从链状到环合、从单齿到多齿、性能迥异、结构多变的席夫碱配体。

如果杂环化合物席夫碱基团中含有N、O、S、P等给电子基团,势必导致配合物结构的多样性,使其应用更为广泛。

迄今为止,国内外学者仍在不断开展该领域的研究工作,特别是在席夫碱的合成、结构与应用等方面不断有引人注目的进展。

1 杂环化合物席夫碱及配合物的研究现状1.1 含硫杂环化合物席夫碱及配合物的研究现状Halbach等[1]用2-(硫基)苯甲醛和苯胺合成了一系列含硫、氮的钌席夫碱金属配合物。

经测试发现,所有钌配合物均不溶于水,略溶于乙醇。

并通过红外光谱、核磁共振谱、紫外可见光谱和电化学测试技术等手段进行了表征。

经实验证实,新的药物设计和研究中用钌代替铂大大减弱了对人体的毒性。

周双生等[2]合成了由1,4-二(2′-甲醛)苯基-1,4-二氧杂丁烷(L1)和邻氨基苯硫酚(L2)缩合的含硫席夫碱配体及其与Ni(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)和Hg(Ⅱ)的配合物。

通过对这几种化合物物理性质的研究,发现这几个化合物在室温下对光、空气稳定,不溶于水、氯仿、乙腈,易溶于DMF、DMSO。

《具有抗肿瘤活性的5-(1-吡唑)烟酸的镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配位聚合物的结构构筑》

《具有抗肿瘤活性的5-(1-吡唑)烟酸的镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配位聚合物的结构构筑》一、引言近年来,配位聚合物因其独特的结构特性和潜在的应用价值,在材料科学、生物医学和药物研发等领域引起了广泛关注。

其中,具有抗肿瘤活性的金属配位聚合物更是成为了研究的热点。

本文将重点探讨一种具有抗肿瘤活性的5-(1-吡唑)烟酸的镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配位聚合物的结构构筑,探讨其潜在的药理活性和应用前景。

二、5-(1-吡唑)烟酸配体的合成与表征5-(1-吡唑)烟酸作为一种重要的有机配体,具有较好的配位能力和稳定性。

本文中,首先对5-(1-吡唑)烟酸进行合成与纯化,并采用多种现代分析手段(如红外光谱、核磁共振等)对其结构进行表征。

结果表明,该配体具有较高的纯度和良好的配位性能,为后续的配位聚合物的合成提供了基础。

三、镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配位聚合物的合成与结构分析以5-(1-吡唑)烟酸为配体,与镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)等金属离子进行配位反应,成功合成了一系列金属配位聚合物。

通过X射线单晶衍射、元素分析等手段对合成得到的配位聚合物进行结构分析。

结果表明,这些配位聚合物具有独特的空间结构和化学组成,为后续的生物活性研究提供了可能。

四、抗肿瘤活性的研究本部分重点探讨了合成的镉(Ⅱ)、镍(Ⅱ)、钴(Ⅱ)配位聚合物的抗肿瘤活性。

通过细胞毒性实验、细胞增殖实验等手段,对配位聚合物的生物活性进行评价。

结果表明,这些配位聚合物在体外对多种肿瘤细胞具有显著的抑制作用,且具有一定的剂量依赖性。

这为进一步开发具有抗肿瘤活性的金属配位聚合物药物提供了重要的理论依据。

五、结构与活性关系的研究本部分探讨了配位聚合物的结构与其抗肿瘤活性之间的关系。

通过对不同金属离子、配体结构等因素对配位聚合物结构的影响进行分析,进一步探讨了结构与活性之间的关系。

结果表明,配位聚合物的结构对其抗肿瘤活性具有重要影响。

因此,在设计和开发新型的金属配位聚合物药物时,需充分考虑其结构特点,以实现最佳的药理活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第35 5期2019 5 月无机化 学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

Vol.35 No.5

901-909

五个吡嗪缩氨基硫脲过渡金属配合物的合成、结构和荧光性质高亮亮1黄山秀* ,&康瑞芳1代耿耿1吴伟娜1王元1陈忠!,2 河南理工大学化学化工学院,河南省煤炭绿色转化重点实验室,焦作454000- (2江西科技师范大学材料与机电学院,南昌330013)

摘要:合成并通过单晶衍射、元素分析及红外光谱表征了配合物[NiL!] (l),[Zn(HL)2](NO3)2 (2),[Cd(HL)2](NO3)2 (3),[Cu2L2(NO3)2] (4) 和[Cu2(L)2(S〇4)'4CH3OH (5)的结构(HL为2-乙酰-3-甲基吡嗪-缩!-乙基氨基硫脲)。单晶衍射结果表明,配合物1中,N0)离子中 心与2个脱氢的缩氨基硫脲配中的NS 配位,形成 的八面体配构。配合物2和3中,中心Zd)和Cd)离子与配合物1中N0)离子配构 ,缩氨基硫脲为 中配体。而配合物4和5中均存在双核的CG2S2中心,每个Cu(n)均采取 的四方配位构, 的外 配点分 单配位的 和内-联的硫 。外,光光谱表明配合物1~5与DNA的 配。

关键词:晶体结构;荧光;吡嗪;缩氨基硫脲;过渡金属配合物中图分类号:O614.81+3; O614.24+1; O614.24+1; O614.121 文献标识码:A 文章编号:1001-4861(2019)05-0901-09

DOI:

10.11862/CJIC.2019.065

Crystal Structures and Fluorescence Properties of Five Transition Metal Complexes with Pyrazine Thiosemicarbazone

GAO Liang-Liang1 HUANG Shan-Xiu*,1 KANG Rui-Fang1 DAI Geng-Geng1 WU Wei-Na1 WANG Yuan1 CHEN Zhong*,2(^College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, Henan 454000, China)(^School of Materials and Mechanical and Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China)

Abstract: Five transition metal complexes,[NiL2] (1),[Zn(HL)2](NO.)2 (2),[Cd(HL)2](NO.)2 (3),[Cu2L2(NO.)2] (4)

and [Cu2(L)2(SO4)].4CH3OH (5) based on HL (HL=3-methyl-2-acetdlpyrazine N(4)-ethylthiosemicarbazone) have been synthesized and structurally determined by single-crystal X-ray diffraction, elemental analysis and IR spectroscopy. X-ray diffraction analysis results show that the Ni® ion in complex 1 with a distorted octahedron geometry is surrounded by two neutral thiosemicarbazone (TSC) ligand with N2S donor set. On the contrary,the ligand TSC is deprotonated in the complexes 2 and 3,although the Zn (!) and Cd (!) ions possess similar coordination geometry as that of Ni〇 in complex 1. The dimeric Cu2S2 cores are found in complexes 4 and 5, and each of the Cu ® adopted a distorted square pyramid coordination geometry. The outer axial sites are occupied by two monodentate NO.g and a y!2-SO42_ in complexes 4 and 5, respectively. In addition,the fluorescence spectra indicate that the interactions of complexes with DNA are stronger than that of ligand HL. CCDC: 1434105, HL; 1434106, 1; 1434107, 2; 1434108, 3; 1434109, 4; 1434110, 5.

Keywords:

crystal structure; fluorescence; pyrazine; thiosemicarbazone; transition metal complex

收稿日期:2018-12-01。收修改稿日期:2019-01-02。国家自然科学基金(No.21001040),河南省自然科学基金(No.182300410183,162300410011),江西省自然科学基金(No.20181BAB206011), 河南省教育厅高等学校重点科研基金(No.19A150001),江西省教育厅科学技术研究项目(No.GJJ170665),河南理工大学校内基金 (No.T2018-3,J2015-4)和江西科技师范大学校内基金(No.2015QNBJRC006)资助。

*通N联系人。E-mail: 953854991@qq.com,chenzhonglzu@hotmail.com902无机化学学报第35卷In the past few decades, thiosemicarbazones (TSCs) and their metal complexes have been brought to focus for their biological and pharmaceutical properties [1]. As one of the most promising systems, the transition metal complexes of TSCs derived from 2- acylpyridine/2-acylpyrazine have been extensively investigated as potential anticancer agents[2-8]. It has been demonstrated that the biological activities of TSCs-metals complexes depend on not only the metal centers but also the structures of the ligands[9-12]. Moreover, to the best of our knowledge, the investi­gations on the transition metal complexes of TSCs derived from substituted 2-acetylpyrazine are relatively scarce[13]. Herein, three mononuclear and two binuclear transition metal complexes of the TSC ligand (HL, Scheme 1) derived from 3-methyl-2-acetylpyrazine and !(4)-ethylthiosemicarbazide were synthesized in this work. In addition, DNA-binding properties of the six compounds were discussed in detail.1 Experimental1.1 Materials and measurementsSolvents and starting materials for synthesis were purchased commercially and used as received. Elemental analysis was carried out on an Elemental Vario EL analyzer. The IS spectra (! =4 000 〜400 cm-1) were determined by KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer. AH NMR spectra of HL was acquired with Bruker AV400 NMS instrument in CDCl3 solution with TMS as internal standard. The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer. The interactions between six compounds and ct-DNA are measured using literature method [14] via emission spectra on a Varian CARY Eclipse spectrophotometer with the pass width of emission and excitation being 5 nm.1.2 Preparations of the ligand and complexes 1〜5As shown in Scheme 1, a mixture of 3-methyl-2-acetylpyrazine (1.36 g, 10 mmol) and !(4)-ethylthio- semicarbazide (1.20 g, 10 mmol) in ethanol (30 mL) were stirred for 4 h at room temperature. The white precipitates were filtered and washed three times by cold ethanol. Yield: 1.66 g (70%). Elemental analysis Calcd. for Ck)H15N5S(%)c Cc 50.61; Hc 6.37; Nc 29.51. Found(%): C: 50.47; H: 6.52; N: 29.44. 1H NMR (400 MHz, CDCl3): S 8.77 (1H) / 8.52 (1H) for Ar-H, 8.46〜 8.47 (1H, d, NH)!7.44 (1H, s, NH)!3.73〜3.80 (2H, m, CH2), 2.83 (3H, s, CH3), 2.40 (3H, s, CH3), 1.28〜1.32 (3H, t, CH3-CH2). FT-IR (KBr, cm-1): !n=c 1 608, !n=c (pyrazine) 1 553, !S=C 813. Suitable crystals for X-ray diffraction measurement were obtained by recrystalli­zation of HL from methanol solution.Complexes 1 〜5 were synthesized by reacting HL (0.5 mmol) with Ni(OAc)2, Zn(N〇3)2, Cd(N〇3)2, Cu(N03)2 and CuS04 (molar ratio of ligand to metal=1" 1) in methanol (20 mL) solution at room temperature, respectively. The crystals suitable for X-ray diffraction analysis were generated by evaporating the correspon­ding reaction solutions at room temperature.1: Brown blocks. Yield: 52%. Anal. Calcd. for

相关文档
最新文档