信号与系统期末考试试题有答案的
数字信号处理期末考试试题以及参考答案.doc

2020/3/272009-2010 学年第二学期通信工程专业《数字信号处理》(课程)参考答案及评分标准一、 选择题 (每空 1 分,共 20 分)1.序列 x( n) cos n sin n 的周期为( A )。
46A . 24B . 2C . 8D.不是周期的2.有一连续信号 x a (t)cos(40 t) ,用采样间隔 T 0.02s 对 x a (t) 进行采样,则采样所得的时域离散信号 x(n) 的周期为( C )A . 20B . 2C . 5D.不是周期的3.某线性移不变离散系统的单位抽样响应为h(n) 3n u( n) ,该系统是( B )系统。
A .因果稳定B .因果不稳定C .非因果稳定D.非因果不稳定4.已知采样信号的采样频率为f s ,采样周期为 T s ,采样信号的频谱是原模拟信号频谱的周期函数,周期为( A ),折叠频率为( C )。
A . f sB . T sC . f s / 2D. f s / 45.以下关于序列的傅里叶变换X ( e j ) 说法中,正确的是(B )。
A . X ( eB . X ( eC . X (eD . X (e jjjj) 关于是周期的,周期为) 关于是周期的,周期为 2) 关于是非周期的) 关于可能是周期的也可能是非周期的6.已知序列 x(n) 2 (n 1)(n)(n 1) ,则jX (e )的值为()。
C2020/3/27 A. 0 B . 1C. 2 D . 3N 17.某序列的 DFT表达式为X (k ) x(n)W M nk,由此可看出,该序列的时域长度是(A),变换后数字域n 0上相邻两个频率样点之间的间隔(C)。
A.N B . MC.2 /M D . 2 / N8.设实连续信号x(t)中含有频率40 Hz的余弦信号,现用 f s 120 Hz 的采样频率对其进行采样,并利用 N 1024 点DFT分析信号的频谱,得到频谱的谱峰出现在第(B)条谱线附近。
信号与系统期末考试复习资料

第一章绪论1、选择题1.1、f(5—2t)是如下运算的结果 CA、f(-2t)右移5B、f(-2t)左移5C、f(-2t)右移D、f(-2t)左移1.2、f(t0-a t)是如下运算的结果 C .A、f(—a t)右移t0;B、f(—a t)左移t0;C、f(—a t)右移;D、f(—a t)左移1。
3、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 B 。
A、线性时不变系统;B、线性时变系统;C、非线性时不变系统;D、非线性时变系统1.4、已知系统的激励e(t)与响应r(t)的关系为: 则该系统为 C 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
5、已知系统的激励e(t)与响应r(t)的关系为:则该系统为B 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
6、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 BA、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1.7。
信号的周期为 C 。
A、B、C、D、1。
8、信号的周期为: B 。
A、B、C、D、1.9、等于 B 。
A。
0 B.-1 C.2 D。
-21。
10、若是己录制声音的磁带,则下列表述错误的是:BA. 表示将此磁带倒转播放产生的信号B。
表示将此磁带放音速度降低一半播放C. 表示将此磁带延迟时间播放D. 表示将磁带的音量放大一倍播放1.11。
AA.B。
C. D。
1。
12.信号的周期为 B . A B C D1.13.如果a〉0,b>0,则f(b—a t)是如下运算的结果 C 。
A f(-a t)右移bB f(-a t)左移bC f(—a t)右移b/aD f(-a t)左移b/a1.14.线性时不变系统的响应,下列说法错误的是 C 。
A 零状态响应是线性时不变的B 零输入响应是线性时不变的C全响应是线性时不变的 D 强迫响应是线性时不变的2、填空题与判断题2。
信号与系统期末试卷2006-2007及答案

南昌大学2006~2007学年第二学期期末考试试卷试卷编号: 12026 ( A)卷 课程编号: H6102005 课程名称: 信号与系统 考试形式: 闭卷 适用班级:05级电子、通信、中兴 姓名: 学号: 班级: 学院: 信息工程学院 专业: 考试日期:题号 一 二 三 四 五 六 七 八 九 十 总分 累分人 签名题分 18 21 13 12 12 12 12 100 得分一、单项选择题(每小题3分,共18分)得分 评阅人1。
序列[]()cos(2)(5)2n f n u n u n π=---的正确图形: ( )2.周期性非正弦连续时间信号的频谱,其特点为 ( ) 。
(A) 频谱是连续的,收敛的(B) 频谱是离散的,谐波的,周期的(C) 频谱是离散的,谐波的,收敛的(D) 频谱是连续的,周期的3.若)()(21t u e t f t -=,),()(2t u t f =则)(*)()(21t f t f t f =的拉氏变换为( )A .)211(21+-s sB 。
)211(21++-s sC 。
)211(21++s s D. )211(41++-s s6 下图所示的函数用阶跃函数表示:_______________________________7 如下图所示:信号()f t 的傅立叶变换为: ()()()F jw R w jX w =+则信号()y t 的傅立叶变化为:_______________三:简答题 (第一题7分第二题6)总分(13分)得分 评阅人1已知某双边序列的Z 变换为21()1092F z z z =++求该序列的时域表达式()f k 。
(7分)第11 页共11页。
信号系统期末考试

常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库01试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、信号)(t f 波形如右图所示,则其表达式为 B ;A )]1()1([+--t u t u tB )]1()1([--+t u t u tC )]1()1([++-t u t u tD )]1()1([/1+--t u t u t2、下列说法错误的是 B ;A 系统的零状态响应包括自由响应和强迫响应两部分;B 若系统初始状态为零,则系统的零状态响应就是系统的强迫响应;C 零状态响应与系统起始状态无关,而由系统的激励信号产生;D 零输入响应与系统激励无关,而由系统的起始状态产生;3、已知()f t 的频谱函数为()F j ω,则()cos c f t t ω的频谱函数 为 A ;A[])()(21c c j j F j j F ωωωω-++ B [])()(21c c j j F j j F ωωωω--+ C [])()(21c c j j F j j F ωωωω+-- D [])()(41c c j j F j j F ωωωω--+4、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的单边..拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sF C. )0()(-+f s sF D. ⎰-∞-+0)(1)(ττd f ss sF5、已知1()f k 的Z 变换为1()F z ,2()f k 的Z 变换为2()F z ,则12()*()f k f k 的Z 变换结果为 C ;A 12()*()F z F zB 121()*()2F z F z π C 12()()F z F z D 121()()2F z F z π二、填空题15分,每题3分1、所谓线性系统是指其具有_________齐次性_______和___________ 叠加性____;2、积分(3)t t e dt δ∞--∞+⎰=______3e ____________;3、频谱函数)2()2()(++-=ωδωδωj F 的傅立叶逆变换)(t f 为t 2cos 1π;4、已知信号的最高频率为f ,要抽样后的信号能完全恢复原信号,则最大抽样间隔为 1/2f ;5、函数)(2cos t tu 的拉普拉斯变换为_____24ss +;三、计算卷积14分,每题7分1)()(2t u e t u e t t --*⎰⎰------==*tttt ttt u d eet u d eet u et u e 020)(22)()()()(τττττ4分)()()()1(22t u e e t u e e t t t t ----=-=3分2已知两个有限序列}3,2,1{)(-=k x ,}1,1,1,1{)(-=k h ,求)()(k h k x *;利用就地相乘法方法4分,结果2分1 1 1 1 × 123 = 3 3 3 3 2 2 2 2 1 1 1 1=1 3 6 6 5 3其中,k =0时的值为11分四、试判断系统)()(2t e t r =是否为线性的,时不变的,因果的 并证明之;9分 解:令)()]([)(2t e t e T t r ==,其中][⋅T 代表系统函数;)]([)(11t e T t r =,)]([)(22t e T t r =那么2221122112222112211)]()([)]()([)()()()(t e C t e C t e C t e C T t e C t e C t r C t r C +=+≠+=+ ∴系统是非线性的; 3分)]([)()-(0020t t e T t t e t t r -=-= ,∴系统是时不变的;3分由于)()(2t e t r =可知,系统输出只与当前的输入值有关,因而系统是因果的;五、已知)(t f 的双边拉普拉斯变换为)(s F ,试证明⎰∞-td f ττ)(的双边拉氏变换为s s F /)(;6分 证明:[])(t f L 代表)(t f 的拉普拉斯变换;⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t )(=)](*)([t u t f L 3分 ⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t)(=[]s s F s s F t u L t f L /)(/1)()]([)(=•=• 3分六、已知矩形脉冲信号)(t f 如右图所示, (1) 写出)(t f 的时域表达式; (2) 求)(t f 的频谱函数; (3) 画出)(t f 频谱图;12分 解:1)21()21()(--+=t u t u t f 3分2)(t f 中1=A ,1=τ1分⎪⎭⎫⎝⎛↔=2)()(ωτττSa A t g t f 4分-1/21/20t所以,)2()(ωωSa j F =1分34分其中,E =1,1=τ七、描述某系统的微分方程为)()(2)(t f t y t y =+',求输入)()(t u e t f t -=时系统的响应;14分解:取傅氏变换,有)()(2)(ωωωωj F j Y j Y j =+2分21)()()(+==ωωωωj j F j Y j H 2分输入信号11)()()(+=↔=-ωωεj j F t e t f t 3分 故:1111)1)(2(1)()()(+-+=++==ωωωωωωωj j j j j F j H j Y 4分 取反变换)()()(2t e e t y t t ε---=3分八、已知线性时不变系统的差分方程为()()()n u n y n y 512=-+ ,()11=-y ,求系统的全响应;15分 解:202-==+r r齐次解()()nh C n y 21-=3分特解()()(常数)时全为 5 05≥=n n u n x ()C n y p =∴)0(52≥=+n C C35=∴C 3分 全解()()()()3521+-=+=np h C n y n y n y 2分()迭代出由11=-y 3)1(25)0( 0=--==y y n 3分()(),得代入 解3521+-=nC n y()35301+==C y341=∴C 2分 ()()035234≥+-=∴n n y n 2分常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库02试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、函数)(t f 的波形如下图所示,则)(t f 的一次积分的波形为A ;A B C D2、连续周期信号的频谱具有 D ;A 连续性、周期性B 连续性、收敛性C 离散性、周期性D 离散性、收敛性3、已知)()(ωF t f ↔,则)24(t f -的频谱函数为 A ; A ωω2)2(21j e F -- B ωωj e F --)2(21 C ωω2)2(21j e F - D ωω2)2(21j e F ---4、拉普拉斯变换性质中,卷积定理的形式正确的是 A ;A )()()()(2121s F s F t f t f ↔*B )()(2)()(2121s F s jF t f t f *↔*πC )()(21)()(2121s F s F jt f t f π↔* D )()(2)()(2121s F s jF t f t f *↔π5、序列)(])1(1[21k u k -+的Z 变换为 B ;A 221z z +B 221z z -C 21z z +D 21z z -二、填空题15分,每题3分1、系统的全响应可分解为 零状态响应 和零输入响应两部分响应之和,又可以分解为 自由响应和强迫响应两部分响应之和; 2、积分⎰+∞∞-⋅dt t tt)(22sin δ等于 4 ;3、频谱结构中,当脉宽减小时,信号的频宽____增大 _;4、信号)()1()(t u e t f t α--=的象函数为_________()as s a +;5、12()2F z z z --=+对应的原始时间序列为 (1)2(2)k k δδ-+- 三、已知信号ft=)]23cos(31)22cos(21)2[cos(2111πωπωπωπ-+-+-t t ,画出ft 的单边、双边幅度频谱图和相位频谱图;12分解:单边谱:每图3分 双边谱:每图3分111四、设)()(ωj F t f ↔,求下列各式的频谱函数;15分,每题5分 1)3()3(t f t -- 解:由展缩特性)31(31)3(ωj F t f -↔-2分由频域微分特性)31(31)]31(31[)3(ωωωωj F d d j j F d d jt tf -=-↔-2分 因此)31()31(31)3(3)3()3()3(ωωωj F j F d d j t f t tf t f t ---↔---=--1分2dtt df )42(+-解:由展缩和时移特性,得ωωj e j F t f 2)21(21)42(--↔+-3分 再根据时域微分特性ωωωj e j F j t f dt d 2)21(21)42(--↔+-2分 3t j e t f 2)23(-- 解:由展缩和时移特性,得ωωj e j F t f 32)31(31)23(-↔-3分再根据频移特性)2(322)]2(31[31)23(+--+↔-ωωj tj e j F et f 2分 下方程和非零起始条件表示的连续时间因果LTI 系统,⎪⎩⎪⎨⎧==+=++--5)0(',2)0()(52)(4522y y t f dtdft y dt dy dt y d 五.已知输入)()(2t u e t f t-=时,试用拉普拉斯变换的方法求系统的零状态响应)(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t ;15分 解:方程两边取拉氏变换:)(455245)0(5)0(')0()()()(22s F s s s s s y y sy s Y s Y s Y zi zs ⋅++++++++=+=---3分 455221459222+++⋅+++++=s s s s s s s 43/713/134592)(2+-+=+++=s s s s s s Y zi 2分 )()37313()(4t u e e t y t t zi ---=3分42/122/111459221)(2+-+-+=+++⋅+=s s s s s s s s Y zs 3分 )()2121()(42t u e e e t y tt t zi -----=2分 )()61721316()()()(42t u e e e t y t y t y t t t zi zs -----=+=2分六、有一因果离散时间LTI 系统,激励为)()21()(1n u n f n =时,全响应为)()21()(2)(1t u n u n y n n -=;起始状态不变,激励为)()21(2)(2n u n f n =时,其全响应为)()21(2)(23)(2n u n u n y n n -⋅⋅=,求:1系统的零输入响应,2激励为)()21(5.0)(3n u n f n ⋅=时的完全响应起始状态保持不变;14分 解:设相同初始条件下,零输入响应分量)(n y zi ,则 )()()(11n y n y n y zi f +=2分 由线性关系)()(2)()()(122n y n y n y n y n y zi f zi f +=+=3分解得:)()21()(22)(1n u n u n y n n f -⋅=2分因此)(2)()()(11n u n y n y n y n f zi -=-=2分所以)()(5.0)()()(133n y n y n y n y n y zi f zi f +=+=3分)()21(21)(3n u n y n⋅-=2分 七、已知系统框图如下,求该系统的单位样值响应;14分解:可得()()()()()261523---+--=n y n y n x n x n y即()()()()()232615--=-+--n x n x n y n y n y 4分 求得齐次解n n C C 2321+2分假定差分方程式右端只有xn 项起作用,不考虑3xn-2项作用,此时系统单位样值响应为)(1n h ; 由1)0(1=h ,0)1(1=-h 可得⎪⎩⎪⎨⎧+=+=2121213101C C C C解得31=C ,22-=C())(23)(111n u n h n n ++-=4分当-3xn-2项起作用时,由线性时不变特性 ())2(233)(112---=--n u n h n n 2分)2()23(3)()23()()()(111121----=+=--++n u n u n h n h n h n n n n 2分也可通过Z 变换得到常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库03试题总分: 100 分 考试时限:120 分钟一、填空题本大题共10小题,每小题2分,共20分;不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;1、对于连续的线性系统,若输入为)(1t f 时的响应为)(1t y ,输入为)(2t f 时的响应为)(2t y ,则对于任意常数1a 和2a , 输入为)()(2211t f a t f a +时的响应为______)()(2211t y a t y a +2、某连续系统的输入信号为f t,冲激响应为h t,则其零状态响应为____)(*)(t h t f3、一线性时不变连续时间系统是稳定系统的充分且必要条件是系统函数的极点位于S 平面的 左半平面 ;4、=--)(*)(2τδt t u e t )()(2ττ---t u e t5、()dt t e t 12-⎰+∞∞--δ= e -2 ; 6、已知 ft 的傅里叶变换为Fj ω, 则f2t-3的傅里叶变换为 )2(2123ωωj F e j - ; 7、已知 651)(2+++=s s s s F ,则=+)0(f 1 ; =∞)(f 0 ;8、、若描述某线性时不变连续系统的微分方程为)(3)()(2)(2)(t f t f t y t y t y +'=+'+'',则该系统的系统函数Hs=__223)(2+++=s s s s H ___________; 9、信号)(n u a n 的z 变换为_____az z- ________;10、已知信号的最高频率为m f ,要使抽样后的信号能完全恢复原信号,则最大的抽样间隔为mf 21 二、选择题本大题共10小题,每小题2分,共20分;在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内;1、假如周期矩形脉冲信号的周期为T ,脉冲宽度为τ,高度为A ,下列关于对周期矩形脉冲信号的频谱叙述不正确的是 B ;A. 当T 不变,将τ减小时,频谱的幅度将减小B. 当T 不变,将τ减小时,相邻谱线的间隔将变密C. 当T 不变,将τ减小时,频谱包络线过零点的频率将增高D. 当τ不变,将T 增大到∞时,频谱将由离散谱变为连续谱 2、题2图中信号)(t f 的表达式是 A ;A. )1()]1()([-+--t u t u t u tB. )]1()([--t u t u tC. )]1()()[1(---t u t u tD. )]2()([--t u t u t3、已知)(t f 的波形如题3a 图所示,则)22(--t f 为图3b 图中的的波形为 A ;4、积分⎰∞∞--+dt t t )2()1(2δ的值为 D ;A.1B.3C.4D.55、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sFC. )0()(-+f s sFD. ⎰-∞-+0)(1)(ττd f s s sF6、周期信号)(t f 如题6图所示,其三角形式傅里叶级数的特点是 B ;A. 含余弦项的偶次谐波且含直流分量B. 含余弦项的奇次谐波且无直流分量C. 含正弦项的奇次谐波且无直流分量D. 含正弦项的偶次谐波且含直流分量7、已知dtt d t f )()(δ=,则其频谱)(ωj F 等于 C ; A.ωj 1 B.)(1ωπδω+jC. ωjD.)(21ωπδω+j 8、题8图a 中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态其初始状态分别为)0(-L i 和)0(-C u ,请在题8图b 中选出该电路的s 域模型为 B ;_题8图(a))(t u c b-L 1题8图(b)sc -A.-L 1sc -B.-L 1sc -C.-L 1sc -D.9、已知某离散序列,其它, , ⎩⎨⎧=≤=n N n n f 0||1)(该序列还可以表述为 C ; A. )()()(N n u N n u n f --+= B. )()()(N n u N n u n f ---+-= C. )1()()(---+=N n u N n u n f D. )1()()(----+-=N n u N n u n f 10、离散信号fn 是指 BA .n 的取值是连续的,而fn 的取值是任意的信号B .n 的取值是离散的,而fn 的取值是任意的信号C .n 的取值是连续的,而fn 的取值是连续的信号D .n 的取值是连续的,而fn 的取值是离散的信 三、计算题本题共16分1已知 6116332)(232+++++=s s s s s s F ,试求其拉氏逆变换ft ;8分解:1找极点())3)(2)(1(3322+++++=s s s s s s F 2分2展成部分分式 ()321321+++++=s k s ks k s F 2分 362511)( +++-++=s s s s F 所以 2分()[]1e αs t u L t +=-α根据 ()0e 6e 5e )(:32≥+-=---t t f tt t 得 2分2()。
武汉理工大学08级信号与系统期末试卷——武汉理工03级09级期末试卷(均有答案)资料文档

(1 分) (1 分) (1 分)
yzs
t
1 3
e2t
2 3
e3t
t
(2 分)
(4) 原点处有一单阶级点,所以系统临界稳定。
(5 分)
十一、解:(1)系统差分方程的表示式 yk 0.5yk 1 xk
(2)对差分方程两边取 z 变换并利用位移性质,得
Y z X z 0.5z1Y z
第 2 页,共 7 页
武汉理工大学教务处
试题标准答案及评分标准用纸
课程名称 信号与系统
信息工程学院 08 级
一、
f t F j
(A 卷)
f
t 4
4F
j
4
(1 分)
f
t 4
2
4F
j4 e
j 8
(1 分)
tf
1 4
t
2
d j4
F
j4 e j8
d
(2 分)
二、解:利用傅里叶变换的对称性
(1)系统函数 H (s) ;
(2)画出系统的模拟框图;
(3)当 e(t) 2et t 时,求系统的零状态响应 rzs (t) ;
(4)判断系统稳定性。
十一、(20 分)离散系统如下图所示,
xk
yk
z 1 0.5
(1)列写系统差分方程; (2)求系统函数 H(z),并求系统的单位样值响应; (3)画 H(z)的零、极点分布图并指出收敛域; (4)求该系统的频率响应,并绘制系统幅频响应曲线。
所以系统稳定
十、
(1)
H
s
s3
s 1 5s2
6s
(2)
(2 分) (5 分) (5 分)
2022年《信号与系统》试卷

《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。
2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。
3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。
4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。
今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。
5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。
6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。
7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。
即()F s = 。
8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。
9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。
10.Z 变换能把描述离散系统的 方程变换为代数方程。
11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。
12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。
13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。
14.单位样值函数)(k δ的z 变换是 。
二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。
A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。
数字信号处理期末试卷(含答案)
________ 次复乘法,运算效率为__
_。
6、FFT利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR滤波器的单位取样响应
是圆周偶对称的,N=6,
,其幅度特性有什么特性? ,相位有何特 性? 。 9、数字滤波网络系统函数为
。
4、 已知
,
的反变换
。 3、
,变换区间
,则
。 4、
,
,
是
和
的8点循环卷积,则
。
5、用来计算N=16点DFT直接计算需要_
2FFT算法,需要
次复乘法
6、基2DIF-FFT 算法的特点是
7、有限脉冲响应系统的基本网络结构有
8、线性相位FIR滤波器的零点分布特点是
9、IIR系统的系统函数为
次复加法,采用基
转换为
时应使s平面的左半平面映射到z平面的
。
A.单位圆内 B.单位圆外 C.单位圆上 D.单位圆与实轴的交
点
6、 分析问答题(每题5分,共2题)
3、 某线性时不变因果稳定系统单位取样响应为
(长度为N),则该系统的频率特性、复频域特性、离散频率特性分 别怎样表示,三者之间是什么关系? 4、 用
对连续信号进行谱分析时,主要关心哪两个问题以及怎样解决二者的 矛盾?
十一、(7分)信号 包含一个原始信号 和两个回波信号: 求一个能从 恢复 的可实现的滤波器.
附录:
矩形窗(rectangular window) 汉宁窗(Hann window) 汉明窗(Hamming window) 布莱克曼窗(Blackman window)
表1 一些常用的窗函数
表2 一些常用窗函数的特性
数字信号处理期末试卷(含答案)全
数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。
1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
[北京科技大学]《信号与系统》期末考试试题
北京科技大学远程与成人教育学院2020学年第1次远程课程《信号与系统》测验学习中心批次/专业/层次学号姓名________一、选择题(20分,每题2分)从各选项中选择唯一符合题干要求的选项。
1、信号()()()sin5+2cos2f t t t=的周期为()。
(A)5π (B)2π/5 (C)π (D)2π2、以下为计算机产生的信号的是()(A)(B)(C)(D)3、系统1()()y t f tt=为()系统。
(A)线性时不变(B)线性时变(C)非线性时不变(D)非线性时变4、πcos()()d2t t tδ+∞-∞⋅-⎰的结果为()。
(A)0 (B)π()2tδ-(C)1 (D)25、[]2,10kf k r r=-<<可以表示为图()。
(A)(B)(C)(D)题号一二三四五总分得分6、已知周期为T 0的周期信号f (t )的傅里叶系数为C n ,则02j ()()e tx t f t ω-=的傅里叶系数为( )。
(A )C n +1 (B )C n +2 (C )C n -1 (D )C n -27、当系统初始状态为零时,由系统的外部激励f (t )产生的响应称为系统的为系统的( )。
(A )零状态响应 (B )零输入响应 (C )齐次响应 (D )强迫响应8、由系统的外部激励f (t )产生的响应称为系统的零状态响应,可以用f (t )和冲激响应h (t )的卷积积分得到,其定义为: (A )()()()()d f t h t f h t τττ+∞-∞*=⋅-⎰ (B )()()()()d f t h t f t h t ττ+∞-∞*=⋅-⎰(C )()()()()d f t h t f h t τττ+∞-∞*=⋅-⎰(D )()()()(+)d f t h t f h t τττ+∞-∞*=⋅⎰9、非周期信号的频谱为( )频谱,周期信号的频谱为( )频谱。
(A )离散,离散 (B )离散,连续 (C )连续,离散(D )连续,连续 10、某离散系统的系统函数为()H z ,若系统同时存在()H j ω,则此系统为 ( )。
(完整版)西北工业大学信号与系统期末试题及答案2010_2011
诚信保证本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。
本人签字: 编号:西北工业大学考试试题(卷)2010 - 2011 学年第 2 学期开课学院 计算机学院 课程 信号与系统 学时 48考试日期 2011年6月3日 考试时间 2 小时 考试形式(闭开)(B A)卷考生班级学 号姓 名★注:请将各题答案做在答题纸上,答在试题纸上无效。
一、单项选择题(每题有且仅有一个答案是正确的,共20分)1、已知某系统方程为)(10)()()(d 22t e dt t dr t r dt t r =-,则该系统是 ① 。
① A .线性时不变系统 B .非线性时变系统C .线性时变系统D .非线性时不变系统2、已知某连续线性时不变系统的初始状态不为零,设当激励为e(t)时,全响应为r(t),则当激励增大一倍为2e(t)时,其全响应为 ② 。
② A .也增大一倍为2r(t) B .也增大但比2r(t)小C .保持不变仍为r(t)D .发生变化,但以上答案均不正确 3、积分式dt t t t t )]2(2)()[23(442-+++⎰-δδ的积分结果是 ③ 。
③ A .14 B .24 C .26 D .282. 命题教师和审题教师姓名应在试卷存档时填写。
共 7 页 第 1 页成绩2、求信号)1()1(---tet atε的拉普拉斯变换。
(5分)3、已知积分()⎰+∞---=)()(ttedxxfe txtε,求f(t)。
(5分)(已知存在拉普拉斯变换()11)(11)(2+↔+↔--stestte ttεε、。
)4、已知f(k),h(k)如图5、图6所示,求f(k)*h(k)。
(7分)图5 图62、已知系统极零图如图7所示, 该系统的单位阶跃响应终值为23,求系统函数)(sH。
(6分)四、系统分析题(共25分)1、(15分)一连续线性时不变系统具有一定初始条件,其单位阶跃响应为())(1te tε--,初始条件不变时,若其对)(3te tε-的全响应为())(5.05.13tee ttε---,求此时的:①写出系统微分方程②零输入响应)(trzi③零状态响应)(trzs④初始条件)0(-r⑤自由响应和受迫响应-1-2-jj0s-3图8jω图7西北工业大学考试试题(答题纸)2010 -2011 学年第 2 学期开课学院 计算机学院 课程 信号与系统考试日期 2011年06月3日 考试时间 2 小时 闭(B A)卷西北工业大学考试试题(答案)2010 -2011 学年第 2 学期开课学院 计算机学院 课程 信号与系统考试日期 2011年06月3日 考试时间 2 小时 闭(B A)卷方法二:32323)1(5.435.15.025.01125.111211)(G -+++=-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-+=λλλλλλλλλλλ……(1分) ∵罗斯阵列4.534.5 1.53.50首列元素同号 1分,j 3s ,05.41.5 2系统临界稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统期末考试试题 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f1(k+5)*f2(k-3) 等于 。 (A)f1(k)*f2(k) (B)f1(k)*f2(k-8)(C)f1(k)*f2(k+8)(D)f1(k+3)*f2(k-3)
2、 积分dttt)21()2(等于 。 (A)(B)(C)3(D)5 3、 序列f(k)=-u(-k)的z变换等于 。
(A)1zz(B)-1zz(C)11z(D)11z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。 (A))2(41ty(B))2(21ty(C))4(41ty(D))4(21ty
5、 已知一个线性时不变系统的阶跃相应g(t)=2e-2tu(t)+)(t,当输入f(t)=3e—tu(t)时,系统的零状态响应yf(t)等于 (A)(-9e-t+12e-2t)u(t) (B)(3-9e-t+12e-2t)u(t)
(C))(t+(-6e-t+8e-2t)u(t) (D)3)(t +(-9e-t+12e-2t)u(t) 6、 连续周期信号的频谱具有 (A) 连续性、周期性 (B)连续性、收敛性
(C)离散性、周期性 (D)离散性、收敛性
7、 周期序列2)455.1(0kCOS的 周期N等于 (A) 1(B)2(C)3(D)4
8、序列和kk1等于 (A)1 (B) ∞ (C) 1ku (D) 1kku 9、单边拉普拉斯变换sesssF2212
的愿函数等于
10、信号23tutetft的单边拉氏变换sF等于 二、填空题(共9小题,每空3分,共30分) 1、卷积和[()k+1u(k+1)]*)1(k=________________________ 2、单边z变换F(z)=12zz的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1ss,则函数y(t)=3e-2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________ 4、频谱函数F(j)=2u(1-)的傅里叶逆变换f(t)=__________________
5、单边拉普拉斯变换sssssF2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2kfkfkykyky ,则系统的单位序列响应h(k)=_______________________ 7、已知信号f(t)的单边拉氏变换是F(s),则信号20)()(tdxxfty的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=
9、写出拉氏变换的结果tu66 ,kt22 三、(8分)
四、(10分)如图所示信号tf,其傅里叶变换 tfjwFF,求(1) 0F(2)dwjwF
六、(10分)某LTI系统的系统函数1222ssssH,已知初始状态,20,00yy激励,tutf求该系统的完全响应。 信号与系统期末考试参考答案 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A 二、填空题(共9小题,每空3分,共30分)
1、kuk5.0 2、)()5.0(1kuk 3、52ss 4、tj
e
tjt
5、)()()(tuetutt 6、kuk15.01 7、 sFses2 8、tutet2cos 9、s66, 22k!/Sk+1 四、(10分) 解:1) 2) 六、(10分) 解: 由)(SH得微分方程为 将SSFyy1)(),0(),0(代入上式得 二、写出下列系统框图的系统方程,并求其冲激响应。( 15分) 解:x”(t) + 4x’(t)+3x(t) = f(t) y(t) = 4x’(t) + x(t) 则:y”(t) + 4y’(t)+ 3y(t) = 4f’(t) + f(t)
根据h(t)的定义 有
h”(t) + 4h’(t) + 3h(t) = δ(t) h’(0-) = h(0-) = 0 先求h’(0+)和h(0+)。
因方程右端有δ(t),故利用系数平衡法。h”(t)中含δ(t),h’(t)含ε(t),h’(0+)≠h’(0-),h(t)在t=0连续,即h(0+)=h(0-)。积分得 [h’(0+) - h’(0-)] + 4[h(0+) - h(0-)] +3 = 1 考虑h(0+)= h(0-),由上式可得
h(0+)=h(0-)=0 h’(0+) =1 + h’(0-) = 1
对t>0时,有 h”(t) + 4h’(t) + 3h(t) = 0
故系统的冲激响应为一齐次解。 微分方程的特征根为-1,-3。故系统的冲激响应为 h(t)=(C1e-t + C2e-3t)ε(t) 代入初始条件求得C1=,C2=, 所以 h(t)= e-t – ε(t) 三、描述某系统的微分方程为 y”(t) + 4y’(t) + 3y(t) = f(t) 求当f(t) = 2e-2t,t≥0;y(0)=2,y’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。齐次解为 yh(t) = C1e -t + C2e -3t 当f(t) = 2e –2 t时,其特解可设为 yp(t) = Pe -2t 将其代入微分方程得 P*4*e -2t + 4(–2 Pe-2t) + 3Pe-t = 2e-2t 解得 P=2 于是特解为 yp(t) =2e-t 全解为: y(t) = yh(t) + yp(t) = C1e-t + C2e-3t + 2e-2t 其中 待定常数C1,C2由初始条件确定。 y(0) = C1+C2+ 2 = 2, y’(0) = –2C1 –3C2 –1= –1 解得 C1 = ,C2 = – 最后得全解 y(t) = – t – – 3t +2 e –2 t , t≥0 三、描述某系统的微分方程为 y”(t) + 5y’(t) + 6y(t) = f(t) 求当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。齐次解为 yh(t) = C1e -2t + C2e -3t 当f(t) = 2e – t时,其特解可设为 yp(t) = Pe -t 将其代入微分方程得 Pe -t + 5(– Pe-t) + 6Pe-t = 2e-t 解得 P=1 于是特解为 yp(t) = e-t 全解为: y(t) = yh(t) + yp(t) = C1e-2t + C2e-3t + e-t 其中 待定常数C1,C2由初始条件确定。 y(0) = C1+C2+ 1 = 2, y’(0) = –2C1 –3C2 –1= –1 解得 C1 = 3 ,C2 = – 2 最后得全解 y(t) = 3e – 2t – 2e – 3t + e – t , t≥0 (12分) 六、有一幅度为1,脉冲宽度为2ms的周期矩形脉冲,其周期为8ms,如图所示,求频谱并画出频谱图频谱图。(10分)
解:付里叶变换为
Fn为实数,可直接画成一个频谱图。 周期信号 f(t) = 试求该周期信号的基波周期T,基波角频率Ω,画出它的单边频谱图,并求f(t) 的平均功率。 F
n
ω0
224
41
)ee1(e2sssss解 首先应用三角公式改写f(t)的表达式,即 显然1是该信号的直流分量。 的周期T1 = 8 的周期T2 = 6 所以f(t)的周期T = 24,基波角频率Ω=2π/T = π/12,根据帕斯瓦尔等式,其功率为 P= 是f(t)的[π/4]/[π/12 ]=3次谐波分量; 是f(t)的[π/3]/[π/12 ]=4次谐波分量; 画出f(t)的单边振幅频谱图、相位频谱图如图
二、计算题(共15分)已知信号)()(tttf
1、分别画出01)(tttf、)()()(02ttttf、)()(03ttttf和)()()(004tttttf的波形,其中 00t。(5分) 2、指出)(1tf、)(2tf、)(3tf和)(4tf这4个信号中,哪个是信号)(tf的延时0t后的波形。并指出哪些信号的拉普拉斯变换表达式一样。(4分) 3、求)(2tf和)(4tf分别对应的拉普拉斯变换)(2sF和)(4sF。(6分) 1、(4分) 2、)(4tf信号)(tf的延时0t后的波形。(2分)
3、stssFsF02121)()((2分)
024
1)(stessF。(2分)
三、计算题(共10分)如下图所示的周期为2秒、幅值为1伏的方波)(tus作用于RL电路,已知
1R,HL1。
1、 写出以回路电路)(ti为输出的电路的微分方程。 2、 求出电流)(ti的前3次谐波。 解“
1、ttttus2,2,022,1)(。(2分)
)5cos(52)3cos(32)cos(221)cos()2sin(22151tttntnnn (3分)
2、)()()(tutitis(2分)