刀具涂层的分类与应用
你必须知道的刀具涂层方法与镀层种类

你必须知道的刀具涂层方法与镀层种类刀具镀层也是能提高刀具寿命的议题之一,而根据不同的切削方法或环境,又能分为许多不同成分,在技术也能分为化学与物理,你目前使用的涂层是正确的吗?本篇将介绍涂层技术与种类,让你更了解并选出最适合的方式。
硬质合金刀具涂层方法近半个世纪以来,为提升刀具性能刀具表面涂层技术已成为主流,镀层就像刀具的盔甲一样,具有强大的防护、耐酸、耐氧化抗磨耗等特性,能够提高刀具表面硬度与热稳定系数,并降低摩擦系数以提升切削速度,从而提高加工效率也提升刀具寿命。
刀具涂层技术可分为CVD(化学)与PVD(物理)两大类:CVDCVD为化学气相沉积(chemical vapor deposition),利用生产纯度高与效能佳的固态材料化学技术,被广泛应用在硬质合金可转为刀具的表面处理,像是半导体产业会使用此技术来成长薄膜。
CVD是将反应源以气体形式通入反应腔中,经由氧化、还原与基板反应进行化学的反应,进而生成物由内扩散作用而沉积至基板表面上。
而反应过程中也有可能会产生不同的副产品,但大多会随著气流带走,并不会留在反应腔中。
PVDPVD则为物理气相沉积(Physical vapor deposition),为工业制造的工业,主要藉由物理反应来沉积薄膜,即为真空镀膜(蒸镀),多用于切削工具与各种模具的表面处理,以及半导体装置的制作。
PVD与CVD差别在于PVD的吸附与吸解是物理性,CVD则是化学性的,且PVD的适用范围较广泛,几乎大部分的材料薄膜都可用PVD,但薄膜厚度均匀性将会是个难题。
镀层种类光是依靠单一涂层是无法满足提高各种机械性能的要求,因此涂层的成分逐渐多元与复合化,针对不同的切削加工要求,可将涂层分得更为复杂,且在复合涂层中,各成分涂层的厚度也越来越薄,甚至趋于纳米化,以下分享几种常见的镀层:PVD涂层种类涂层特点涂层硬度HV涂层厚度μm摩擦系数耐热溫度涂层顏色应用范围TiN 单层2300 2-3 0.6 600 金黄最为普遍具有高硬度高耐磨性耐氧化性适合大多切削刀具、成形模具与抗磨损工件TiCN 单层2800 2-3 0.3 500 棕灰有较低的内应力较高的韧性与润滑性能适合要求较低的磨擦系数与高硬度的加工环境TiAIN 单层3100 2-3 0.3 750 紫蓝化学稳定性好高热硬度性抗氧化耐磨性适合干切削CrN 单层1800 2-3 0.2 700 银灰拥有强润滑性能耐高温特性适合铜类金属切削刀具与耐磨耐府零件的涂层DLC 单层2500 1-2 0.1-0.2 300 黑灰优良耐磨、耐腐蚀性能摩擦係数极低基体结合力强用于刀具通常与TiAIN为基体配合使用用以加工有色金属石磨等材料镀层的优势相较之下,经过镀层的刀具的表面硬度较高、耐磨性佳、化学性能稳定、耐热且耐氧化等,在切削过程中会比未经过镀层的刀具高出3到5倍的寿命,并提升切削速度与精度,甚至能降低成本。
刀具涂层技术的应用及选择

1、涂层刀具是什么?涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而获得的。
2、涂层刀具的优势涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦因数小和热导率低等特性,切削时可比未涂层刀具提高刀具寿命3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。
在韧性较好的刀具(刀片)基体上进行表面涂层,涂覆具有高硬度、高耐磨性、耐高温材料的薄层(如 TiN、TiC等),使刀具(刀片)具有全面、良好的综合性能。
未涂层高速钢的硬度仅为62~68HRC(760~960HV),硬质合金的硬度仅为 89~93.5HRA(1300~1850HV);而涂层后的表面硬度可达2000~3000HV以上。
3、刀具涂层的方法生产上常用的刀具涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。
前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。
4、刀具涂层的要求用CVD法涂层时,切削刃需预先进行钝化处理(钝圆半径一般为0.02~0.08mm,切削刃强度随钝圆半径增大而提高),故刃口没有未涂层刀片锋利。
所以,对精加工产生薄切屑、要求切削刃锋利的刀具应采用PVD法。
涂层除可涂覆在普通切削刀片上外,还可涂覆到整体刀具上,已发展到涂覆在焊的硬质合金刀具上。
据报道,国外某公司在焊接式的硬质合金钻头上采用了PCVD法,结果使加工钢料时的钻头寿命比高速钢钻头长10倍,效率提高5倍。
5、刀具涂层的正确选择每一种涂层在切削加工中都既有优势又有缺点,如果选用了不恰当的涂层,有可能导致刀具寿命低于未涂层刀具,有时甚至会引出比涂层以前更多的问题。
目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD 和CVD的复合涂层等。
刀具涂层技术的应用

刀具涂层技术的应用自20世纪60年代化学气相沉积(CVD)涂层硬质合金刀片问世发来,涂层技术被广泛应用于硬质合金可转位刀具的表面处理。
而20世纪80年代初,TiN物理气相沉积(PVD)涂层高速钢刀具的出现,以使高速钢刀具的性能发生了革命性的变革。
由于涂层技术可有效提高切削刀具的使用寿命,使用刀具获得优良的综合机械性能,大幅度地提高机械加工效率,因此涂层技术已经在切削刀具提高性能的工艺中得到极为广泛的应用于。
刀具涂层技术通常可分为化学气相沉积(CVD)技术和物理气相沉积(PVD)技术两大类,本文拟从这两方面分别介绍国内外刀具涂层技术的应用情况。
1、刀具涂层技术的应用(1)CVD涂层技术的应用CVD是使挥发性化合气体发生分解或化学反应,并在被镀工件上形成沉积成膜的方法。
在CVD工艺中,气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、AL2O3等单层及多元多层复合涂层。
CVD涂层镀层密实,涂层与基体结合强度高,附着力强,均匀性好,形状复杂的工件也可得到合金副的镀层,薄膜厚度可达5—12微米,因此CVD涂层具有更好的耐磨性。
但其工艺处理温度高,易造成刀具材料抗弯强度的下降,薄膜内部为拉应力状态,使用中易导致微裂纹的产生,因此只适合于硬质合金车削类刀具的表面涂层,其涂层刀具适合于中型、重型切削的高速加工及半精加工。
自1968年第一批CVD涂层硬质合金刀具问世至今,该涂层技术已发展了近35年。
在这35年间,CVD涂层技术从单一成份发展到多种成份、从单一膜层发展到多元多膜层,经过大量的试验,完成了批量大规模的工业化生产。
如今,CVD涂层硬质合金在涂层硬质合金刀具中占到了80%以上的份额,CVD涂层技术已广泛应用于各类硬质合金刀具。
其涂层工艺的主要发展阶段及应用领域见下表:1968——TiN、TiN——方法CVD——硬质合金刀具、模具涂层1973——TiCN、TiC+AL2O3——CVD ——硬质合金刀具、模具涂层1981——TiC+AL2O3+TiN、AL-O-N——CVD——硬质合金涂层1982——TiCN——MT-CVD——硬质合金刀具涂层1986——Diamond、CBN——CVD、PVD——硬质合金刀具涂层1990——TiN、TiCN、TiC——PCVD——模具、螺纹刀具、铣刀等1993——TiN+TiCN(CVD)+TiN(PVD)——CVD+PVD——硬质合金铣削类刀具涂层1993——厚膜纤维状TiCN——MT-CVD——硬质合金车削类刀具涂层(用于粗、半精加工)从上表可以发现,CVD涂层技术主要用于硬质合金类各种切削刀具。
刀具涂层种类及如何正确选择刀具涂层

刀具涂层及如何正确选择刀具涂层内容来源网络,由深圳机械展收集整理!更多数控刀具展示,就在深圳机械展。
刀具表面涂层技术是应市场需求而发展起来的一种表面改性技术,自上世纪60年代出现以来,该项技术在金属切削刀具制造业内得到了极为广泛的应用。
尤其是高速切削加工技术出现之后,涂层技术更是得到了迅猛的发展与应用,并成为高速切削刀具制造的关键技术之一。
该项技术通过化学或物理的方法在刀具表面形成某种薄膜,使切削刀具获得优良的综合切削性能,从而满足高速切削加工的要求。
归纳起来切削刀具表面涂层技术具有以下特点:1.采用涂层技术可在不降低刀具强度的条件下,大幅度地提高刀具表面硬度,目前所能达到的硬度已接近100GPa;2.随着涂层技术的飞速发展,薄膜的化学稳定性及高温抗氧化性更加突出,从而使高速切削加工成为可能;3.润滑薄膜具有良好的固相润滑性能,可有效地改善加工质量,也适合于干式切削加工;4.涂层技术作为刀具制造的最终工序,对刀具精度几乎没有影响,并可进行重复涂层工艺。
涂层切削刀具所带来的益处:可大幅度提高切削刀具寿命;有效地提高切削加工效率;明显提高被加工工件的表面质量;有效地减少刀具材料的消耗,降低加工成本;减少冷却液的使用,降低成本,利于环境保护。
对小型圆形刀具进行正确的表面处理可以提高刀具寿命,减少加工循环时间,提升加工表面质量。
但是,根据加工需要正确选择刀具涂层有可能是一件令人困惑和费劲的工作。
每一种涂层在切削加工中都既有优势又有缺点,如果选用了不恰当的涂层,有可能导致刀具寿命低于未涂层刀具,有时甚至会引出比涂层以前更多的问题。
目前已有许多种刀具涂层可供选择,包括PVD涂层、CVD涂层以及交替涂覆PVD和CVD的复合涂层等,从刀具制造商或涂层供应商那里可以很容易地获得这些涂层。
本文将介绍一些刀具涂层共有的属性以及一些常用的PVD、CVD 涂层选择方案。
在确定选用何种涂层对于切削加工最为有益时,涂层的每一种特性都起着十分重要的作用。
机械制造中的机械加工刀具涂层技术

机械制造中的机械加工刀具涂层技术机械加工刀具是机械制造过程中不可或缺的工具。
然而,刀具在使用过程中会面临磨损、腐蚀和高温等问题。
为了提高刀具的使用寿命和效率,机械制造中广泛应用了机械加工刀具涂层技术。
本文将介绍机械加工刀具涂层技术的原理和应用。
一、机械加工刀具涂层技术概述机械加工刀具涂层技术是将一层或多层涂层覆盖在刀具表面,以提高刀具的硬度、耐磨性和耐腐蚀性。
涂层的主要成分可以是金属、陶瓷或者其他复合材料,常见的涂层方法包括物理气相沉积(PVD)和化学气相沉积(CVD)等。
二、机械加工刀具涂层技术的原理1. 增加刀具硬度:刀具涂层可以增加刀具的硬度,提高切削、钻削和铣削等加工效率。
通过选择合适的涂层材料和工艺参数,可以使刀具表面形成高硬度的涂层层,有效延长刀具使用寿命。
2. 提高刀具耐磨性:涂层可以形成高硬度、高耐磨性的表面层,抵抗磨损和划伤。
涂层还可以减少切削过程中与工件的摩擦,降低磨损程度,延长刀具寿命。
3. 提高刀具耐腐蚀性:机械加工刀具在加工过程中会受到腐蚀的侵蚀,导致刀具表面产生锈蚀等问题。
涂层可以起到防腐蚀的作用,保护刀具表面不受腐蚀侵害,延长刀具使用寿命。
三、机械加工刀具涂层技术的应用1. 刀具涂层在切削加工中的应用:在金属切削加工中,采用涂层刀具可以降低切削力、提高加工速度和表面质量,减少加工成本。
特别是在高速切削和干切削时,涂层刀具更加显示出其优越性。
2. 刀具涂层在钻削加工中的应用:涂层刀具在钻削过程中可以减少切削头部温度,降低切削力和摩擦,提高钻铤效率和孔位质量。
涂层刀具可以应用于各类钻孔复杂性要求高的工件。
3. 刀具涂层在铣削加工中的应用:涂层刀具在高速铣削中可以提供较高的表面加工速度和质量,减少切削时的焊着和磨损。
涂层刀具广泛应用于高硬度材料和导电材料的铣削加工。
总结:机械加工刀具涂层技术通过在刀具表面形成高硬度、高耐磨和耐腐蚀的涂层层,有效提高刀具的使用寿命和加工效率。
硬质涂层刀具简介

演讲稿1.涂层刀具的定义涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而获得的。
涂层作为一个化学屏障和热屏障,涂层刀具的构成减少了刀具与工件间的扩散和化学反应,从而减少了月牙槽磨损。
涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦因数小和热导率低等特性,切削时可比未涂层刀具提高刀具寿命3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。
2.涂层刀具的分类及性能(1)TiC系涂层刀具TiC涂层刀具的优越性表现在高的切削速度和优良的抗机械磨损、磨料磨损性能上。
具有良好的抗月牙洼磨损能力;在耐磨性相同时,其切削钢的速度可提高50%~l00%,有时可高达2~3倍;但是,TiC涂层脆性大,不耐冲击。
(2)TiN系涂层刀具与TiC涂层刀具相比,TiN涂层刀具具有更低的摩擦系数和切削变形系数,因而切削力也更小。
而且它的抗粘结温度高,切削温度为500℃左右,抗月牙洼磨损性能好。
TiN涂层刀具适用于硬质难加工材料及精密、形状复杂的轴承等耐磨件,对易粘结在刀具前刃面上的工件,切削效果更明显。
(3)Al2O3系涂层刀具Al2O3涂层是氧化物陶瓷涂层,它的刀具切削性能优于TiC和TiN涂层刀具。
Al2O3涂层刀具具有更好的化学稳定性和抗高温氧化能力,因此具有更好的抗月牙洼磨损和抗刃口热塑性变形的能力,适用于陶瓷刀具因脆性大而易于崩刃和打刀的场合。
Al2O3涂层刀具的韧性较差,故其耐冲击性能远不如TiC和TiN涂层刀具。
用Al2O3 涂层的硬质合金刀具加工汽车铸铁刹车盘、刹车鼓和轴承盖时,其耐磨性比TiC涂层刀具高2~4倍,比普通的硬质合金刀具高6~8倍。
(4)其它XN系涂层刀具(x=Cr,Zr,Hf等)CrN系涂层因其具有良好的抗氧化、耐腐蚀及抗磨损性能而受到较多的关注。
工具磨床的刀具涂层与表面处理技术
工具磨床的刀具涂层与表面处理技术工具磨床是一种用于对不同类型刀具进行精密研磨和加工的机械设备。
为了提高刀具的使用寿命和切削能力,以及减少刀具磨损和摩擦,人们经过长时间的研究和实践,发展出了各种不同的刀具涂层和表面处理技术。
本文将讨论工具磨床的刀具涂层与表面处理技术的优势、应用以及未来的发展方向。
刀具涂层技术是一种在刀具表面上涂覆一层特殊材料的方法,旨在改善刀具的切削性能和耐磨性。
常见的刀具涂层包括金属涂层、陶瓷涂层和涂层复合材料等。
金属涂层主要包括金属氮化物涂层和钽涂层。
金属氮化物涂层有着很高的硬度和耐磨性,能够极大地延长刀具的使用寿命和切削能力。
钽涂层则具有优异的切削性能和耐磨性,在高速切削加工中表现出色。
除了提高刀具的使用寿命和性能,刀具涂层技术还可以降低切削力和摩擦系数,减少切削温度,提高加工效率和精度。
另一方面,表面处理技术是通过改变刀具表面的物理、化学和热力性能来提高刀具的切削性能和耐磨性。
最常见的表面处理技术包括氮化处理、渗碳处理和化学处理等。
氮化处理是将刀具置于含氮气体环境中,在高温下使刀具表面与氮原子结合,形成氮化物薄膜。
氮化膜具有极高的硬度和耐磨性,能够显著提高刀具的切削能力和使用寿命。
渗碳处理是将刀具表面浸入碳含量较高的液体中进行处理,使刀具表面形成高硬度的碳化层。
碳化层能够增加刀具表面的硬度和耐磨性,提高切削性能。
化学处理是通过刻蚀、抛光和电解等方法,改变刀具表面的光洁度和形貌,提高切削效率和加工精度。
工具磨床的刀具涂层与表面处理技术在各个行业中广泛应用。
在汽车制造业中,使用刀具磨床处理的高性能刀具能够提高零部件加工的效率和精度,降低能耗和成本。
在航天航空行业中,刀具涂层和表面处理技术可以大幅提高切削质量和加工速度,满足高精度、高质量的加工要求。
在模具制造行业中,采用刀具涂层和表面处理技术可以延长模具的使用寿命和维护周期,提高生产效率。
然而,尽管工具磨床的刀具涂层与表面处理技术已经取得了显著的进步和应用,但仍然存在一些挑战和问题。
刀具涂层材料
刀具涂层料子目前市场上主流的涂层料子包含:·氮化钛(TiN)—通常采纳PVD涂层,具有高硬度、抗氧化温度高的特点。
·氮碳化钛(TiCN)—添加碳有助于提高涂层的硬度和涂层表面自润滑性。
·氮化铝钛(TiAlN 或 AlTiN)—包含一层氧化铝,在切削温度高的应用中可延长刀具寿命,特别适用于准干切削/干切削。
相对于TiAlN 涂层,由于铝/钛比例的不同,AlTiN涂层表面硬度更高。
此涂层方案特别适合于高速加工应用。
·氮化铬(CrN)—具有高硬度、耐磨性高的优点,是抗积屑瘤的**解决方案。
·石(PCD)—具有*好的非铁合金料子加工性能,尤其是加工石墨、金属基复合料子、高硅铝合金和其它研磨料子。
不适合加工钢,由于化学反应会破坏涂层与基体的结合。
通过对近几年的涂料料子进展,市场需求的增上进行分析,我们看到,PVD涂层刀具比CVD涂层刀具更受到青睐。
CVD涂层的厚度一般在5—15微米之间变更,而PVD涂层厚度一般在2—6微米之间。
当CVD涂层涂覆在基体上表面时,CVD涂层会产生拉应力,而PVD涂层则相反产生压应力。
这两种因素分别对切削刃产生显著影响,特别是在断续切削或连续加工过程中的刀具性能。
在涂层工艺中添加新的合金元素不但有利于提高涂层的结合力,而且还能够改善涂层的特性。
该工艺体现为在CVD涂层后,对刀片冷却过程特别的工艺掌控,有效削减了刀片涂层表面微裂纹。
同样,这一工艺可去除PVD涂层工艺中在表面留下的不良液滴。
因此,无论是CVD涂层还是PVD涂层,*终均可以获得更光滑的涂层表面,这样刀片切削热更低,寿命更长,排屑更流畅,可实现的切削速度也就越快。
刀具涂层
3.涂层刀具的种类
涂层刀具有四种:
(1)涂层高速钢刀具、 (2)涂层硬质合金刀具、 (3)在陶瓷刀片上的涂层刀具、 (4)在超硬材料(金刚石或立方氮化硼)刀片上的 涂层刀具
ቤተ መጻሕፍቲ ባይዱ
陶瓷和超硬材料刀片上的涂层是硬度 较低的材料,目的是为了提高刀片表 面的断裂韧度(课提高10%以上), 可减少刀片的崩刃和磨损,扩大应用 范围。
此外,该涂层可以和TiN 涂层形成多层膜结 构,不但可以保持TiN 涂层与基体材料良好的结 合和表面抗氧化性能, 同时多层涂层形成的TiN / TiCN 内界面能改变单一涂层的柱状晶生长结构, 提高涂层的韧性,从而提高涂层刀具的切削性能。
软涂层也称为自润滑涂层,追求的目标是低 摩擦因数,增加刀具表面的润滑性能,在切削加 工中减少工件与刀具之间的摩擦,防止积屑瘤的 产生,从而提高加工表面质量,延长刀具寿命。 在某些情况下,一些材料并不适合采用硬涂层刀 具加工, 如在航空航天中的一些高硬度硬质合金、 钛合金等。这些材料在加工中非常黏刀,在刀具 前刀面生成积屑瘤,不仅增加切削热、降低刀具 寿命,而且影响加工表面质量。采用软涂层材料 刀具可获得更好的加工效果。通常的软涂层有 MoS2、WS2、WC/C、TaS2/Mo 等。
4.涂层方法
目前生产上常用的涂层方法有两种:物理气 相沉积法(PVD)和化学气相沉积法(CVD)。 前者沉积温度为500℃,涂层厚度为2~5um;后 者的沉积温度为900~1100℃,沉积厚度可达 5~10um,并且设备简单,涂层均匀。因PVD法 未超过高速钢本身的回火温度,故高速钢刀具一 般采用PVD法,硬质合金大多采用CVD法。
2) 碳氮化钛(TiCN) 是通过多元合金化方法 向TiN 涂层中加入C 元素得到的, 由于C 元素的 引入,涂层的硬度和抗氧化温度都得到了提高。 TiCN 涂层在常规加工、温度低于500℃的条件下, 表现出比TiN 及TiAlN 涂层更优越的性能——— 涂层硬度高、 表面粗糙度值和摩擦因数小。
刀具涂层
涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而制备的。
涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩散和化学反应,从而减少了基体的磨损。
涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦系数小和热导率低等特性,切削时可比未涂层刀具寿命提高3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。
现状涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。
切削加工中使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、成形刀具、齿轮滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。
类别涂层刀具有四种:涂层高速钢刀具,涂层硬质合金刀具,以及在陶瓷和超硬材料(金刚石或立方氮化硼)刀片上的涂层刀具。
但以前两种涂层刀具使用最多。
在陶瓷和超硬材料刀片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度(可提高10%以上),可减少刀片的崩刃及破损,扩大应用范围。
新型涂层技术Ti-Al-X-N新型涂层技术是利用气相沉积方法在高强度工具基体表面涂覆几微米高硬度、高耐磨性难熔Ti-Al-X-N涂层,从而达到减少刀具磨损,延长寿命,提高切削速度的目的。
它是高档数控机床与基础制造装备国家重大专项课题取得的重要成果。
涂层方法生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。
前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。
因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。
硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀具涂层的分类与应用 1 引言 作为基础产业的制造业正在发生着革命性的变化,制造技术也已产生了质的变化。尤其是近几年高速切削加工技术的应用,在大幅度提高生产效率的同时也极大地提高了产品的质量,可以认为高速切削加工技术已成为切削制造业的主流。 高速切削加工技术的发展与应用同时带动了相关技术的迅速发展。高速切削顾名思义,是高的速度、大的进给量、机床的快速移动、快速换刀等,最终体现为生产效率的大幅度提高。但是应该指出的是高速切削只是一个相对的概念,随着加工方式、工件材料以及刀具选择的变化,高速切削加工的速度存在很大变动范围。一般认为高速加工的切削速度为常规切削速度的5~10倍,如加工碳素钢切削速度为500~2000m/min;铸铁为600~3000m/min;铝合金为1000~7000m/min;铜为900~5000m/min。 高速切削刀具技术是实现高速加工的关键技术之一,而刀具材料的高温性能是影响高速切削刀具技术发展的重中之重。由于在高速切削加工中所产生的切削热对刀具的磨损比常规切削高得多,因此对刀具材料有更高的要求:高硬度、高强度和耐磨性;高的韧性和抗冲击能力;高的红硬性和化学稳定性;抗热冲击能力。 刀具表面涂层技术是应市场需求而发展起来的一种表面改性技术,自上世纪60年代出现以来,该项技术在金属切削刀具制造业内得到了极为广泛的应用。尤其是高速切削加工技术出现之后,涂层技术更是得到了迅猛的发展与应用,并成为高速切削刀具制造的关键技术之一。该项技术通过化学或物理的方法在刀具表面形成某种薄膜,使切削刀具获得优良的综合切削性能,从而满足高速切削加工的要求。归纳起来切削刀具表面涂层技术具有以下特点:
1. 采用涂层技术可在不降低刀具强度的条件下,大幅度地提高刀具表面硬度,目前所能达到的硬度已接近100GPa; 2. 随着涂层技术的飞速发展,薄膜的化学稳定性及高温抗氧化性更加突出,从而使高速切削加工成为可能; 3. 润滑薄膜具有良好的固相润滑性能,可有效地改善加工质量,也适合于干式切削加工; 4. 涂层技术作为刀具制造的最终工序,对刀具精度几乎没有影响,并可进行重复涂层工艺。
涂层切削刀具所带来的益处:可大幅度提高切削刀具寿命;有效地提高切削加工效率;明显提高被加工工件的表面质量;有效地减少刀具材料的消耗,降低加工成本;减少冷却液的使用,降低成本,利于环境保护。
2 刀具涂层的分类 众所周知,传统刀具涂层技术主要可分为两大类,但由于市场需求的变化及涂层技术本身的特性,物理涂层技术的发展受到了更大的关注。PVD技术在得到飞跃性发展的同时,其应用市场也得到了广泛的拓展。与最初发展相比,不仅涂层成分种类繁多,近几年来在涂层结构上更是有了突破性的发展,并已为市场所接受。随着PVD技术在市场中愈来愈广泛的应用,认识了解各类涂层的特性及适用领域愈加显得重要。因此本文拟对当前PVD涂层进行分类,并分析各类薄膜所适用领域,目的是让使用者对各类涂层有一个较系统的了解,更加合理地使用涂层刀具。 从PVD技术的发展和应用角度,笔者认为PVD涂层可按2种方法进行分类。
1. 按涂层成分分类 按涂层成分对涂层进行分类简洁、明了,基于对材料性能的认识,使用者容易了解涂层的功能,易为市场所接受,因此目前各涂层企业更多的是以不同的涂层成分向用户介绍、推荐其技术及产品。按成分对涂层区分通常可分为两大类,即硬涂层和软涂层。硬涂层以TiN、TiCN、TiAlN等为代表,包括了单层薄膜和复合薄膜,随着市场需求的变化及涂层技术的发展,新的涂层成分不断被开发出来,到目前为止所应用的硬涂层成分已有几十种之多;软涂层顾名思义薄膜的硬度相对较低,通常为1000HV左右。软涂层目前种类并不多,以MoS2、碳基薄膜为主,在切削加工领域内,其目的是通过在硬涂层表面覆盖一层这种薄膜,试图增加涂层表面的润滑性,改善被加工工件表面质量,以满足某些应用领域的需要。
2. 按涂层结构分类 尽管按成分进行涂层分类具有良好的市场基础,但从PVD技术的发展来看,涂层的内部结构的变化已越来越多地影响着涂层刀具的应用效果。相同的涂层成分、不同的结构形式,可以导致涂层刀具使用效果的截然不同。因此认识了解目前PVD涂层薄膜的结构形式,对于该项技术的实际应用有着十分重要的意义。就目前PVD技术的发展状况,涂层薄膜结构大体可分类如下:
a. 单一层涂层 涂层由某一种化合物或固溶体薄膜构成,理论上讲在薄膜的纵向生长方向上涂层成分是恒定的,这种结构的涂层可称之为普通涂层。如果联系到PVD的发展历程,实际上在过去相当长的时期内一直采用这种技术,其中包含众所周知TiN、TiCN、TiAlN 等。随着应用市场要求的不断提高,人们也愈加认识到这种涂层的局限性,无论是显微硬度、高温性能、薄膜韧性等都难于大幅度提高,但这种涂层在市场中仍占有一定比例。
b. 复合涂层 c. 由多种不同功能(特性)薄膜组成的结构可以称之为复合涂层结构膜,其典型涂层为目前的硬涂层+ 软涂层,每层薄膜各具不同的特征,从而使涂层更具良好的综合性能。图1所示为CrN+CBC复合涂层,其中CBC为碳基薄膜。 d. 梯度涂层
涂层成分沿薄膜纵向生长方向逐步发生变化,这种变化可以是化合物各元素比例的变化,如TiAl-CN中Ti、Al含量的变化,也可以由一种化合物逐渐过渡到另一种化合物,如由CrN 逐渐过渡到CBC。可以预见这种结构能有效降低因成分突变而造成的内部微观应力的增加。图2所示为TiAlCN梯度薄膜。
e. 多层涂层 多层涂层由多种性能各异的薄膜叠加而成,每层膜化学组分基本恒定。目前在实际应用中多由2种不同薄膜组成,由于所采用的工艺存在差异,不同企业的多层涂层刀具,其各膜层的尺寸也不近相同,通常由十几层薄膜组成,每层薄膜尺寸大于几十纳米,最具代表性的有AlN+TiN、TiAlN+TiN涂层等。与单层涂层相比,多层涂层可有效地改善涂层组织状况,抑制粗大晶粒组织的生长,多层薄膜如图3 所示。
f. 纳米多层涂层 这种结构的涂层与多层涂层类似,只是各层薄膜的尺寸为纳米数量级,又可称为超显微结构。理论研究证实在纳米调制周期内(几纳米至几十纳米),与传统的单层膜或普通多层膜相比,此类薄膜具有超硬度、超模量效应,其显微硬度超过40GPa 是可以预期的,并且在相当高的温度下,薄膜仍可保留非常高的硬度。因此这类膜具有良好的市场应用前景,其典型代表为AlN+TiN、AlN+TiN+CrN涂层等。如图4所示,为AlN+TiN+CrN 纳米膜系,其调制周期约为7nm。
g. 纳米复合结构涂层 纳米复合结构涂层。以(nc-Ti1-xAlxN)(/-Si3N4)纳米复合相结构薄膜为例,在强等离子体作用下,纳米TiAlN 晶体被镶嵌在非晶态的Si3N4体内(见图5),当TiAlN晶体尺寸小于10nm 时,位错增殖源难于启动,而非晶态相又可阻止晶体位错的迁移,即使在较高的应力下,位错也不能穿越非晶态晶界。这种结构薄膜的硬度可以达到
图1 CrN+CBC复合薄膜 图2 TiAlCN梯度薄膜 图3 多层薄膜 图4 AlN+TiN+CrN纳米薄膜
图5(nc-Ti1-xAlxN)(/-Si3N4)纳米复合相结构薄膜 50GPa 以上,并可保持相当优异的韧性,且当温度达到900℃~1100℃时,其显微硬度仍可保持在30GPa 以上;此外这种薄膜同时可获得优异的表面质量,因此工业应用前景广阔。
3 涂层的应用 随着PVD技术的迅速发展,在实际应用中涂层的合理选择愈加显得重要。目前涂层薄膜不仅要解决硬度问题,其韧性、抗氧化性、表面粗糙度及润滑性等都需要根据不同的切削条件进行综合考虑。从实际的切削加工状况来看,仅凭涂层成分进行选择,在实际应用中已难以获取最佳经济效益。本文依据上述两种涂层分类,浅析实际切削加工中PVD涂层薄膜的选用。
1. 车削加工车削加工的特点是连续、稳定、切削力及切削温度变化小,相对而言切削温度较高,因此在选择涂层类别时,涂层的硬度和高温抗氧化性是重点考虑因素。 a. 加工钢材时可选用纳米复合结构薄膜(nc-Ti1-xAlxN)(/-Si3N4)及AlTiN薄膜,这两种薄膜都具有极高的表面硬度,且红硬性良好,使用温度可达到1100℃。 b. 铸铁加工通常也可选择上述2种薄膜。 c. 铝及铝合金加工的特点是熔点低,在切削加工中极易形成积屑瘤,且氧化了的切屑可形成Al2O3,导致摩擦作用的增强。当硅含量在4%~13%之间时,硅在铝内形成固溶体+共晶体组织,这种脆性、针状的片状硅的夹杂,在切削过程中,具有磨料作用,导致刀具早期失效;而当Si含量进一步提高时粗大的组织使切削性能进一步下降。如果采用干式切削,可加剧这种磨损的发展,加工这类有色金属金刚石涂层刀具是最佳的选择方案之一,但考虑到可行性及经济性,对于PVD而言,涂层应具有高的硬度及优异的润滑性。当Si 含量小于12%时,可选择多层TiCN+MoS2复合薄膜及TiAlCN+CBC梯度薄膜;而当Si含量大于12%时,则可选用纳米复合结构薄膜(nc-Ti1-xAlxN)(/-Si3N4)或单层的TiCN 薄膜。 d. 高强度合金的加工具有变形大、加工硬化大、切削温度高的特点,此外由于该类合金中含有大量的碳化物、氮化物等,其显微硬度可达2000 ~3000HV。在选择用于此类涂层时,其显微硬度、高温性能、润滑性是应着重考虑的因素。通常可选用纳米复合结构薄膜(nc-Ti1-xAlxN)(/-Si3N4)或TiAl-CN+CBC 复合薄膜。 e. 对于铜及其合金而言,涂层极具针对性,而与加工方式关联性较低。紫铜塑性、韧性大,易粘屑,因此需要有效地解决排屑问题,一般选用CrN膜;而对于铜合金(黄铜、青铜),由于材料强度的提高,通常采用单层TiCN 或多层TiCN 薄膜。