(完整word版)高等岩石力学读书报告
岩石成因与构造环境读书报告

埃达克岩的成因分类及构造环境判别摘要:埃达克岩自20世纪90年代被Defant and Drummond提出后,一直倍受研究者的青睐。
埃达克岩最初是用来定义那些富硅、高Sr/Y 和La/Yb 的源于俯冲带玄武质洋壳部分熔融形成的火山岩和侵入岩。
近年来随着埃达克岩的研究的深入产生了一些让人困惑的地方,有关埃达克岩的成因分类部分显得尤为突出。
现在有必要对其系统的整理和总结,使我们的对它的认识更加深刻全面。
经研究发现这类岩石具有独特的地球化学特点以及隐含的特殊岩石成因机理和成矿机制,因而在回复岩石形成的大地构造背景方面发挥着重要的作用。
对其成因目前普遍认为可分为两派:极力主张板块熔融派和多成因派,亦即板块熔融并非产生埃达克岩组成特征的惟一机制。
通过俯冲玄武质洋壳的熔融可产生埃达克岩熔体已被实验和地质观察证实。
关键词:埃达克岩;地球化学;构造环境引言:20世纪70年代末,Kay 在美国阿留申群岛中的 Adak 岛发现了显生宙的板片熔融事件,但当时并没有引起足够的重视。
Adakite (埃达克岩) 是由Defant 和Drummond 在20世纪90年代初期提出的。
由于这类岩石首次是在阿拉斯加阿留申群岛中的埃达克岛(Adak Island)发信并被确认的,因而被称之为埃达克岩。
Defant and Drummond认为,当地壳相对年轻和温度升高时,俯冲板片发生部分熔融,产生在地球化学成分上具有特殊标记的一类岩石(安山质和英安质),他们把这些岩石称为埃达克岩。
埃达克岩是一套火山岩和侵入岩组合,而并非仅仅是一种岩石类型。
现在的研究表明,符合Defant 等原始定义的埃达克岩有两种成因类型: 一类是由俯冲的年轻大洋板片发生部分熔融形成,另一类是由新底侵的玄武质下地壳熔融形成。
虽然目前都有关于这两类埃达克岩方面的报道,但是在前人所有有关埃达克岩的研究中,都只是针对某一种成因类型的埃达克岩进行研究,没有讨论如何区分和判别这两类埃达克岩[1]。
高等土力学学习总结

高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。
在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。
在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。
第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。
第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。
下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。
1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。
1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。
通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。
岩石力学与岩体实验指导书及报告(72)

岩石力学与岩体实验指导书及报告(内部资料)矿业工程学院实验总室2011年6月一、实验目的:测定岩石的单轴抗压强度。
二、实验方法:将圆柱体岩石试样放在压力实验机上进行单轴压缩实验,试件破坏瞬间受压面上的极限应力值为该岩石的抗压强度。
(一)实验前的准备工作1、试件制备。
描述和尺寸测量见<变形实验>。
每组试件数根据实际情况而定,但最好不少于三块。
(二)实验步骤1、试件安装将准备好的岩石试件放在压力实验机上、下加压板的中心位置,试件整个断面应与加压板严密接触,若不合要求,应予处理。
2、施加载荷保持恒定的应力速率(50~100N/cm2/s)对试件连续加载至破坏为止,记录破坏载荷数值。
描述试件的破坏情况,描述内容见<岩石抗拉强度实验>。
“施加载荷”部分,并记入记录表3-2内,发现试件初裂后仍能继续承受载荷,应记录出裂时的载荷值。
三、计算岩石的抗拉强度岩石的(单轴)抗压强度按下式计算:c p Aσ=式中:cσ-岩石抗压强度(MPa);P-试件破坏时施加的最大载荷KN;A-试件横截面积cm2。
一、实验目的:测定岩石的抗拉强度。
二、实验方法:本实验采用劈裂法测定岩石的抗拉强度。
(一)实验前的准备工作:主要是试件的制备、描述和尺寸测量。
(1)采用圆盘试件。
试件直径(D )为50毫米,厚度(T )为25毫米(T/D=0.5)。
(2)试件两端面应平等,试件轴心线与断面应垂直,二者的最大偏差均不得大于0.2毫米。
试件表面光滑平整。
试件数目据实际情况而定,但最好不少于10块。
(3)测量试件尺寸。
圆盘试件测直径和厚度。
沿厚度(T )上、中、下三个部位分别测直径,取三次测量的平均值为试件的直径。
沿预定加载方向上、中、下三个部位测定试件厚度,取三次测量的平均值为试件的厚度。
方片形试件参照圆盘形试件确定规格,测量其尺寸。
(二)试件安装将试件安装于抗拉模具上,要将试件安放在模具的中心线上,避免偏心加载。
研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。
二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。
2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。
3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。
4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。
三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。
2. 实验材料:岩石试件、砂、水等。
四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。
2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。
(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。
3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。
4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。
(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。
岩石力学实验指导书及实验报告

岩石力学实验指导书及实验报告班级姓名山东科技大学土建学院实验中心编目录一、岩石比重的测定二、岩石密度的测定三、岩石含水率的测定四、岩石单轴抗压强度的测定五、岩石单轴抗拉强度的测定六、岩石凝聚力及内摩擦角的测定(抗剪强度试验)七、岩石变形参数的测定八、煤的坚固性系数的测定实验一、岩石比重的测定岩石比重是指单位体积的岩石(不包括孔隙)在105~110o C 下烘至恒重的重量与同体积4o C 纯水重量的比值。
一、仪器设备岩石粉碎机、瓷体或玛瑙体、孔径0.2或0.3毫米分样筛、天平(量0.001克)、烘箱、干燥器、沙浴、比重瓶。
二、试验步骤1、岩样制备:取有代表性的岩样300克左右,用机械粉碎,并全部通过孔径0.2(或0.3)毫米分样筛后待用。
2、将蒸馏水煮沸并冷却至室温取瓶颈与瓶塞相符的100毫升比重瓶,用蒸馏水洗净,注入三分之一的蒸馏水,擦干瓶的外表面。
3、取15g 岩样(称准到0.001克)得g 借助漏斗小心倒入盛有三分之一蒸馏水的比重瓶中,注意勿使岩样抛撒或粘在瓶颈上。
4、将盛有蒸馏水和岩样的比重瓶放在沙浴上煮沸后再继续煮1~1.5小时。
5、将煮沸后的比重瓶自然冷却至室温,然后注入蒸馏水,使液面与瓶塞刚好接触,注意不得留有气泡,擦干瓶的外表面,在天平上称重得g 1。
6、将岩样倒出,比重瓶洗净,最后用蒸馏水刷一遍,向比重瓶内注满蒸馏水,同样使液面与瓶塞刚好接触,不得留有气泡,擦干瓶的外表面,在天平上称重得g 2。
三、结果:按下式计算:s d g g g gd 12-+=式中:d ——岩石比重;g ——岩样重、克;g 1——比重瓶、岩样和蒸馏水合重、克; g 2——比重瓶和满瓶蒸馏水合重、克; d s ——室温下蒸馏水的比重、d s ≈1岩石密度是指单位体积岩石的重量。
有两种做法:称重法和蜡封法。
我们采用的是蜡封法。
一、主要仪器设备烘箱、干燥器、熔蜡锅、天平、线、石蜡、水中称量装置。
二、试件制备选取有代表性的边长约40~50mm 近似立方体的岩石、选3块、修平棱角、刷取表面粘着物。
岩土工程读书报告

岩土工程专题读书报告学生姓名:付全越班级:2010级2班学号: **********专业:岩土专业水建学院岩土工程系2014年6月25日目录绪论第一章岩土工程的起源与建立第二章岩土工程的发展与成熟第三章岩土工程的现状与方向第四章岩土工程的展望与未来结语附:参考文献绪论何谓岩土工程?刚入门时,自己报考的是土木工程,心中不免疑惑:岩土工程属于土木工程?慢慢的,认识到人的“住、行”离不开它,甚至“衣、食”中亦有它的身影。
凡是与岩石或土有关的工程活动,不论处于地面以上还是地下,均属岩土工程。
在大学学习期间,逐渐形成自己的岩土工程一点看法:这是一门古老而又年轻的学科。
它的古老在于有人类社会活动就存在它,它的根源可以追朔到地球的形成之初。
它的年轻在于人类对它的认识还不够系统和经典,并且它会随着社会进步而继续向前发展。
在国内的大百科全书中,它被定义为“以工程地质学、土力学、岩石力学及地基基础工程学为理论基础,以解决和处理建设过程中出现的所有与岩体和土体有关的工程技术问题的新的专业学科。
在该学科理论和实践中,强调地质与工程紧密结合,属于土木工程范畴。
”在我国它界定了这个专业的内涵、外延和工作内容。
在国际上,《Ground Engineering》杂志上有一篇专门对岩土工程进行定义的文章,原文如下:“Geotechnical engineering is the application of the sciences of soil mechanics and rock mechanics ,engineering geology and other related disciplines to civil engineering construction ,the extractive industries and the preservation and enhancement of the environment”。
岩土塑性力学读书报告

岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
岩石试验报告范文

岩石试验报告范文一、实验目的1.掌握岩石力学性质测试方法;2.了解岩石的索氏模量、泊松比、抗压强度和抗拉强度等力学性质;3.学会对岩石进行力学性质测试并分析结果。
二、实验仪器和材料仪器:压力机、拉力机材料:岩石样本三、实验步骤1.取得岩石样本,并清理样本表面;2.使用压力机进行抗压强度测试,记录岩石的抗压强度;3.使用拉力机进行抗拉强度测试,记录岩石的抗拉强度;4.通过压力机和拉力机的测试数据计算出岩石的泊松比和索氏模量;5.分析实验结果,总结岩石的力学性质。
四、实验结果与数据处理1.实验结果如下:岩石A的抗压强度为50MPa,抗拉强度为20MPa;岩石B的抗压强度为60MPa,抗拉强度为25MPa;2.根据实验数据计算出以下结果:岩石A的泊松比为0.25,索氏模量为20GPa;岩石B的泊松比为0.28,索氏模量为22GPa。
五、数据分析与讨论1.根据实验结果可以看出,岩石B相比于岩石A具有更高的抗压强度和抗拉强度,说明岩石B的结构更密实,抗性更大;2.岩石的泊松比反映了岩石的柔韧性和变形能力,泊松比越小,岩石的柔韧性越好;3.索氏模量是衡量岩石的弹性模量的指标,模量越大,岩石的刚性越好。
六、结论通过本次实验,我们对岩石的力学性质进行了测试,并得出以下结论:1.岩石B的抗压强度和抗拉强度均高于岩石A;2.岩石B相比于岩石A的泊松比更大,说明岩石B的柔韧性较差;3.岩石B的索氏模量较大,表明岩石B的刚性较好。
七、实验中存在的问题及改进方案1.在实验中,可能由于样本的不完全均质性,导致测试结果的误差较大。
可以尽量选取均质性好的样本进行测试,或者进行多次实验取平均值;2.实验中的仪器精度可能会影响测试结果的准确性,可以选择更高精度的仪器进行测试。
八、实验心得通过本次实验,我对岩石的力学性质有了更深入的了解。
岩石的力学性质对于土木工程,尤其是岩土工程的设计和施工具有重要意义。
希望能进一步学习和研究岩石力学,为工程实践提供可靠的理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等岩石力学 读书报告 学 院: 国土资源工程学院 专 业: 地质工程 姓 名: 曾 敏 学 号: 2006201071 高等岩石力学读书报告 岩石力学是研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,它是力学的一个分支。研究的目的在于解决水利、土木工程等建设中的岩石工程问题。它是近代发展起来的一门新兴学科,是一门应用性的基础学科。对于岩石力学的定义有很多种说法,这里推荐一种较广义、较严格的定义:“岩石力学是研究岩石的力学性状的一门理论科学,同时也是应用科学;它是力学的一个分支,研究岩石对于各种物理环境的力场所产生的效应。”这个定义既概括了岩石力学所研究的破碎与稳定两个主要方面的内容,也概括了岩石受到一切力场作用所引起的各种力学效应。岩石力学的理论基础相当广泛,涉及固体力学、流体力学、计算数学、弹塑性理论、工程地质和地球物理学等学科,并与这些学科相互渗透。 岩石力学主要理论基础及与其他学科的结合 岩石力学是一门应用性的基础学科。它的理论基础相当广泛,涉及到很多基础及应用学科。 岩石力学的力学分支基础 1、固体力学 固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。在采矿工程中用到的固体力学主要有:材料力学,结构力学,弹、塑性力学,复合材料力学,断裂力学和损伤力学。如把采场上覆岩层看作是梁或板结构用的就是结构力学理论;采用弹性力学研究巷道周围的应力分布。 2、流体力学 流体力学主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动规律。流体力学中研究得最多的流体是水和空气。对于地下采矿工程来说,其研究对象就是地下水与瓦斯等矿井气体。 3、爆炸力学 爆炸力学主要研究爆炸的发生和发展规律,以及爆炸的力学效应的利用和防护。它从力学角度研究爆炸能量突然释放或急剧转化的过程,以及由此产生的强冲击波(又称激波)、高速流动、大变形和破坏、抛掷等效应。同时爆炸力学是流体力学、固体力学和物理学、化学之间的一门交叉学科。地下开采中的巷道掘进,露天开采中的采剥都要进行爆破。 4、计算力学 计算力学是综合力学、计算数学和计算机科学的知识,以计算机为工具研究解决力学问题的理论、方法,以及编制软件的学科。从20世纪50年代以来,它在力学的各分支学科和边缘学科中得到了很大的发展,无论是在科学研究还是工程技术中均得到了广泛应用,现在它已成为力学除理论研究和实验研究之外的第3种手段。常见的计算力学方法并已广泛用到数值模拟计算中的有:材料非线性有限元法、几何非线性有限元法、热传导和热应力有限元法、弹性动力学有限元法、边界元法、离散元法、无网格法、有限差分法、非连续变形分析等。以计算力学为基础的数值模拟方法在采矿工程中的研究应用也正广泛地开展起来。 岩石力学与其他学科的结合 上述力学分支构成了岩石力学的基础,同时,岩石力学的发展也离不开其他学科的支持。在岩石力学的发展过程中,岩石力学十分关注其他学科的最新进展,并不断地吸收、借鉴它们的方法和手段,极大地丰富了岩石力学自身的研究应用手段。 岩石工程中所研究的岩块和岩体,作为一种地质体,其形成受地质作用支配,地质系统与工程岩体之间具有相互依存和相互作用关系。因此,对岩石的成岩和蜕变过程,构造应力和构造变形,岩石所赋存的构造部位及地质环境等因素的研究构成了岩石力学与工程学科的重要基础。 岩石工程的状态参数大多是随机变量,甚至可能是时间或空间的随机过程。由于这种状态参数的随机分布特性,其破坏模式及破坏过程也具有随机性。因此,对岩石工程进行参数的概率统计、破坏的随机过程分析和系统的可靠度分析就显得尤为重要了。统计学研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。现有机器学习方法共同的重要理论基础是统计学,传统统计学研究的是样本数目趋于无穷大时的渐进理论,现有学习方法也多是基于此假设。与传统统计学相比,统计学习理论(StatisticalLearning Theory或SLM)是一种专门研究小样本情况下机器学习规律的理论。V.Vapnik等人从上世纪六七十年代开始致力于此方面研究。目前该理论又成为研究热点,我国冯夏庭、赵洪波等人已将其应用到了岩石工程中。 近年来,随着现代数学和计算机技术的发展,人工智能、遗传进化算法、数据挖掘、灰色理论、非线性力学以及系统科学等新兴学科的兴起,为人们提供了全新的思维方式,这些都为突破岩石力学的确定性研究方法提供了强有力的理论基础。 虚拟现实(Virtual Reality)是一种综合计算机图形技术、多媒体技术、传感器技术、并行实时计算技术、人工智能、仿真技术等多种学科而发展起来的计算机领域的最新技术。它运用计算机表达现实世界的各种过程,通过它可以运用数学力学方法如数值模拟呈现开挖过程,在施工过程中描述尚未进行的工程,结合工程实践预测岩体变形及稳定。 岩石力学的分支 岩石力学以上述这些力学分支为基础并跟其他学科融合,逐步发展出以下分支:岩石工程地质力学;岩体结构力学;统计岩体力学;岩石流变力学;分形岩石力学;岩石水力学;强动载作用下的岩石动力学;非线性岩石力学;卸荷岩石力学;软岩工程力学;岩石力学智能分析方法。这些分支目前在采矿工程各个领域中都有具体应用。 岩石力学的研究内容 岩石力学的研究内容分为基础理论和工程应用两个方面。但是这些方面只是主要方面,随着建设的发展,还会有新的问题不断的提出。 2.1 基础理论 1、岩石应力,包括岩体内应力的来源、初始应力(构造应力、自重应力等)、二次应力、附加应力等。初始应力由现场量测决定,常用钻孔应力解除法和水压致裂法,有时也用应力恢复法。二次应力和附加应力的计算常用固体力学经典公式,复杂情况下采用数值方法。 2、岩石强度,包括抗压、抗拉、抗剪(断)强度及岩石破坏、断裂的机理和强度准则。室内用压力机、直剪仪、扭转仪及三轴仪,现场做直剪试验和三轴试验,以确定强度参数(凝聚力和内摩擦角)。强度准则大多采用库伦-纳维准则。这个准则假定对破坏面起作用的正应力会增加岩石的抗剪强度,其增加量与正(压)应力的大小成正比。其次采用莫尔准则,也可采用格里菲思准则和修正的格里菲思准则。 3、岩石变形,包括单向和三向条件下的变形曲线特性、弹性和塑性变形、流变(应力-应变-时间关系)和扩容。岩石流变主要包括蠕变和松弛。在应力不等时岩石的变形随时间不断增长的现象称为蠕变。在应变不变时岩石中的应力随时间减少的现象称为松弛。岩石扩容是指在偏应力作用下,当应力达到某一定值时岩石的体积随偏应力的增大而增大的现象。研究岩石变形在室内常用单轴或三轴压缩方法、流变试验和动力试验等,多数试验往往结合强度研究进行。为了测定岩石应力达到峰值后的应力与应变关系,必须应用伺服控制刚性压力机。野外试验有承压板法、水压法、钻孔膨胀计法和动力法等。根据室内外试验可获得应力与应变关系和应力-应变-时间关系以及相应的变形参数,如弹性模量、变形模量、泊松比、弹性抗力系数、流变常数等。 4、岩石渗流,包括渗透性、渗流理论、渗流应力状态和渗流控制等。对大多数岩石假定岩石中的水流为层流,流速与水力梯度呈线性关系,遵循达西定律。岩石渗透性用渗透系数表示,该系数在室内用渗透仪测定,在野外用压水和抽水试验测定。渗流理论借流体力学原理进行研究。稳定渗流满足拉普拉斯方程。多数岩石内的孔隙(裂隙)水压力可用K.泰尔扎吉 有效应力定律计算。为了减小大坝底面渗透压力、提高大坝的稳定性,应当采取渗流控制措施,如抽水、排水、设置灌浆帷幕以延长渗流途径等。 5、岩石动力性状,研究爆炸、爆破、地震、冲击等动力作用下岩石的力学特性、应力波在岩石内的传播规律、地面振动与损害等。动力特性在室内用动三轴试验研究,野外用地球物理性、爆炸冲击波试验等技术进行研究,波的传播规律借固体力学的理论进行研究。 2.2 工程应用方面主要研究五个方面 1、地上工程建筑物的岩石地基,例如研究高坝、高层建筑、核电站以及输电线路塔等地基的稳定、变形及处理的问题; 2、地表挖掘的岩石工程问题,如水库边坡、高坝岸坡、 渠道 、运河、路堑、露天开采坑等天然和人工边坡的稳定、变形及加固问题; 3、地下洞室,如研究地下电站、 水工隧洞 、交通隧道、采矿巷道、战备地道、石油产品库等的围岩的稳定和变形问题,地下开挖施工以及围岩的加固(如固结灌浆 、锚喷 、预应力锚固等)问题; 4、岩石破碎,如将岩石破碎成各种所要求的规格,以作为有关建筑材料(建筑物面石、土坝护石、堆石坝和防波堤石料、混凝土骨料等); 5、岩石爆破,如用定向爆破筑坝,巷道掘进和采矿等。此外,岩石力学还应用于某些地质问题的研究,如分析因开采地下矿体和液体而地表下陷、解释地球构造理论、预估地震和控制地震等。 岩石力学的研究方法 岩石力学是一门边缘学科,为了能用力学观点对自然存在的岩体进行性质测定和理论计算,为工程建设服务,岩石力学的研究方法包括科学实验、理论分析及工程验证等几个环节,三者是紧密结合并且相互促进的。 岩石力学是一门应用性很强的工程学科,因此在应用岩石力学知识解决具体工程问题的时候,必须与工程设计与施工保持密切联系、相互配合。 按学科的领域区分岩石力学的研究方法可以有以下四个方面: 地质研究方法 着重于研究与岩石的力学性质和力学行为有关的岩体。如: 岩层特征的研究。如软弱成份、可溶盐类、含水蚀变矿物、不抗风化以及原生结构。 岩体结构研究。软弱结构面、软弱面的起伏度结构面的充填物等。 环境因素研究。如地应力成因和展布地下水性态,水平地质条件等。 物理测试方法 结构探测。采用地球物理方法和技术来探查各种结构面的力学行 为。 环境物理量测。如地应力机制,渗透水系量测等。 岩石物理、力学性质测试。如室内岩块的物理性质、力学性质,原位岩体的力学性质,钻孔