最新模电功率放大电路
模电实验模拟运算放大电路(一)

实验目的和要求:① 了解运放调零和相位补偿的基本概念。
② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。
实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。
直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。
模拟电路课件---放大电路的基本知识

RL RL
路
所以
Ro
Vo Vo
RL
RL
另一方法
Ro
VT IT
Vs 0
Ro +
AVOVi –
+ Vs=0
–
放
Ro
+
大+
Vo
电
AVOVi
–
路–
+ Vo RL –
放大电路
IT
+ VT
–
Ro
注意:输入、输出电阻为交流电阻
1.2.3 放大电路的主要性能指标
2. 输出电阻
❖ 输出电阻R0的大小决定放大电路带负载的能力 ❖ 如输出为电压信号的放大电路(电压放大、互阻放大)
V0k
k=2
V01
100%
其中,V01为输出电压信号基波分量的有效值 V0k为高次谐波分量的有效值
1.2.3 放大电路的主要性能指标
5. 非线性失书真 中有关符号的约I 定
由元器件非线性特性
•引起大的失写真字。 母、大写下标表示直流量。如,VCEt、
非线IC性等失。真系数
O
• 小写字母、大写下标表示总量(含交、直流)。
衰减
–
Rs + Vi –
Ro
+
+
Ri
AVOVi
Vo RL
–
–
有
V&i
Rs
Ri
Ri
V&s
1 Rs
V&s 1
Ri
要想减小衰减,则希望…?
Ri Rs
理想 Ri
1.2.2 放大电路模型
100w功率放大电路

100w功率放大电路100w功率放大电路是一种用于放大电信号的电路,它可以将输入信号的功率放大到100瓦特。
这种放大电路通常用于音频放大器、无线电发射机等应用中。
在100w功率放大电路中,通常会使用功率放大器来实现信号的放大。
功率放大器是一种特殊的放大器,它的主要功能是将输入信号的功率放大到设定的水平。
在放大器电路中,有两个关键参数需要考虑,一个是增益,即输入信号经过放大后的输出信号与输入信号之间的比例关系;另一个是功率,即输入信号的功率和输出信号的功率之间的关系。
在设计100w功率放大电路时,需要考虑以下几个方面:1. 电源供应:100w功率放大电路需要足够的电源供应来支持放大器的工作。
通常会使用高功率的电源模块来提供稳定的直流电压。
2. 散热设计:由于功率放大器会产生大量的热量,散热设计是非常重要的。
通常会使用散热片、风扇等散热设备来保持电路的温度在合理范围内。
3. 电路保护:为了保护放大器和其他电路免受过载、短路等情况的损害,通常会在电路中添加过载保护、短路保护等功能模块。
4. 输入输出匹配:为了获得最佳的信号放大效果,输入输出之间的阻抗匹配非常重要。
通常会使用阻抗转换器、匹配网络等来实现。
5. 调整和校准:在电路设计完成后,需要对电路进行调整和校准,以确保电路的性能和稳定性。
100w功率放大电路的应用非常广泛。
在音频领域,它可以用于音响系统、演播室设备等;在通信领域,它可以用于无线电发射机、基站设备等。
通过使用100w功率放大电路,可以将输入信号的功率放大到足够高的水平,以满足各种应用的需求。
100w功率放大电路是一种用于放大电信号的电路,它可以将输入信号的功率放大到100瓦特。
在设计和应用该电路时,需要考虑电源供应、散热设计、电路保护、输入输出匹配等因素。
通过使用100w功率放大电路,可以实现各种应用中对信号放大的需求。
(完整版)NE5532构成的电子二分频功率放大器电路图

NE5532构成的电子二分频功率放大器电路图
图1是电子二分频功率放大器。
众所周知,高保真音箱是由低音和高音扬声器单元组成的(三分频音箱还有中音单元),必须使用分频器,使它们各放其声。
传统的分频方法是在功放以后采用LC分频器,由于这种分频器处理的是功放输出的大电流信号,因此体积大、制作成本高、制作和调试困难;分频器插接在功放与扬声器之间,必然带来插入损耗,并且使功放的阻尼特性变差。
在功放前采用电子分频器,则完全避免了功放后LC分频器的缺点,具有体积小、成本低、分频点准确、分频曲线理想、制作和调试简便的优点。
由于功放输出可以直通扬声器,意味着其效率和阻尼特性都有明显提高。
图10电路中,每一声道均采用一块NE5532双运放组成两个巴特沃斯二阶有源滤波器,其中,Icl-1是低通滤波器(LPF),ICl -2是高通滤波器(HPF),分频点为3.7kHz,电压增益A=1.6倍(3.9dB),品质因数Q=0.7,电路输入阻抗10k),输出阻抗<lk。
电位器RPl、RF2分别用于调节送往功放电路的低、高音的电平,应根据放音效果细心调节,使低、高音达到合适的比例,取得平衡的放音效果。
RPl、RP2不可当作音量电位器用,其一经调好,即应固定不动。
在电路总输
入端前应设有音量电位器。
模电第二章 基本放大电路

T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I
、
CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点
otl功率放大电路

otl功率放大电路OTL功率放大电路摘要:OTL功率放大电路(Output Transformerless Power Amplifier)是一种常用于音频放大器设计中的电路。
与传统的功率放大电路相比,OTL功率放大电路不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
本文将介绍OTL功率放大电路的基本原理、电路结构与应用特点,并对其性能进行评估。
1. 引言OTL功率放大电路是一种在音频放大器设计中常用的电路,其主要特点是不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
在音响设备、电视、收音机等领域广泛应用。
本文将详细介绍OTL功率放大电路的原理和设计要点。
2. OTL功率放大电路的原理OTL功率放大电路的基本原理是利用晶体管的功率放大特性,将音频信号放大到足够大的电压和电流,以驱动扬声器工作。
传统的功率放大电路通常使用输出变压器实现电压与电流的升压与降压变换,而OTL功率放大电路则使用晶体管的特性直接进行功率放大。
这样的设计不仅简化了电路结构,而且提高了效率和稳定性。
3. OTL功率放大电路的电路结构OTL功率放大电路的典型电路结构包括输入级、放大级和输出级。
输入级用来将输入电源转化为准备放大的信号;放大级用来放大信号到足够大的电压和电流;输出级将放大后的信号输出到扬声器。
其中,放大级是OTL功率放大电路的核心,其设计和选用的晶体管对性能有很大影响。
常见的OTL功率放大电路有单端式和双端式两种。
单端式OTL功率放大电路使用单个晶体管进行放大,结构简单,适合于小功率放大;双端式OTL功率放大电路使用两个晶体管相互驱动,能够提供较大的功率输出。
4. OTL功率放大电路的设计要点在设计OTL功率放大电路时,需要注意以下几个要点:4.1 晶体管的选用:晶体管是OTL功率放大电路的核心元件,其性能对电路的稳定性和放大效果有重要影响。
选用时应考虑参数包括工作频率、功率承受能力、线性度等。
4.2 回路设计:合适的回路设计可以提高OTL功率放大电路的稳定性和音质。
第7讲_高频 功率放大器实际电路(完整版)

L1 C1 ' R1 ' C2 ' R2 '
2. 高频功放的耦合回路
高频功放都要采用一定的耦合回路,以使输出功率能有效地传 输到负载(下级输入回路或天线回路) 一般说来,放大器与负载 , 之间的耦合可采用下图所示的四端网络来表示。这个四端网络应完 成的任务是:
RS uS 输入 匹配 网络 功率 放大器 输出 匹配 网络 RL
这 种 电 路 能 自 动 维 持 C 大 器 的 工 作 稳 定 。B 放 E E
B B
CB 以上基极自给偏压电路中,前两个为并馈线路,后一种为串馈 线路。
U 在 实 际 应 用 中 ,由 于 基 极 馈 电 电 路 中 采 用 单 独 电 源 BB
通常采用自给偏压的方式提供基极偏置。
VT VT VT
在大功率输出级,T型、Π 型等滤波型的匹配网络就得到了广泛的应用。
L1
C2
R1
C1
C2
R2
R1
C1
L1
R2
(a)
两种Π型匹配网络
(b)
图中的R2一般代表终端(负载)电阻,R1则代表由R2折合到左端的等效 电阻,现以 (a)为例进行计算公式的推导 L1 将并联回路R1C1 与R2C2 变换为串联形式,由 C1 ' C2 ' 串、并联阻抗转换公式可得 2
R1
R2
R1 1 Q
X
2
2 1 2 c2
X
2
X c1
2 c1
2
R
2 1
R1
X C1 X C2
R1
R 1 X C1
2 2
X C1
R2
2
2 2
模电第15讲 集成运算放大电路

输入级的分析
共集-共基形式 共集 共基形式 T1和T2从基极输入、射极输出 从基极输入、 T3和T4从射极输入、集电极输出 从射极输入、 T3、T4为横向 为横向PNP型管,输 型管, 型管 入端耐压高。共集形式, 入端耐压高。共集形式,输入 电阻大, 电阻大,允许的共模输入电压 幅值大。共基形式频带宽。 幅值大。共基形式频带宽。 Q点的稳定: 点的稳定: 点的稳定 T(℃)↑→IC1↑ IC2↑ →IC8↑ ( IC9与IC8为镜像关系 C9↑ 为镜像关系→I 因为I 不变→I 因为 C10不变 B3↓ IB4↓ → IC3 ↓ IC4↓→ IC1↓ IC2↓
1.原理框图 原理框图
与uo反相
+VCC
反相 输入端
+ +
+ -
u–
同相 输入端 与uo同相
T3 +
T4 +
T1
+
+
IS
中 间 级
输 出 级
-VEE
例 集成运放中的电流源电路
在电流源电路中充分利用集成运放中晶体管性能的一致性。 在电流源电路中充分利用集成运放中晶体管性能的一致性。 特性完全相同。 1. 镜像电流源 T0 和 T1 特性完全相同。 基准电流
第十五讲 集成运算放大电路(简介
一、概述 二、集成运放的主要性能指标
一、概述
集成运算放大电路,简称集成运放, 集成运算放大电路,简称集成运放,是一个高性能的直接 耦合多级放大电路。因首先用于信号的运算,故而得名。 耦合多级放大电路。因首先用于信号的运算,故而得名。
1. 集成运放的特点
(1)电路元件制作在一个芯片上,采用直接耦合方式, 电路元件制作在一个芯片上,采用直接耦合方式, 充分利用管子性能良好的一致性, 充分利用管子性能良好的一致性,元件参数偏差方向一 温度均一性好。采用差分放大电路和电流源电路。 致,温度均一性好。采用差分放大电路和电流源电路。 用复杂电路实现高性能的放大电路, (2)用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。 并不增加制作工序。 用有源元件替代无源元件, (3)用有源元件替代无源元件,如用晶体管取代难于制 作的大电阻。 以下的小电容用PN结的结电容构 作的大电阻。几十 pF 以下的小电容用 结的结电容构 成、大电容要外接。二极管一般用三极管的发射结构成 采用复合管。 (4)采用复合管。