中考圆的常见题型总结
圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
中考复习--圆专题所有知识点和题型汇总,全

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1个B.2个C.3个D.4个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。
3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5.下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的心,∠A=50 ,则∠BOC=_________图1 图22.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C. 58°D.32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5. 如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。
8.若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=.9.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________A图7 图810.如图8,△ABC是O的接三角形,点C是优弧AB上一点(点C不与A,B重合),设OABα∠=,Cβ∠=(1)当35α=时,求β的度数;(2)猜想α与β之间的关系为11.已知:如图1,四边形ABCD接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A;如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;如图3,若点C在⊙O,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系。
中考圆形综合题型考点分析

中考圆形综合题型考点分析一、主要考试知识点1、求特殊角度(难度系数:★★★)2、证明相等的角(难度系数:★★★)3、证明相似三角形(难度系数:★★★★)4、证明相等线段(难度系数:★★★★)5、证明线段乘积、比例关系(难度系数:★★★★)6、求线段(或图形面积)比值(难度系数:★★★★★)7、求一些角度的三角函数值(实质上线段的比值)(难度系数:★★★★★)8、求特殊线段的长(难度系数:★★★★★)9、求图形面积(难度系数:★★★★★)10、求几何图形之间的函数解析式(难度系数:★★★★★★)二、解题思路分析1、注意等角的使用(包括等弦、等弧、等弦心距的运用)分析:特别要分析图中相等的角的关系,看图中有没有相等有弦、相等的弧、相等的弦心距等,还要注意有没有垂径定理的情况。
通过分析找出图中相等的角,为以后寻找相似埋下伏笔。
2、注意圆心角与圆周角的使用分析:对于圆心角和圆周角的2倍关系,一定要特别注意。
已知圆心角度数就要寻找相应的圆周角的度数;反之,已知圆周角的度数也要寻找相应的圆心角的度数。
3、注意一些特殊角度的运用分析:图中一些特殊角度特别要引起注意,常见的如15°、30°、45°、60°、120°、150°等。
这些角度都可以和直角组成特殊的直角三角形,从而解决问题。
4、直径对直角的运用分析:一般直径常连接90°的圆周角,使图中出现直角三角形,便于思考。
特别是配合一些特殊角度(30°、45°、60°)使用,能使计算更为便捷。
5、垂径定理的运用分析:对于直径上作垂线(或高),特别要注意垂径定理的运用。
这样就会出现相等的弧,也会产生相等的弦,进而出现相等的角。
6、切线与直径的关系的运用分析:说起切线,一定要连接接切点和圆,这样便会产生垂直,进而产生直角三角形,从而使思考简化。
7、全等三角形的运用分析:通过圆的对称性(轴对称、中心对称)、垂径定理、切线长定理思考图中全等三角形8、相似三角形的运用分析:俗话说:“圆内盛产相似”。
中考数学圆的解题方法归纳总结及例题分析

中考数学圆的解题方法归纳总结及例题分析1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
例1:例2:2.遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
3.遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
例题:如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D;求证:BC是过A,D,C三点的圆的切线解:(1)作出圆心O,以点O为圆心,OA长为半径作圆(2)证明:∵CD⊥AC,∴∠ACD=90°∴AD是⊙O的直径连结OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A =30°∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线.4.遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。
如图,△ABC是⊙O的内接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。
解:连接CD,∠ADC=∠ABC=50°∵AD是⊙O 的直径,∴∠ACD=90°∴∠CAD+∠ADC=90°∴∠CAD=90°-∠ADC=90°-50°= 40°5.遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得到直角或直角三角形。
(2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。
九年级《圆》经典例题分析总结

《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。
中考数学圆的切线定理题型学霸总结-

绝密★启用前中考数学圆的切线定理题型学霸总结阳光老师:祝你学业有成未命名注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.如图,PA ,PB 为⊙O 的切线,A ,B 为切点,根据图形得出四个结论:①PA=PB ;②∠1=∠2;③∠3=∠4;④AB 被OP 垂直平分. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个 2.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 3.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°4.如图,AD ,AE 分别是⊙O 的切线,D ,E 为切点,BC 切⊙O 于F ,交AD ,AE 于点B ,C ,若AD =8.则三角形ABC 的周长是( )A .8B .10C .16D .不能确定 5.若Rt ABC 的外接圆半径为R ,内切圆半径为r ,则其内切圆的面积与Rt ABC 的面积比为( )A .22r r R π+ B .2r R r π+ C .42r R r π+ D .4r R r π+第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题6.如图,在△ABC 中,AC =6cm ,BC =8cm ,AB =10cm ,则△ABC 内切圆的半径为___________cm .7.如图,PA 、PB 、DE 分别切O 于点A 、B 、C ,DE 交PA 、PB 于点D 、E ,已知PA 长8cm ,则PDE △的周长为___________.8.如图,△ABC 的周长为24cm ,AC =8cm ,⊙O 是△ABC 的内切圆,⊙O 的切线MN 与AB 、BC 分别交于点M 、N ,则△BMN 的周长为____cm .9.如图,PA 、PB 、DE 分别切O 于A 、B 、C ,O 的半径为5cm ,OP 的长为13cm,则PDE△的周长是______cm.10.如图,正方形ABCD 中,点E 是CD 边上一点,连接AE,过点B 作BG⊥AE 于点G,连接CG 并延长交AD 于点F,当AF 的最大值是2 时,正方形ABCD 的边长为______.11.如图,AB为半O的直径,C为半圆弧的三等分点,过B,C两点的半O的切线交于点P,若AB的长是2a,则PA的长是________.12.如图,PA,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=_____度.13.如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的外心和内心之间的距离为_____.15.如图,△ABC中,∠ACB=90°,AB,BC,CA的长分别为c,a,b ,则三角形的内切圆半径为_________.16.如图,P A、PB、CD是⊙O的切线,A、B、E是切点,CD分别交P A、PB于C、D 两点,若∠APB=40°,P A=5,则下列结论:①P A=PB=5;②△PCD的周长为5;③∠COD =70°.正确的有______________个.17.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径为5cm,OP的长为13cm,则△PDE的周长是_______cm.18.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=13,BD=3,则AC的长为____________.19.如图,已知PA,PB分别切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,则△PCD 周长为______.20.如图,Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,则ABC ∆的内切圆半径为________.21.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =6,则△PCD 的周长为________.22.如图,PA ,PB 分别切⊙O 于A ,B ,并与⊙O 的切线,分别相交于C ,D ,已知△PCD 的周长等于10cm ,则PA=__________ cm .三、解答题23.如图,∠ABM =90°,⊙O 分别切AB 、BM 于点D 、E .AC 切⊙O 于点F ,交BM 于点C (C 与B 不重合).(1)用直尺和圆规作出AC ;(保留作图痕迹,不写作法)(2)若⊙O 半径为2,AD =3,求AC 的长.24.如图,在O中,AB为直径,点M为AB延长线上的一点,MC与O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC MD AC==,连接AD.求证:①MD与O相切;②四边形ACMD是__________形;③ADM∠=__________.25.如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.26.如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=9,tan∠CDA=23,求BE的长.27.在△ABC中,∠C=α,⊙O是△ABC的内切圆,⊙P分别与CA的延长线、CB的延长线以及直线AB 均相切,⊙O 的半径为m ,⊙P 的半径为n .(1)当α=90°时,AC =6,BC =8时,m =_______,n =________.(2)当α取下列度数时,求△ABC 的面积(用含有m 、n 的代数式表示,并直接写出答案).①如图,α=90°;②如图,α=60°.28.如图1,△ABC 中,CA=CB ,点O 在高CH 上,OD ⊥CA 于点D ,以O 为圆心,OD 为半径作⊙O .(1)求证:CB 与⊙O 相切(2)如图2,若⊙O 与CB 相切于点E,且⊙O 过点H ,且AC=10,AB=12,连接EH ,求△BHE 的面积.29.已知:如图,ABC 中,90B ︒∠=,O 是AB 上一点,以点O 为圆心,OB 为半径的圆切AC 于点D .(1)求证:BC CD =;(2)若2AD =,3DC =,求⊙O 的半径;DD BC (3)若点D关于AB的对称点为D,试探究当点D满足什么条件时,四边形为菱形.30.如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.⑴求证:点D为线段BC的中点.⑵若AB=3,点E是半圆AmF上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆AmF中点时,DE=.31.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.祝你学业有成参考答案1.D【分析】根据切线的有关性质可以得到解答.【详解】解:根据切线长定理可知:PA=PB,∠3=∠4,∴①、③正确;由OA=OB及两点确定一条直线可知OP是AB的垂直平分线,∴④正确;根据切线的性质定理可知,∠OAP=∠OBP=90°,∴∠1=∠2,②正确.故选D.【点睛】本题考查切线的应用,熟练掌握切线的性质定理和切线长定理是解题关键.2.D【分析】利用切线长定理证明△PAG≌△PBG即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
有关“圆”的中考必考题型(抢先看)
2019有关“圆”的中考必考题型(抢先看)2019中考各地区时间不尽相同,部分地区已经结束,部分地区还在备考中,今天小编为大家整理了有关“圆”的中考必考题型的相关内容,以便考生做好考前复习。
知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。
连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
在同圆或等圆中,能够重合的两条弧叫做等弧。
知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r时,点在圆外。
当点在圆上时,d=r;反过来,当d=r时,点在圆上。
当点在圆内时,d<r;反过来,当d<r时,点在圆内。
知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。
3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。
圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。
圆周角定理推论2:直径所对的圆周角是直角;90的圆周角所对的弦是直径。
知识点四、圆与三角形的关系1、不在同一条直线上的三个点确定一个圆。
2、三角形的外接圆:经过三角形三个顶点的圆。
3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。
4、三角形的内切圆:与三角形的三边都相切的圆。
5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。
知识点五、直线和圆的位置关系:相交、相切、相离当直线和圆相交时,d<r;反过来,当d<r时,直线和圆相交。
中考数学圆知识点总结5篇
中考数学圆知识点总结5篇第1篇示例:数学是中考考试的必考科目,而关于圆的知识点在数学中占有非常重要的地位。
掌握了圆的相关知识,不仅能够在中考中取得更好的成绩,也有助于我们理解和运用数学知识。
下面我们来总结一下关于中考数学圆知识点的内容。
一、圆的基本概念圆是由平面上距离给定点(圆心)的所有点构成的集合,圆心到圆上任意一点的距离称为半径,圆内不经过圆心的线段称为弦,圆内的一段是弦分成的弧,半径的两端和圆上的一点共线,相交于该点的两条切线长度相等等。
二、圆的性质1. 同圆的弦长相等,异圆的弦长不等。
2. 相等圆的半径相等,而且圆周相等。
3. 圆内角、弦的角平分线和半径三者相交于一点。
4. 圆的外接角是对半的,即半径与切线相交于90度,弦与弦的夹角、切线与切线的夹角相等。
5. 内角落在圆弧内的叫做圆心角。
三、圆的相关定理1. 存在唯一的过三点的圆定理(就是圆的唯一性)。
2. 切、割定理(切线与切线、弦、割线各自乘积相等)。
3. 平行/相似判定定理(有什么情况判断两个圆是否平行或相似)。
4. 余弦定理(三角形当中,直角三角形含有的一种特殊情况)。
5. 弦切角定理(描述弦在圆内部与对应的两平行切线的关系)。
6. 余切定理(指两个切线、或一条切线和半径之间的倍率关系)。
7. 切线定理(圆外一点到圆的切线与切点连线的长度之积)。
四、圆的应用1. 圆的相关计算问题:包括求圆周长、面积等。
2. 圆与三角形、正方形/矩形的结合题:针对圆与其他几何形状的相互作用问题。
3. 圆与证明题:利用圆的性质,进行证明题目。
圆的知识点在中考数学中具有非常重要的地位,掌握了圆的相关知识,可以更好地完成相关题目。
在复习中,我们需要通过大量的练习,加深对圆的概念和性质的理解,提高解题的能力和速度。
希望同学们能够认真学习和练习,取得优异的成绩,顺利通过中考。
第2篇示例:中考数学圆知识点总结圆是我们日常生活中常见的几何图形之一,具有许多特殊性质和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考圆的常见题型总结
中考圆的常见题型总结
圆是中考数学中的一个重要概念,掌握圆的性质和相关题型能有效提高数学成绩。
下面将对中考圆的常见题型进行总结。
常见题型一:圆的基本性质题
1. 求圆的面积和周长:
圆的面积公式为:S = πr²
圆的周长公式为:C = 2πr
2. 求圆心角的度数:
圆心角所对的弧与圆周所对的角相等,所以可以用圆心角的度数去表示弧的度数。
常见题型二:圆的位置关系题
1. 判断关系:
a. 外切圆和内切圆的位置关系:两个相切的圆,内切圆的圆心在外切圆的圆心的同一直线上。
b. 相交关系:两个相交的圆在两个交点的位置关系,可以根据边长和半径等关系进行求解。
c. 同圆关系:两个同圆的圆是重合的,即它们的半径相等。
d. 不交相离:两个完全不相交的圆,它们的位置关系为不交相离。
2. 判断位置:
判断一个点在圆的内部、外部还是圆上,可以通过求这个点到圆心的距离是否等于圆的半径来判断。
常见题型三:弧和扇形的性质题
1. 弧段公式:
已知圆的半径和弧长,可以用弧长公式计算圆心角的度数。
2. 扇形面积公式:
已知扇形中心角的度数和半径,可以用扇形面积公式计算扇形的面积:S = (θ/360°)πr²
常见题型四:切线和切点的性质题
1. 切线的定义:
切线是与圆只有一个交点的直线。
2. 切点的性质:
切点与切线垂直,切点到圆心的距离等于半径。
常见题型五:菱形和正方形的圆内接问题
1. 菱形的性质:
菱形的四个角都是直角,因此可以通过对角线的性质判断是否为菱形。
2. 正方形的性质:
正方形是一种特殊的菱形,它的四条边相等且四个角都是直角。
常见题型六:圆锥、圆台和球的性质题
1. 圆锥的性质:
圆锥是一个底面是圆而侧面是圆锥曲线的立体。
求圆锥的体积公式为:V = (1/3)πr²h
求圆锥的侧面积公式为:S = πrl
2. 圆台的性质:
圆台是一个底面是圆而顶面平行于底面的立体。
求圆台的体积公式为:V = (1/3)π(R² + r² + Rr)h
求圆台的侧面积公式为:S = π(R + r)l
3. 球的性质:
求球的体积公式为:V = (4/3)πr³
求球的表面积公式为:S = 4πr²
以上是中考圆的常见题型总结,通过对这些题目的分析和解答,可以有效提高对圆的理解和掌握,并且能够在中考数学中灵活运用。
希望这些总结对你的复习和备考有所帮助。