激光全息无损检测及应用

合集下载

浅谈全息摄影技术及其应用前景

浅谈全息摄影技术及其应用前景

浅谈全息摄影技术及其主要应用摘要:全息摄影技术也称全息照相技术、全息技术等,是一种神奇的光信息记录技术。

其原理可用八个字来概括“干涉记录,衍射再现”。

本文简单地介绍了全息摄影技术的发展历程、特点,一些突破性的进展,和在现代生活中的主要应用,以及全息摄影技术的前景。

关键词:全息摄影、激光、三维全息图、全息存储一、引言全息技术是一门正在蓬勃发展的光学分支,主要运用了光学原理,利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。

全息摄影技术与普通照相技术的最大区别,就是全息摄影技术能够利用激光的相干性原理,将物体发射、反射或透射等的光波的振幅和相位同时记录在感光板上,也就是把光波的所有信息全部记录下来,形成一张全息图,并利用一定的手段再现出立体的三维图像。

也就是说,全息技术所记录不是图像,而是光波得信息。

为了获得清晰的全息图,对光源性能要求较高,只有激光才能达到。

因而在激光出现之后,全息摄影技术迅速发展起来,并在近代科学研究和工业生产中,特别是在现代测试、生物工程、医学、艺术、商业、保安及现代存储技术等方面获得了广泛的应用。

二、全息摄影技术概述1、全息摄影技术的含义及发展历程全息摄影技术是将光波全部信息完整的记录于底板上的一种摄影技术。

所谓全息,就是把物体所发出或反射的光信号的全部信息包括光的振幅和相位全部记录下来,再现被摄物体时就能得到物体的立体图像。

“全息”的意思为“全部信息”,即相对于只记录物体的明暗变化的普通摄影来说,全息摄影还能记录物体的空间变化信息。

早在激光出现以前,1948年英国伦敦工学院的物理学家丹尼斯·伽伯为了提高电子显微镜的分辨本领而提出了全息摄影的概念,从而开始全息摄影的研究工作,并因此获得了1970年诺贝尔奖金。

伽伯的实验研究解决了全息术发明中的基本问题,即波前的记录和再现,但由于当时缺乏明亮的相干光源(激光器),全息图的成像质量很差。

1962年随着激光器的问世,在伽伯全息术的基础上引入载频的概念发明了离轴全息术,有效地克服了当时全息图成像质量差的主要问题——孪生像,三维物体显示成为当时全息术研究的热点,但是这种成像科学远远超过了当时经济的发展,制作和观察这种全息图的代价是很昂贵的,全息术基本成了以高昂的经费来维持不切实际的幻想的代名词。

什么是全息投影?

什么是全息投影?

什么是全息投影?全息投影,也被称为全息成像,是指通过特定的光学投影技术制作出一种具有真实观感、三维效果非常强的影像。

全息投影技术的诞生,使得人们可以在真实世界之外,观看并感受到更加真实的物体形象。

作为一项高新技术,全息投影在医疗、科技、娱乐等领域都有着广泛的应用。

下面,我们就来详细介绍一下全息投影吧。

一、全息投影的原理全息投影技术使用光学原理,将物体成像到一个光阴极上,并用激光把物体的像浮现出来。

在特定条件下,这个像会表现出明显的立体感。

具体而言,全息投影的原理如下:1. 光波的干涉:当两束光波相交时,它们会互相干涉,并在它们相交的地方形成相干图案。

2. 光波的衍射:光波在通过狭缝或物体角度时,会发生衍射,形成条纹或环带图案。

3. 光波的记录:把干涉或衍射产生的图案记录下来,形成全息底片。

4. 光波的重建:使用光源,将全息底片照射,从而实现物体的像的重建。

二、全息投影的应用全息投影技术的应用非常广泛,其中医学、科技、娱乐三个领域的应用比较突出。

1. 医学领域:在医疗方面,全息投影可以为医生提供更加直观、立体的信息,尤其对医生进行手术模拟和教学有很大帮助;同时,还可以用于人体成像和病理诊断。

2. 科技领域:在科技领域,全息投影在光学、激光、显示技术等方面都有广泛的应用。

比如在军事领域,可以用全息望远镜进行高分辨率的长距离观察、火控指挥等;在工业领域,可以用全息检测对物体进行无损检测、加工验证等;在教育领域,可以利用全息投影技术进行模拟实验等。

3. 娱乐领域:在娱乐领域,全息投影技术可以用于演唱会、电影、游戏等方面,给人们带来更加震撼、立体、逼真的视觉体验。

比如,在演唱会上使用全息投影技术,歌手可以在舞台上与虚拟形象互动,为观众呈现更加生动、灵动的视觉效果。

综上所述,全息投影技术在医学、科技和娱乐领域都有着非常广泛的应用。

随着技术的进步和研发的深入,相信全息投影技术将在更多领域得到应用,为人们带来更多立体、真实、震撼的视觉体验。

汽车无损检测技术探讨

汽车无损检测技术探讨

陷信号检测 能力 强,磁粉 检测几乎 不受零 部 件大 小 形 状 和 部 位 的 限 制 , 且 速 度

通过热 加载 、流 体压 力加 载( 负压 力) 正 、
机械加载等方式使被检物体表面产生微小 变形 ,比较被检物体加载前后两组光波的 形状 ,根据干涉 条纹有无异常变化判断被
悼 T 筒 茧 3 涡流检 测法
维普资讯
中国科技信息 2 0 年 第 1 期 07 3
C I CEC N E, O O  ̄ I f A I u. 0 HN S I EA D T I L 6 I l TO J1 07 A N C N  ̄O M N 2
汽车无损检测 技术探讨
王柏生 绍兴市公安局 交警支队车辆安全技 术检测站 5 2 0 10 0

表面的开 口缺 陷。渗透检测操作繁琐 、灵 敏 度 低 ,废 液 必 须 进 行 环 保 处 理 ,达 到 国 家标准后方 可排放 。渗透检测主要用于辅 助检测 ,如在汽车维修 、汽车零部件性能 试 验 中使 用 。
6、激 光 全 ,. 测 法 自检 激 光全 息 检 测 是 利 用 激 光 全 息 照相 来
1 、超声检 测法 超声检 测方法是利用超声波在介质中 传播的性质来判断工件和材料的缺陷和异
常 ,能 进行材料 内部探 伤 ,并准 确定位 。
征 ,来判断半 轴内部缺 陷的位 置、大小及 它是利 用各种材料对射线的投射性能及吸 I性 质 等 。 此方法的优点是 工件内声能量大 ,有 收、衰减程 度的不 同,使底 片感光成黑度 不同的 图像来观察 。在汽车上主要用于检 测铸 件和焊接件的 内部 质量 ,如球墨铸铁 利于提 高探伤 灵敏度和分辨率 ,探 伤波形 稳 定 、清晰 、再 现 性好 ;缺 点是 工 件表

简议无损检测新技术在压力容器中的应用

简议无损检测新技术在压力容器中的应用

简议无损检测新技术在压力容器中的应用摘要:下文主要结合笔者多年的工作实践经验,阐述了声发射检测、金属磁记忆检测、红外热波检测、超声相控阵技术检测、激光检测和微波检测技术的压力容器无损检测方面的六种新技术,进一步说明这几种检测新技术的在压力容器上的应用以及它们的优缺点。

关键词:无损检测;新技术伴随着我国现代化工业的快速发展,压力容器在特种设备中的应用越来越多,其广泛应用于各行各业诸如石油化工、机械、纺织、冶金、制药、核能及运输等。

随着经济的迅速发展,压力容器的在用数量和应用范围也日益增大,现代工业正朝着“三高”(高温、高速、高载)方向发展。

压力容器在”三高”运行状态下往往未到下一个常规检测周期就已发生腐蚀和开裂等缺陷以致造成严重事故。

为保证压力容器在使用过程中安全运行,就需要对压力容器所存在的缺陷早发现早消除。

如今,压力容器的制造和运行检验中所采用的无损检测方法多种多样,除了常规无损检测方法(如超声、磁粉、渗透、涡流、射线等)外,还产生了一些无损检测的新技术、新方法、新仪器,接下来就介绍一下声发射、磁记忆、红外热波成相、超声相控阵技术、激光和微波无损检测新技术。

1.无损检测新技术1)声发射检测。

声发射技术应用于压力容器结构完整性检测与评价可分为三个方面:新制压力容器的声发射检测与评价、在用压力容器的声发射检测和评定、压力容器的声发射在线监测和评定。

压力容器在介质温度和压力作用下容易形成裂纹,在裂纹的形成和扩展直到开裂这一系列情况中都会发射出与之相关的大小不同的声发射能量信号,根据这些能量信号的大小来判断是否有裂纹产生以及裂纹的扩展程度。

声发射检测的一个重要特点就是必须在检测时对压力容器进行加载,一般采用的加载方法是对压力容器进行耐压试验,有时也会用工作介质直接进行加载,如果在整个加载过程中缺陷部位有声发射定位源信号产生,则判定缺陷是活性的;反之则判定缺陷是非活性的。

声发射检测的优点能够检测出活动的缺陷,即材料的断裂和裂纹的扩展,从而为使用安全性评价提供依据;可远距离操作,长期监控设备允许状态和缺陷扩展情况;装置较轻便;其局限性是设备价格昂贵;操作人员素质要求高;检测过程中干扰因素较多;声发射检测完成后,一般需要超声波检测复验。

浅谈全息图的特点及全息摄影技术

浅谈全息图的特点及全息摄影技术

浅谈全息图的三个特点及激光全息摄影技术摘要:全息照相记录了光波的全部信息,除振幅外,还记录了光波的相位;菲涅耳全息图用白光再现会产生色模糊和像模糊;菲涅耳全息图上每一点都记录了物体上所有点发出的波的全部信息,每一点都可以在再现光照射下再现出像的整体,因而全息图的碎片仍能再现出物体完整的像。

激光全息技术作为一种新兴技术,全息影像技术还不是很完善,包括成本、清晰度、容量等问题还没有得到妥善的解决,但全息技术的应用,顺应了时代发展的潮流,将成为未来人们生活中必不可少的一部分.引言从全息思想的提出至今已经有半个多世纪的历史。

期间,全息技术的发展取得了很大的成就。

了解激光全息摄影,有助于我们深入了解全息技术对生产、生活的重要影响以及其今后的发展方向.一、全息图的三个特点(一)全息图的三维立体性全息照片和普通的科普照片是不一样的。

在适当的光照下,全息照片上显示出来的景象是立体的,可看到景物的各个侧面。

全息照相和常规照相之不同还在于,常规照相只是记录了被摄物体表面光线强弱的变化,即只记录了光的振幅;而全息照相则记录了光波的全部信息,除振幅外,还记录了光波的相位.这样就把空间物体光波场的全部信息都贮存记录了下来.然后利用全息照片对特定波长单色照明光的衍射,把原空间景象显现出来。

它可将一个“冻结”了的景物重新“复活”后显现在人们眼前。

全息照片的这一特性使它的应用极其广泛,如用于研究火箭飞行时的冲击波、机翼蜂窝状结构的无损检测等.(二)菲涅耳全息图不能用白光再现白光作为再现光源,通常光源线度较宽,如果光源线度展宽会引起像的线度展宽形成线模糊。

同时白光含有所有波长,从而会引起像的色模糊,因此菲涅耳全息图不能用白光再现.(三)菲涅耳全息碎片能够再现完整三维图像菲涅耳全息图上每一点都记录了物体上所有点发出的波的全部信息,每一点都可以在再现光照射下再现出像的整体,因而全息图的碎片仍能再现出物体完整的像.不过对再现像有贡献的点越多,像的亮度越高。

全息照相——精选推荐

全息照相——精选推荐

实验十全息照相全息照相(或称全息术)是利用光的干涉原理记录物光波和利用光的衍射原理再现物光波的一门立体摄影技术。

早在1948年就由英国的科学家伽柏1提出了理论与方法。

由于当时缺少高强度、高相干性的光源,所以这项工作进展的比较缓慢,随着20世纪60年代激光的问世,使得全息照相有了一个合适的光源,因而迅猛的发展起来,并且相继的出现了多种全息方法,开辟出全息应用的广阔领域。

鉴于伽柏这种开创性的研究成果,他被授予1971年度的诺贝尔物理学奖。

从用激光作为光源拍摄出第一张具有实用价值的全息照片起,至今已发展到不仅可以用激光拍摄、激光再现,而且已经发明了激光拍摄、白光再现的全息术,如:反射全息、彩虹全息、及合成全息等等。

同时也开始了利用白光记录全息图的研究工作。

现在全息照相的理论已应用于信息储存、图象识别、干涉计量、无损检测、物体的表面研究、遥感技术、生物医学及军事科学的各个门类,也深入到我们的日常生活中,如:书籍装帧、防伪商标、家庭玩具和工艺品等。

应用了全息技术后,给我们带来了越来越多的方便和益处。

本实验将通过静态全息照相的拍摄和再现,了解全息照相的主要特征及操作要领。

实验原理1.全息照相的概述由光的波动理论可以知道,光波是电磁波,它的特征主要取决于其振幅(强度),相位(波前的形状)和波长(颜色)。

我们要感受到一个真实立体的物体存在,至少应接受到两类信息,即物体发出的一定频率光波的振幅与相位。

假使物体不存在,只要能接受到与原物体发出的振幅与相位完全一致的光波,那么一样能感受到与原物体一样逼真的图像。

普通照相是把物体表面漫反射的光波,经过照相机的镜头,形成物体的象,如果在象位置上放一感光底片,因象的照度和物体相应各点的光强成正比,所以底片经曝光、显影后,就可以得到一个明暗与被摄物体成反比的物体象(负片),把象上的光强分布记录在感光片上,经冲洗加工,在照相纸上就可以得到一个普通的相片。

由于普通照相所用的感光材料的感光特性,其频率响应远跟不上光波的频率,感光的程度仅仅与总的曝光量有关,照片上记录的是物体的光强分布,也就是只记录的是物光的振幅,没有把物光的全部信息(振幅、相位)都记录下来。

道路桥梁检测中的无损检测技术运用李芳

道路桥梁检测中的无损检测技术运用李芳摘要:目前,我国经济发展态势良好,其中交通运输起着重要作用。

路桥建设促进了两地政治、经济、文化的发展,辐射了周边地区的发展。

有鉴于此,保证路桥工程质量是关键。

路桥施工完成后,必须对桥梁进行检查,确保其质量符合标准。

随着我国科学技术的飞速发展,路桥检测方法日新月异。

实践证明,传统的检测方法已经不能满足路桥检测的需要。

本文对无损检测技术在路桥检测中的应用进行了研究和分析,以期对今后我国道路桥梁检测技术的发展有所帮助。

关键词:道路桥梁;无损检测技术;优势1无损检测技术的应用优势1.1无损检测的体现无损检测技术主要体现在以下几个方面:(1)在公路桥梁工程的实际施工过程中,为了保证施工质量,有必要进行工程检测。

通过应用无损检测技术,可以有效地提高路桥工程检测方案的科学性和有效性,可以利用无损检测技术进行无损检测,在路桥检测工作中,不仅可以提高检测信息的有效性,也可为道路工程养护提供数据支持。

(2)通过无损检测技术的应用,施工单位可以大大解放施工单位的人员和设备,明确工程检测的重点,保证信息和数据的全面性和有效性;(3)无损检测技术的应用,可以充分发挥“无损”的优势,保护路桥工程,避免因检测工作破坏路桥工程而造成的质量问题。

1.2对路桥工程破坏较小路桥检测工作处于整个工程的后期阶段。

为了避免道路和桥梁的二次损伤,无损检测是最佳选择。

无损检测方法可以直接检测出路桥问题,大大减少了检测时间消耗,不仅如此,还大大提高了检测效率,既保证了工作进度,又完成了工作任务。

这一破坏性的小机遇给路桥工程检测工作提供了技术支持,使路桥建设工作能够跟上科技发展的步伐,适应时代发展。

1.3具有较大的拓展空间无损检测技术有着较大的发展空间,在某种意义上也能适应我国路桥工程的发展:(1)无损检测技术有着很大的发展空间和更为丰富的技术体系,其在实际应用过程中,检测人员可以是各种优秀的技术并将灵活的操作手段融入到无损检测技术的技术体系中,突破了我国传统检测技术体系的局限性;(2)无损检测技术还具有信息优化的功能,可以不断提高检测技术水平和应用过程中的经济效益;(3)无损检测技术在我国仍有很大的应用前景,可以灵活应对未来路桥检测工作的变化和挑战。

全息干涉与散斑干涉综述

全息干涉与散斑干涉技术综述报告全息干涉无损检测技术是无损检测技术中的一个新分支,它是20世纪60年代末期发展起来的,是全息干涉计量技术的重要应用。

我们知道结构在外力的作用下,将产生表面变形。

若结构存在缺陷,则对应缺陷表面部位的表面变形与结构无缺陷部位的表面变形是不同的。

这是因为缺陷的存在,使得缺陷部位的结构的刚度、强度、热传导系数等物理量均发生变化的结果。

因而缺陷部位的局部变形与结构的整体变形就不一样。

应用全息干涉计量技术就可以把这种不同表面的变形转换为光强表示的干涉条纹由感光介质记录下来。

而激光散斑技术是在激光全息实验中,我们观察被激光所照射的试件表面,就可以看到上面有无数的小斑点,因而观察不到条纹,因此在前期,散斑是被看作是噪声来对待的,直到随着人们对全息干涉技术的进一步了解,才发现虽然这些斑点的大小位置都是随机分布的,但所有的斑点综合是符合统计规律的,在同样的照射和记录条件下,一个漫反射表面对应着一个确定的散斑场,即散斑与形成散斑的物体表面是一一对应的。

在一定范围内,散斑场的运动是和物体表面上各点的运动一一对应的,这就启发人们根据散斑运动检测,来获得物体表面运动的信息,从而计算位移、应变和应力等一些力学量。

因此全息和激光散斑方法由于其固有的高灵敏度,在非破坏性测试领域发现了越来越多的应用。

可探测到表面及地下的裂缝、空洞、脱层和分层等缺陷。

由于这些方法测量了在外部加载或其他条件的影响下,在这三个维度下研究对象的变形,它们也可以用于质量控制,也可以用于设计阶段。

激光散斑的方法,还利用了电子检测和处理的发展(称为电视全息术),并可用于实时定量评价。

本综述报告主要介绍利用光纤光刻技术,对全息和激光散斑测量方法进行了全面的研究,这两种方法都适用于焊接、复合材料的检验。

IntroductionHolography is a two step process of recording a wavefrontand then reconstructing the wave. While Holography is oftenused to obtain the recreations of beautiful 3-dimensional scenes,there are several engineering applications, the most common andimportant one being Holographic Non-Destructive Testing . Thisis accomplished with holographic interferometry, whereininterferometry is carried out with holographically generatedwavefronts .A speckle pattern is generated when an object with a roughsurface is illuminated with a highly coherent source of lightsuch as laser. Initially this speckle noise was considered asthe bane of holographers, until it was realized that these specklescarry information about the surface that produce them. Again,as in the case of holography, the combination of interferometric concepts with speckle pattern correlation gave rise to speckle interferometry . The developments in electronic detection and processing further added wings to laser speckle methods giving rise to Electronic Speckle Pattern Interferometry (ESPI), or “TV Holography”. This paper describes a brief outline of holographic and speckle methods for Non-Destructive Testing applications, wherein the deformations of an object under load are measured in a non-contact way. Measurement of surface shapes using contouring and derivatives of displacement using Shearography are also presented.1.HolographyThe schematic for recording a hologram is shown in Fig.1. The light from a laser is split into two beams. One beam illuminates the object and the other beam is used as a reference. At the recording plane, an interference of theFig. 1 : Experimental arrangement for recording a hologram. wavefront scattered by the object with the reference wavefront takes place. A recording is made on a high resolution photographic plate. The developed plate, now called a “Hologram”, when illuminated by the reference wave, reconstructs the object wave. There are several recording geometries such as in-line, off-axis, image plane, Fourier Transform, reflection and rainbow holograms. The theory behind the recording and reconstruction of object wavefront is well documented .1.1Holographic Interferometry (HI)While holography is used to obtain recreations of beautiful 3-D scenes, most engineering applications of holography make use of its ability to record slightly different scenes and display the minute differences between them. This technique is called Holographic Interferometry (HI). Herewe deal with Interference of two waves of which atleast one of the waves is generated holographically.Methods of Holography Interferometry are classified as (i) Real-time HI, (ii) Double-Exposure HI, and (iii) Time average HI. In holographic interferometry, we record the holograms of the two states of an object under test, one without loading and one with loading. When such a doubly exposed hologram is reconstructed, we see the object superposed with a fringe pattern which depicts the deformation undergone by the object due to loading. The theory behind the fringe formation in HI is as follows [3]:Let the O1 and O2 represent the undeformed and deformed object waves, which are written asO1(x,y) = |O(x,y)| exp[-i Φ(x,y)] (1)O2(x,y) = |O(x,y)| exp[-i Φ(x,y) + δ] (2) where δis the phase change due to displacement or deformation of the object. The intensity due to superposition of these two waves isI(x,y) = |O1(x,y) + O(x,y)|2= O1O1* + O2O2* + O1O2* + O1* O2= I1 + I2+ 2I1I2Cos δ(3)where I1 and I2 are the intensities of O1 & O2. The Phase Difference δ is given byδ = (K2-K1).L (4)where K2 is the observation vector, K1 is the illumination vector and L is the displacement vector. Thus the evaluationof the phase δis gives the displacement. The fringes formed represent contours of constant displacement.1.2Holographic Non-Destructive Testing (HNDT)This powerful technique of Holographic interferometry, is an invaluable aid in Engineering design, Quality Control and Non-Destructive testing and Inspection. In HNDT, the object under study is subjected a very small stress or excitation and its behavior is studied using HI.The defects in the object can be spotted as an anomaly in the otherwise regular fringe pattern. HNDT is a highly sensitive, whole-field, non-contact technique and is applicable to objects of any shape and size. The types of excitation used for HNDT are mechanical, thermal, pneumatic or vibrational. Defects such as cracks, voids, debonds, delaminations, residual stress, imperfect fits, interior irregularities, inclusions could be seen. HNDT is applied to inspect the disbonds between the plies of an aircraft tyre, delamination of the composite material of a helicopter rotor blade, PCB inspection, rocket castings, pressure vessels, andso on.Use of double-pulsed laser makes HI more attractive for study of transients and impact loads. Fig.2 shows the double exposure hologram of a turbine blade subjected to an impact loading (recorded using a double-pulsed Ruby laser).Fig. 2 : Double-pulse hologram of a turbine blade impact loaded with a small metallic ball.Time average HI, wherein a hologram of a vibratingobject is recorded, provides information about the modes and the vibration amplitudes at various points on the object. Figs.3(a) and (b) show the time average holograms of a rectangular plate vibrating at 1826 Hz and 5478 Hz, from which the resonant mode patterns could be easily studied . In HNDT, this technique is used for study of vibrations of machinery, car doors, engines and gear boxes and to identify the points where they should be bolted to arrest the vibration and noise.Fig. 3 : (a) and (b) Time averaged hologram of a centrally clamped plate at (0,0) and (1,0) mode when vibrated at 1826 Hzand5478Hz respectively2 22 22. Electronic Speckle Pattern Interferometry(ESPI)Recent holographic applications in engineering use a video camera for image acquisition, which is coupled to a computer image processing system. This is termed as TV Holography, though technically called Electronic Speckle Pattern Interferometry (ESPI). The technique makes use of the speckle pattern produced when an object with a rough surface is illuminated with a laser [4-6]. The correlation between the speckle patterns, before and after an object is deformed, are carried out using image processing techniques. Figure 4 shows the schematic of an ESPI system. The object is illuminated by the light from a laser and is imaged by a CCD camera. An in-line reference beam, derived from the same laser, is added at the image plane. The specklecorrelation is carried out by storing an image while the object is in its initial state, and subtracting the subsequent frame fromthis stored frame, displaying the difference on the monitor. When the object is subjected to some loading or excitation, the correlated areas appear black while the uncorrelated areas would be bright, resulting in a fringe pattern. As in HI,the fringes represent contours of constantdisplacement of the object points.The fringe formation in ESPI is well documented . The intensity distributions I 1(x,y) and 12(x,y) recorded before and after the object displacement respectively can be written asFig. 5 : Measurement of Poisson’s ratioI I (x,y) = a 1 +a 2 + 2a 1a 2 cos(ϕ) (5) I 2(x,y) = a 1 +a 2 + 2a 1a 2cos(ϕ+δ) (6)Fig. 4 : Experimental arrangement for ESPIFig. 6 : (a) Delamination in a plate (b) Longitudinal crack in asteel weldmentwhere a 1 and a 2 are the amplitudes of the object and reference waves, δ is the phase difference between them and ϕ is the additional phase change introduced due to the objectmovement. The subtracted signal as displayed on the monitor is given by,I 1 - I 2 = 4 |a 1a 2 Sin[ϕ + (δ/2)] Sin (d/2)|(7)Thus we find the brightness is modulated by a sine factor of the phase. The brightness on the monitor is maximumFig. 7 : Fiber Optic Shearography systemwhen δ = (2m +1)π and zero when δ = 2m π, which producesa fringe pattern on the monitor. The phase change δ is given by equation [4], the same as in holography. Figure 5 shows such an interferogram obtained by ESPI with a plate subjected to four-point bending, from which the Poisson’s ratio of the material of the plate could be calculated directlyfrom the smaller angle between the asymptotes of the hyperbolic fringes [8]. Figure 6(a) shows the delamination between two plates bonded together, while Fig. 6(b) shows a longitudinal crack in a weldments [9].4. Shearography In Shearography, we generate correlation fringes which are contours of constant slope of the out-of-plane displacement of an object under study . In this technique, one speckle field is made to interfere with the same speckle field, but sheared with respect to it. The subtractive correlation of the speckle patterns of the deformed and undeformed yields the derivatives of the displacement profile. Figure 7 shows the schematic of a fiber optic Shearography system. A double image of the laser illuminated object is made on the CCD camera. A small shear is introduced between the two images by tilting one of the mirrors. Incorporation of fiber optics makes the system very compactand the technique applicable to objects at inaccessible locations. Shearography is a very useful tool in experimental stress analysis and NDT as well. With the use of phase shifting techniques, the fringe patterns can also be automatically processed by the computer to obtainquantitative 3-dimensional plots . Figure 8 shows the results of an NDT application of Shearography to detect delamination in glass fiber reinforcedplastic (GFRP). The GFRP specimens were prepared withunidirectional glass fiber mat and epoxy resin with and without programmed defects. The defects were introduced by placing a thin Teflon film of 10 mm diameter and thickness 0.23mm between the layers of glass fiber mat during the lamination. Four layers of Glass fiber mat were used to make the laminate. The specimens were made in the form of circular diaphragm. The diaphragm was clamped along the edgesanFig. 8 : Slope fringes obtained on a circular GFRP specimen which was (a) Defect free (b) Having a programmed delaminationloaded mechanically at the center. The optical configuration of Fig. 8 was used, which is sensitive to the slope of the out- of-plane displacement. Figure 8(a) shows the fringes obtained with a defect-free specimen, while Fig. 8(b) shows the fringeswhen a delamination was introduced between the third and fourth layers. The defect site could be easily seen as a localized fringe. 全息无损检测主要还是采用全息干涉计量技术的三种方法进行,即实时全息干涉法,两次曝光全息法和时间平均全息干涉法。

关于高速公路路基路面无损检测技术的探究

关于高速公路路基路面无损检测技术的探究摘要:随着社会经济的快速发展,我国的交通工程越来越发达。

其中公路路基路面施工质量关系到公路工程的使用寿命,必须要做好对路基路面的质量检测。

但就以往的检测结果来看,还存在不少问题。

当前在高速公路路基和路面检测中较为流行的一种检测手段就是无损检测技术,采用这种技术能够有效确保高速公路路基和路面施工的质量。

关键词:高速公路;路基路面;无损检测技术引言随着我国现代交通的大力发展,高速公路在我国国防系统、社会发展以及经济建设等方面都发挥着重要作用。

由于我国高速公路系统内行驶车辆的车速较快,在地势较平坦的区域一般设计行车车速都是120 km/h,但随着汽车技术的不断进步,汽车行车安全舒适性越来越高,高速行驶的危险性越来越小,所以很多车辆在高速公路上行驶的车速都在120 km/h以上,而高速公路上行车车速越高,行车对高速公路路基路面的质量要求也就越高。

平整度、弯沉、横向力系数等技术指标都对高速公路质量水平有着重要影响,决定着高速公路的服务水平。

1无损检测技术发展的意义在一定意义上,传统的检测是根据规定的程序随机选点,钻孔取样、进行室内分析处理,从而取得不同工程的参数。

这种传统的方法存在一定局限性,所以,科研人员若能够研究开发出无损、快速、直观、能显示道路内部状态的检测设备和技术手段,必然会使工路建设和养护管理质量水平进入一个崭新的阶段。

快速无损检测技术,在一定程度上使得工路施工质量、路面设计、深入认识路面长期使用性能、工路改造方案的优化及公路养护管理的提高等方面具有极其重要的意义。

因此,我国要对快速无损检测技术的研究加以深刻研究。

2公路路基路面检测方法2.1弯沉值测试弯沉值测试最常见的方法贝克曼梁法,它运用自动弯沉仪,脉冲动力弯沉仪,稳定动态弯沉仪这三种仪器结合使用。

贝克曼梁法,是一种综合考虑路面受交通工具的荷载的方法。

使用百分表记录回弹弯沉,当测试的时候要将测定杆的端头置于测试点上,之后将百分表置于测定杆末端的上面。

无损检验部分课件

03 其他辅助器材
超声波检验还需要其他辅助器材,如耦合剂、数 据采集器等。
超声波检验的应用范围与局限性
应用范围
超声波检验广泛应用于金属、非金属、复合材料 等材料的无损检测,可以检测出材料内部的裂纹、 夹杂物、孔洞等缺陷。
局限性
超声波检验对于一些复杂形状的工件或者粗晶材 料的检测存在一定的难度,同时对于一些微小缺 陷的检测灵敏度也有限。
目录
• 无损检验概述 • 射线检验(RT) • 超声波检验(UT) • 磁粉检验(MT) • 涡流检验(ET) • 无损检验新技术及发展趋势
无损检验概述
无损检验的定义和重要性
无损检验( Non-destructive Testing, NDT )是指在不破坏和损伤材料或构件的情况下,通过 物理原理或化学方法对材料或构件进行检测和评估的方法。无损检验在现代工业和工程领域中 具有非常重要的地位,可以有效地保证产品质量、安全性和可靠性。
无损检验的发展历程与趋势
无损检验技术随着工业和科技的发展而不断进步和完善。早期无损检验技术主要 基于经验和简单的手工操作,随着计算机技术和数字化技术的不断发展,无损检 验技术逐渐实现了自动化、智能化和远程化。
目前,无损检验技术正朝着高精度、高效率和智能化方向发展。未来无损检验技 术将更加注重与材料科学、物理学、化学等学科的交叉融合,发展出更加准确、 可靠、高效的无损检测技术,为工业和工程领域的发展提供更加有力的支持。
01 材料中的裂纹、夹杂物、
气孔等缺陷。
涡流检验不适用于非导电
03 材料和复杂形状的零件。
涡流检验可能会受到材料
02
表面粗糙度、形状等因素
Hale Waihona Puke 的影响。涡流检验的结果容易受到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光全息无损检测及应用
激光全息无损检测是一种利用激光技术进行缺陷检测的方法,简单来说就是利用激光经过物体后的反射、折射等现象来分析物体表面的形态和内部结构。

激光全息无损检测技术的优点非常明显,首先它可以对物体进行非接触式检测,不会对物体造成任何损伤;其次它的检测过程非常快速,并且能够在多个方向上进行检测,可以得到更加全面和准确的信息;此外,激光全息无损检测还可以对物体进行三维成像,使得分析更为直观。

利用激光全息无损检测技术,我们可以对很多材料进行检测。

比如金属、陶瓷、玻璃等有透明性的材料,都是很好的检测对象。

在工业领域,这项技术可以被用于热处理等过程的控制、产品质量的检测、以及金属零件铸造中的质量控制等方面。

在医学领域,激光全息无损检测技术同样有着广泛的应用。

比如我们可以利用这项技术对人体骨骼结构进行分析,诊断人体骨质疏松等疾病。

在文化遗产保护方面,这项技术也可以用于对文物的表面及内部结构进行非接触式的检测,使得文物的保护工作变得更加简单和高效。

当然,激光全息无损检测技术也存在一些限制和问题。

比如在实际应用中,它往往需要非常高的技术水平和专业设备才能实现精度较高的检测。

此外,对于一些密度较高的材料,比如金属,这项技术的探测深度也可能存在一定的限制。

因此在实际应用中,我们需要针对具体情况进行精细化的构建和处理,以达到最好的检测效果。

总之,激光全息无损检测技术在各领域中都有着广泛的应用前景,它不仅可以帮助我们快速准确地掌握物体的结构和形态等信息,还可以带来很多其他的好处,从而推动我们的科技与生产力的不断发展。

相关文档
最新文档