初一数学试卷及答案
七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
初一下学期期末考试数学试卷含答案(共5套)

七年级(下册)期末考试数学试卷一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<3.下列方程组中是二元一次方程组的是()A.B.C.D.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣56.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm29.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠110.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.211.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.1912.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=.14.估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=.三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为,当点P移动3.5秒时,点P的坐标;(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.七年级(下册)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分40分)1.下列调查中,调查方式选择错误的是()A.为了解全市中学生的课外阅读情况,选择全面调查B.旅客上飞机前的安检,选择全面调查C.为了了解《人民的名义》的收视率,选择抽样调查D.为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,选择全面调查解:A、为了解全市中学生的课外阅读情况,调查范围广适合抽样调查,故A符合题意;B、旅客上飞机前的安检,是事关重大的调查,选择全面调查,故B不符合题意;C、为了了解《人民的名义》的收视率,调查范围广适合抽样调查,故C不符合题意;D、为保证“神舟十一号”载人飞船的成功发射,对其零部件的检查,是事关重大的调查,选择全面调查,故D不符合题意;故选:A.2.a,b为实数,且a>b,则下列不等式的变形正确的是()A.a﹣x<b﹣x B.﹣a+1>﹣b+1 C.5a>5b D.<解:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.3.下列方程组中是二元一次方程组的是()A.B.C.D.解:A、该方程组符合二元一次方程组的定义,故本选项正确;B、该方程组中含有3个未知数,不是二元一次方程组,故本选项错误;C、该方程组中的第一个方程不是整式方程,故本选项错误;D、该方程组中的第二个方程属于二元二次方程,故本选项错误;故选:A.4.已知点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,则B点坐标为()A.(2,﹣5)B.(2,5) C.(2,1) D.(2,﹣1)解:如图所示:∵点A(﹣1,﹣5)和点B(2,m),且AB平行于x轴,∴B点坐标为:(2,﹣5).故选:A.5.下列式子正确的是()A.=±5 B.=﹣C.±=8 D.=﹣5解:A、=5,故A错误;B、=﹣,故B正确;C、±=±8,故C错误;D、==5,故D错误.故选B.6.如图,点E在BC的延长线上,由下列条件能得到AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠B=∠DCE D.∠D+∠DAB=180°解:A.根据∠1=∠2,可得AB∥CD,故A错误;B.根据∠3=∠4,可得AD∥BC,故B正确;C.根据∠B=∠DCE,可得AB∥CD,故C错误;D.根据∠D+∠DAB=180°,可得AB∥CD,故D错误;故选:B.7.关于“”,下面说法不正确的是()A.它是数轴上离原点个单位长度的点表示的数B.它是一个无理数C.若a<<a+1,则整数a为3D.它表示面积为10的正方形的边长解:A、±它是数轴上离原点个单位长度的点表示的数,题干的说法错误,符合题意;B、是一个无理数,题干的说法正确,不符合题意;C、∵3<<3+1,a<<a+1,∴整数a为3,题干的说法正确,不符合题意;D、表示面积为10的正方形的边长,题干的说法正确,不符合题意.故选:A.8.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为()A.12cm2B.16cm2C.24cm2D.27cm2解:设每个小长方形的长为xcm,宽为ycm,根据题意得:,解得:.则每一个小长方形的面积为3×9=27(cm2).故选:D.9.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1=180°﹣∠3 B.∠1=∠3﹣∠2C.∠2+∠3=180°﹣∠1 D.∠2+∠3=180°+∠1解:∵AB∥CD,∴∠2+∠BDC=180°,即∠BDC=180°﹣∠2,∵EF∥CD,∴∠BDC+∠1=∠3,即∠BDC=∠3﹣∠1,∴180°﹣∠2=∠3﹣∠1,即∠2+∠3=180°+∠1,故选:D.10.把△ABC经过平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),则△ABC的面积为()A.B.C.1 D.2解:∵把△ABC经过平移后得到△A′B′C′,B(3,1)的对应点是B′(1,﹣1),∴B点向左平移2个单位,再向下平移2个单位,∵A(4,3)的对应点A′的坐标是(4﹣2,3﹣2),即A′(2,1),C′(2,0))的对应点C的坐标是(2+2,0+2),即(4,2),过B作BD⊥AC于D,∵A(4,3),C(4,2),∴AC⊥X轴,∴AC=3﹣2=1,BD=4﹣3=1,∴△ABC的面积是AC×BD=×1×1=.答:△ABC的面积是.11.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A.22 B.21 C.20 D.19解:设应选对x道题,则不选或选错的有25﹣x道,依题意得:4x﹣2(26﹣x)≥70,得:x≥21,∵x为正整数,∴x最小为21,即至少应选对21道题.故选B.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2017的坐标为()A.(0,4) B.(﹣3,1)C.(0,﹣2)D.(3,1)解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2017÷4=504…1,∴点A2017的坐标与A1的坐标相同,为(3,1).故选:D.二、填空题(共4小题,每小题4分,满分16分)13.某点M(a,a+2)在x轴上,则a=﹣2.解:∵点M(a,a+2)在x轴上,∴a+2=0,解得:a=﹣2.故答案为:﹣2.14.估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.15.已知关于x的不等式组只有五个整数解,则实数a的取值范围是﹣5≤a<﹣4.解:解不等式x﹣a>0,得:x>a,解不等式1﹣2x>﹣3,得:x<2,∵只有五个整数解,∴﹣5≤a<﹣4,故答案为:﹣5≤a<﹣4.16.解方程组时,应该正确地解得,小明由于看错了系数c,得到的解为则a﹣b﹣c=1.解:把与代入得:,解得:,把代入得:3c+14=8,解得:c=﹣2,则a﹣b﹣c=4﹣5+2=1.故答案为:1三、解答题(共6小题,满分64分)17.(1)计算: +++|﹣1|;(2)已知+|b3﹣64|=0,求b﹣a的平方根.解:(1)+++|﹣1|===﹣;(2)∵+|b3﹣64|=0,∴,得,∴,即b﹣a的平方根是.18.(1)解方程组(2)解不等式组,并在数轴上画出它的解集.解:(1)原方程组整理可得:,①+②,得:8x=24,解得:x=3,将x=3代入②,得:15+y=10,解得:y=﹣5,则原方程组的解为;(2)解不等式4x﹣3<3(2x+1),得:x>﹣3,解不等式x﹣1>5﹣x,得:x>3,∴不等式组的解集为x>3,将解集表示在数轴上如下:19.在“十三五”规划纲要中,“全民阅读”位列国家八大文化重大工程之一,我县各学校一直积极开展课外阅读活动,我县某初中学校为了解全校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题(写出规范完整计算步骤):(1)求这次调查的学生总数是多少人,并求出x的值;(2)在统计图①中,t≥4部分所对应的圆心角是多少度?(3)将图②补充完整;④若该校共有学生1200人,试估计每周课外阅读时间量满足2≤t<4的人数.解:(1)抽查的学生总数=90÷45%=200人,∵x%=1﹣15%﹣10%﹣45%=30%,∴x=30,(2)t≥4部分所对应的圆心角=×360°=54°.(3)①B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,如图,②1200×(10%+30%)=480人,所以估计每周课外阅读时间量满足2≤t<4的人数为480人.20.已知:如图所示,点E在直线DF上,点B在直线AC上,∠A=50°,∠AGB=∠EHF,∠C=∠D,求∠F的度数.解:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠DGF=∠EHF,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠F=∠A=50°.21.某校将周五上午大课间活动项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的三倍少4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过1950元的现金购买190条长、短跳绳,且短跳绳的条数不超过长跳绳的5倍,问学校有几种购买方案可供选择?并写出这几种方案.解:(1)设长跳绳的单价是x元,短跳绳的单价为y元.由题意得:,解得:.答:长跳绳单价是20元,短跳绳的单价是8元.(2)设学校购买a条长跳绳,则购买条短跳绳,由题意得:,解得:≤a≤,∵a为整数,∴a为32、33、34、35,则可供选择的方案有:1、长跳绳32条、短跳绳158条;2、长跳绳33条、短跳绳157条;3、长跳绳34条、短跳绳156条;4、长跳绳35条、短跳绳155条.22.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a,b满足|a﹣4|+=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)点B的坐标为(4,6),当点P移动3.5秒时,点P的坐标(1,2);(2)在移动过程中,当点P到x轴的距离为4个单位长度时,求点P移动的时间;(3)在移动过程中,当△OBP的面积是10时,求点P移动的时间.解::(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×3.5=7,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:7﹣6=1,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(1,6);故答案为(4,6),(1,6).(2)由题意可得,在移动过程中,当点P到x轴的距离为4个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:4÷2=2秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+2)÷2=6秒,故在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或6秒.(3)如图1所示:∵△OBP的面积=10,∴OP•BC=10,即×4×OP=10.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=10,∴PB•OC=10,即×6×PB=10.解得:BP=.∴CP=.∴此时t=s,如图3所示:∵△OBP的面积=10,∴BP•BC=10,即×4×PB=10.解得:BP=5.∴此时t=s如图4所示:∵△OBP的面积=10,∴OP•AB=10,即×6×OP=10.解得:OP=.∴此时t=s综上所述,满足条件的时间t的值为2.5s或s或s或s.七年级下学期期末考试数学试卷一、选择题(1-10题每小题3分,11-15题每小题3分,共40分,)1.(3分)下列四个图案是四国冬季奥林匹克运动会会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.(3分)计算2x3•(﹣x2)的结果是()A.2x B.﹣2x5C.2x6D.x53.(3分)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m4.(3分)下列长度的三条线段能组成三角形的是()A.1,2,3 B.5,4,2 C.2,2,4 D.4,6,115.(3分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.6.(3分)如图,已知AB=DC,下列所给条件中不能推出△ABC≌△DCB的是()A.∠ABC=∠DCB B.AC=DBC.∠A=∠D D.BO=CO7.(3分)如图,直线a∥b,直线l与a、b交于A、B两点,过点B作BC⊥AB 交直线a于点C,若∠2=35°,则∠1的度数为()A.25°B.35°C.55°D.115°8.(3分)如图,因为直线AB⊥l于点B,BC⊥l于点B,所以直线AB和BC重合,则其中蕴含的数学原理是()A.平面内,过一点有且只有一条直线与已知直线垂直B.垂线段最短C.过一点只能作一条垂线D.两点确定一条直线9.(3分)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b210.(3分)如图,在△ABC中,∠C=90°,∠B=26°.洋洋按下列步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长的一半为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.50°B.52°C.58°D.64°11.(2分)如图,一艘补给船从A点出发沿北偏东65°方向航行,给B点处的船补给物品后,向左进行了90°的转弯,然后沿着BC方向航行,则∠DBC的度数为()A.25°B.35°C.45°D.65°12.(2分)王叔叔花x万元买了二年期年利率为4.89%的国库券,则本息和y(元)与x之间的关系正确的是()A.y=1.0978x B.y=10978x C.y=10489x D.y=978x13.(2分)下列语句:①角的对称轴是角的平分线;②两个成轴对称的图形的对应点一定在对称轴的两侧;③一个轴对称图形不一定只有一条对称轴;④两个能全等的图形一定能关于某条直线对称,其中正确的个数有()A.1 B.2 C.3 D.414.(2分)如图,一个高为12cm的杯子放入一个高度为10cm的空玻璃槽中,并向杯子中匀速注水,则玻璃槽中水面高度y(cm)随注水时间x(s)的变化图象大致是()A.B.C.D.15.(2分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,)16.(3分)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,如果取得红球或黑球的概率与取得白球的概率相同,那么m与n的关系是.17.(3分)若4x•32y=8,则2x+5y= .18.(3分)如图,把对边平行的纸带折叠,∠1=62°,则∠2= .19.(3分)李老师从家开车去学校,中途等红绿灯用时1分钟,之后又行驶了4千米到达学校,假设李老师开车速度始终不变,从出发开始计时,李老师离学校的距离为5(千米)与行驶的时间为t(分钟)的关系如图所示,则图中a= .三、解答题(本大题共7个小题,共68分)20.(12分)(1)利用乘法公式计算①1022②(a+2b+1)(a+2b﹣1)(2)先化简,再求值:[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y),其中6x﹣5y=10.21.(7分)尺规作图(保留作图痕迹,不写作法)如图,C是∠AOB的边OB上一点(1)过C点作直线EF∥OA.(2)请说明作图的依据.22.(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF 关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形个点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)23.(9分)如图,在四边形ABCD中,BC⊥AB,AE、CF分别是∠DAB和∠BCD的角平分线,且∠DAB与∠BCD互补,请你判断AE与CF的位置关系,并说明理由.[来源:学科网]24.(10分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.(10分)如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况.(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?(3)请你写出一个适合图象反映的实际情景.26.(12分)观察发现:如图1,OP平分∠MON,在OM,ON上分别取OA,OB,使OA=OB,再在OP上任取一点D,连接AD,BD.请你猜想AD与BD之间的数量关系,并说明理由.拓展应用:如图2,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,A D,CE相交于点F,请你写出FE与FD之间的数量关系,并说明理由.参考答案一、选择题1.D.2.B.3.A.4.B.5.A.6.D.7.C.8.A.9.B.10.C.11.D.12.B.13.A.14.A.15.C.二、填空题16.m+n=8.17.3.18.56°.19.10.三、解答题20.解:(1)①1022=(100+2)2=1002+2×100×2+22=10404;②(a+2b+1)(a+2b﹣1)=(a+2b)2﹣12=a2+4ab+4b2﹣1;(2)[(﹣2x+y)(﹣2x﹣y)﹣(3y﹣2x)2]÷(4y)=[4x2﹣y2﹣9y2+12xy﹣4x2]÷4y=(﹣10y2+12xy)÷4y=﹣y+3x=(6x﹣5y),当6x﹣5y=10时,原式=×10=5.21.解:(1)如图所示,直线EF即为所求.[来源:](2)由作图知∠ECB=∠O,∴EF∥OA.22.解:如图,△DEF即为所求.(答案不唯一)23.解:AE∥CF,理由如下:∵AE、CF分别是∠DAB和∠BCD的角平分线,∴∠EAB=∠DAB,∠BCF=∠DCB,∵∠DAB+∠BCD=180°,∴∠DAB+∠BCD=180°,∴∠EAB+∠BCF=(∠DAB+∠BCD)=90°,∵BC⊥AB,∴∠CBF=90°,∴∠CFB+∠BCF=90°,∴∠EAB=∠CFB,∴AE∥CF.24.(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.25.解:(1)摩托车从出发到最后停止共经过:100分钟,离家最远的距离是:40千米;(2)摩托车在20~50分钟内速度最快,最快速度是:30÷=60(千米/小时);(3)小明父亲早上送小明去40千米外参加夏令营,由于早高峰行驶20分钟走了10千米,过了早高峰后继续行驶30分钟到达目的地,然后父亲立即返回,行驶50分钟回到家里.26.解:(1)AD=BD.理由:∵OP平分∠MON,∴∠DOA=∠DOB,∵OA=OB,OD=OD,∴△OAD≌△OBD,∴AD=DB.(2)FE=FD.理由:如图2,在AC上截取AG=AE,连接FG,∴△AEF≌△AGF,∴∠AFE=∠AFG,FE=FG.∵∠ACB是直角,即∠ACB=90°,[来源:学&科&网Z&X&X&K] 又∵∠B=60°,∴∠BAC=30°,∵AD,CE分别是∠BAC,∠BCA的平分线,[来源:学*科*网] ∴∠FAC+∠FCA=15°+45°=60°=∠AFE,∴∠AFE=∠AFG=∠CFD=60°,∴∠CFG=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,又FC为公共边,∴△CFG≌△CFD,∴FG=FD,∴FE=FD.初中七年级下学期期末考试数学试卷一、选择题共10小题。
七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。
江西初一初中数学月考试卷带答案解析

江西初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.-6的相反数是().A.6B.C.D.-62.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是A.A B.B C.C D.D3.互为相反数的两个数的积是().A.正数B.负数C.非正数D.非负数4.下列说法正确的是().A.n个数相乘,积的符号由负因数的个数决定B.正数和负数统称为有理数C.两个数相减,所得的差一定小于被减数D.互为相反数的两个数的绝对值相等5.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a−b+c=().A.−1B.0C.1D.26.若ab≠0则+的取值不可能是().A.0B.1C.2D.-27.如果两个数的和为正数,那么这两个加数().A.都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.以上都有可能8.下列不等式正确的是().A.0.1<-100B.<C.>D.> 09.1-3+5-7+9-11+……+97-99=().A.−200B.-100C.-50D.5010.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②ab<0;③a+b>0;④c-a<0中,错误的有()个.A.1B.2C.3D.4二、填空题1.计算:(1)___________(2)___________.2.-0.2的倒数是.3.如果正午记作0小时,午后3点钟+3小时,那么上午8点记作___________.4.在,,,0,,这六个数中,分数有_____________________.5.式子-5+(-2)-(-4)-(+6)写成省略括号的和的形式是_____________________.6.式子有最__________值时x与y的关系为___________.7.从数-5,1,-3,5,-2中任取三个不同的数相乘,最大的乘积是___________,最小的乘积是___________.8.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.9.若abc>0,则a,b,c中负因数的个数为___________.10.已知整数,,,……满足下列条件:,,,……依此类推则___________.三、解答题1.计算:(1)(2)(3)(4)(5)(用简便方法计算)(6)2.已知a,b互为相反数,c,d互为倒数,m到原点的距离为1,求的值.3.已知=5,=7,且,求a-b的值.4.若|x-3|+|x+y-7|=0,求xy÷(x-y)的值.5.体育课上,对七年级1班的男生进行了100米测试,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?6.某自行车厂计划每天平均生产100辆自行车,而实际产量与计划产量有出入.下表记录了某周五个工作日每天实际产量情况(超出计划产量记为正,少于计划产量记为负).(1)本周三生产了辆自行车.(2)产量最多的一天比产量最少的一天多生产了辆.(3)该厂实行每日计件工作制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?7.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a-b|.当A、B两点都不在原点时,(1)如图②,点A,B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|(2)如图③,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|(3)如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.综上所述,数轴上A、B两点之间的距离|AB|=|a-b|请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示-2和-4的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______.(2)数轴上表示x和-1的两点A和B之间的距离是______,如果|AB|=2,那么x为______.(3)当|x+1|+|x-2|取最小值时,相应的x的取值范围是______.江西初一初中数学月考试卷答案及解析一、选择题1.-6的相反数是().A.6B.C.D.-6【答案】A【解析】-6的相反数是6,故选A.2.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是A.A B.B C.C D.D【答案】C【解析】|-0.8|<|+0.9|<|+2.5|<|-3.6|,故足球C最接近标准,故选C.3.互为相反数的两个数的积是().A.正数B.负数C.非正数D.非负数【答案】C【解析】当这两个数等于0时,乘积是0;当两个数不等于0时,则互为相反数的两个数一定异号,则乘积一定是负数;综上,两个互为相反数的数之积一定是非正数,故选C.【点睛】本题考查了有理数的乘法法则,注意到互为相反数的两个数可以都是0,是关键.4.下列说法正确的是().A.n个数相乘,积的符号由负因数的个数决定B.正数和负数统称为有理数C.两个数相减,所得的差一定小于被减数D.互为相反数的两个数的绝对值相等【答案】D【解析】A.应为几个“非0数”数相乘,积的符号由负因数的个数决定,故选项错误;B. 整数和分数统称为有理数,故本选项错误;C. 如果减数是负数,差大于被减数 -8-(-8)=0,0>-8,故本选项错误;D、互为相反数的两个数的绝对值相等,正确,故选D.5.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a−b+c=().A.−1B.0C.1D.2【答案】C【解析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.解:由题意得:a=0,b=﹣1,c=0,∴a﹣b+c=1.故选C.点评:本题考查有理数的知识,难度不大,根据题意确定a、b、c的值是关键.6.若ab≠0则+的取值不可能是().A.0B.1C.2D.-2【答案】B【解析】因为ab≠0,所以a 和 b 都不等于0,当a>0 ,b>0时,原式=1+1=2,当a<0,b<0时,原式=-1-1=-2,当a、b异号时,原式=0,故不可能是1,故选B.7.如果两个数的和为正数,那么这两个加数().A.都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.以上都有可能【答案】D【解析】若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数一个为负数,且正数的绝对值大于负数的绝对值,也可能一个加数为正数,另一个加数为0,故选D.8.下列不等式正确的是().A.0.1<-100B.<C.>D.> 0【答案】B【解析】A. 0.1>-100,故A选项错误;B. <,正确; C. <,故C选项错误;D. < 0,故D 选项错误,故选B.9.1-3+5-7+9-11+……+97-99=().A.−200B.-100C.-50D.50【答案】C【解析】-3+5-7+9-11+...+97-99以两个数为一组1-3=-2,5-7=-2,9-11=-2,……97-99=-2,共(99+1)÷4=25组,1-3+5-7+9-11+...+97-99= -2×25= -50,故选C.10.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②ab<0;③a+b>0;④c-a<0中,错误的有()个.A.1B.2C.3D.4【答案】B【解析】由数轴上a、b、c所处的位置可知a<<0<c<b,|a|>|b|,故①正确;ab<0,故②正确;a+b<0,故③错误;c-a>0,故④错误,所以错误的有2个,故选B.【点睛】本题考查数轴上的点的位置,有理数的运算等,数形结合思想是解答本题的关键.二、填空题1.计算:(1)___________(2)___________.【答案】 -1【解析】(1)-3;(2)0-1=-1,故答案为:(1). (2). -12.-0.2的倒数是.【答案】-5【解析】∵-0.2="-1/5" ,∴-0.2的倒数是-5.3.如果正午记作0小时,午后3点钟+3小时,那么上午8点记作___________.【答案】-4小时【解析】∵正午(中午12:00)记作0小时,午后3点钟记作+3小时,又∵上午8点钟距中午12:00有:12-8=4(小时),∴上午8点钟可表示为:-4小时,故答案为:-4小时.4.在,,,0,,这六个数中,分数有_____________________.【答案】,,【解析】分数有,,,故答案为:,,.5.式子-5+(-2)-(-4)-(+6)写成省略括号的和的形式是_____________________.【答案】-5-2+4-6【解析】-5+(-2)-(-4)-(+6)=-5-2+4-6,故答案为:-5-2+4-6.6.式子有最__________值时x与y的关系为___________.【答案】大互为相反数【解析】∵|x+y|≥0,∴3-|x+y|≤3,∴有最大值,此时x+y=0,即x与y互为相反数,故答案为:大;互为相反数.【点睛】本题主要考查了绝对值非负数的性质,解题的根据是明确一个数的绝对值是非负数.7.从数-5,1,-3,5,-2中任取三个不同的数相乘,最大的乘积是___________,最小的乘积是___________.【答案】 75 -30【解析】最大乘积是:(-3)×(-5)×5=75,最小乘积是:(-2)×(-3)×(-2)= -30, 故答案为:75,-30.8.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________. 【答案】【解析】77="7×11=1×1×7×11=" -1×1×(-7)×11= -1×1×7×(-11), 由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11, 从而a+b+c+d=±4, 故答案为:±4.9.若abc >0,则a ,b ,c 中负因数的个数为___________. 【答案】0或2【解析】由abc >0可得出: a 、b 、c 均为正数,或a 、b 、c 中有一个数为正数,两个负数,故负因数是个数为0或2,故答案为:0或2.10.已知整数,,,……满足下列条件:,,,……依此类推则___________. 【答案】-1008 【解析】, =-1, =-1, =-2,=-2, ……所以,n 是奇数时,a n =-,n 是偶数时,a n =-,所以a 2017==-1008,故答案为:-1008.【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.三、解答题1.计算: (1) (2)(3) (4)(5)(用简便方法计算) (6)【答案】(1)-38;(2)-10;(3);(4)-27;(5);(6)-15.【解析】按要求及有理数混合运算的顺序进行计算即可. 试题解析:(1)原式=-32-12+6=-38; (2)原式==-20+10=-10;(3) 原式==;(4)原式=-12-15=-27; (5)原式===;(6)原式==5-12-8=-15.2.已知a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为1,求的值.【答案】原式=0或-2.【解析】根据题意可知a+b=0,cd=1,m=±1,然后代入计算即可.试题解析:由题意得:,,,当时,原式="0" ,当时,原式=-2.3.已知=5,=7,且,求a-b的值.【答案】原式=或.【解析】根据绝对值的性质求出a、b的值,然后代入进行计算即可求解.试题解析:∵,,∴,,∵,∴∴,,∴原式=或.【点睛】本题考查了绝对值的性质,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0,本题判断出a+b≥0是关键,也是容易出错的地方.4.若|x-3|+|x+y-7|=0,求xy÷(x-y)的值.【答案】原式=.【解析】先根据绝对值的非负性质确定出x-3=0,x+y-7=0,然后求出x、y的值,代入进行计算即可得.试题解析:由题意得:x-3=0,x+y-7=0,∴,,∴原式=.5.体育课上,对七年级1班的男生进行了100米测试,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?(2)这个小组男生的平均成绩是多少秒?【答案】(1)这个小组男生的达标率为%;(2)这个小组男生的平均成绩是14.8秒.【解析】(1)从表格中得出,达标的人数为6人,求出达标率;(2)根据平均数的公式求出平均成绩.试题解析:(1)成绩记为正数的不达标,只有2人不达标,6人达标.这个小组男生的达标率=6÷8=75%;(2)-0.8+1-1.2+0-0.7+0.6-0.4-0.1=-1.615-1.6÷8=14.8秒答:(1)这个小组男生的达标率为75%.(2)这个小组男生的平均成绩是14.8秒.6.某自行车厂计划每天平均生产100辆自行车,而实际产量与计划产量有出入.下表记录了某周五个工作日每天实际产量情况(超出计划产量记为正,少于计划产量记为负).(1)本周三生产了辆自行车.(2)产量最多的一天比产量最少的一天多生产了辆.(3)该厂实行每日计件工作制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?【答案】(1)96;(2)17 ;(3)该厂工人这一周的工资总额是30630元.【解析】(1)星期三的产量是:100-4辆,据此即可求得;(2)观察表格可知最多的一天是星期四,为113辆,最少的一天是星期三,为96辆,相关即可得;(3)分别计算出多生产的,少生产的和,然后根据题意进行计算即可得.试题解析:(1)96 ;(2)17;(3)超过5+13=18辆,少生产2+4+3=9辆,共生产100×5+(18-9)=509辆,509×60+18×15-9×20=30630元,答:该厂工人这一周的工资总额是30630元.7.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a-b|.当A、B两点都不在原点时,(1)如图②,点A,B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|(2)如图③,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|(3)如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.综上所述,数轴上A、B两点之间的距离|AB|=|a-b|请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示-2和-4的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______.(2)数轴上表示x和-1的两点A和B之间的距离是______,如果|AB|=2,那么x为______.(3)当|x+1|+|x-2|取最小值时,相应的x的取值范围是______.【答案】(1)4; 2; 4;(2);1,-3;(3).【解析】(1)根据材料中所给的求两点间距离的公式分别代入相关数值即可得;(2)根据材料中所给的求两点间距离的公式分别代入相关数值即可得;(3)结合图形,根据绝对值的性质、两点间距离的求法,可得x在-1与2之间时|x+1|+|x-2|取最小值,从而得出x的取值范围.试题解析:(1)4; 2; 4;(2);1,-3;(3).【点睛】本题综合考查了数轴、绝对值的有关内容,通过阅读所给材料用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.。
七年级数学期末试卷及答案

【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。
多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。
没有失败和挫折的⼈,是永远不会成功的。
本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。
【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。
七年级下册数学试卷及答案(全套)

七年级下册数学试卷及答案(全套)试卷部分:一、填空题(每题2分,共10分)1. 已知一条线段的两个端点分别为 A(1,2)、B(7,8),则线段 AB 的长度为___________。
2. 将 45°化为弧度制,则其大小为___________。
3. 已知在△ABC 中,∠B = 90°,BC = 6cm,AC = 8cm,则 AB 的长度为___________。
4. 设 f(x) = x² + 2x,g(x) = 3 - x,则 g(f(2)) = ___________。
5. 若平面直角坐标系中点 P(x,y) 到 x 轴正半轴的距离为 3,且点 P 在第二象限,则 x 的值为___________。
二、选择题(每题2分,共10分)1. 锐角三角函数指的是()A. 余弦函数、正弦函数B. 正弦函数、正切函数C. 正弦函数、余弦函数、正切函数D. 余弦函数、正切函数、余切函数2. “千万不要把香蕉放在冰箱里”这句话的反义词是()A. 千万要把香蕉放在冰箱里B. 不用管香蕉C. 千万不要把香蕉拿出来D. 千万不要把香蕉放在其他地方3. 下列式子中,正确的是()A. sin²α + cos²α = 1B. sin²α + tan²α = 1C. sin²α - cos²α = 1D. cos²α - tan²α = 14. 已知平面直角坐标系中点 A(3,4),点 P(x,y) 在点 A 的下方,则 y 的范围为()A. y < 4B. y ≤ 4C. y > 4D. y ≥ 45. 下列函数中,是奇函数的是()A. y = x² + 1B. y = x³ - xC. y = |x|D. y = 2x - 1三、计算题(共80分)1. 计算:2π/3 + π/62. 有一批货物,运到目的地需要经过 A、B、C 三个中转站,分别运输部分重量如下所示:A 中转站 2/5 ,B 中转站 3/5 ,C 中转站 320 吨。
七年级数学大题试卷及答案
一、解答题(本大题共4小题,共40分)1. (10分)已知一元二次方程 $x^2 - 4x + 3 = 0$,求其解。
2. (10分)一个长方形的长是10cm,宽是长的一半,求这个长方形的面积。
3. (10分)一辆汽车从甲地出发,以每小时80公里的速度行驶,3小时后到达乙地。
如果汽车以每小时100公里的速度行驶,需要多少时间才能到达乙地?4. (10分)小明从家出发去图书馆,他可以选择骑自行车或者步行。
骑自行车每小时可以行驶15公里,步行每小时可以行驶5公里。
小明从家到图书馆的距离是30公里,他应该选择哪种方式去图书馆?二、应用题(本大题共2小题,共20分)5. (10分)某工厂生产一批零件,计划每天生产200个,用5天完成。
实际生产时,由于技术改进,每天多生产了30个零件。
实际用了多少天完成生产?6. (10分)一个梯形的上底是10cm,下底是20cm,高是15cm。
求这个梯形的面积。
三、证明题(本大题共1小题,共10分)7. (10分)已知在直角三角形ABC中,∠C是直角,∠A和∠B是锐角。
证明:∠A + ∠B = 90°。
答案:一、解答题1. 解:$x^2 - 4x + 3 = 0$ 可以分解为 $(x - 1)(x - 3) = 0$,所以 $x =1$ 或 $x = 3$。
2. 解:长方形的长是10cm,宽是5cm(10cm的一半),面积 $S = 长 \times 宽= 10cm \times 5cm = 50cm^2$。
3. 解:甲地到乙地的距离为 $80公里/小时 \times 3小时 = 240公里$。
以100公里/小时的速度行驶,需要的时间为 $240公里 \div 100公里/小时 = 2.4小时$。
4. 解:骑自行车到图书馆需要的时间为 $30公里 \div 15公里/小时 = 2小时$,步行需要的时间为 $30公里 \div 5公里/小时 = 6小时$。
因此,小明应该选择骑自行车去图书馆。
江苏省苏州市初一数学上册2024-2025学年质量检测试卷及答案
江苏省苏州市初一数学上册2024-2025学年质量检测试卷班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列各数中,是负数的是()A.−(−2)B.0C.12D.−13答案: D2.下列计算正确的是()A.a2⋅a4=a6B.a6÷a2=a3C.(a3)2=a5D.a2+a3=a5答案: A3.下列方程中,是一元一次方程的是()A.x2+1=0B.2x+y=3+1=0C.1xD.3x−2=0答案: D4.下列几何图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 菱形D. 直角三角形答案: C5.下列各数中,与−√8是同类二次根式的是()A.√12B.√18C.√12D.√2答案: D二、多选题(每题4分)1.题目:在平面直角坐标系中,点A(m, 2)与点B(3, n)关于原点O对称,则m和n的值分别为()。
A. m = 3B. m = -3C. n = 2D. n = -2答案:B, D解析:关于原点对称的两点,其横坐标和纵坐标都是互为相反数。
因此,m = -3,n = -2。
2.题目:下列关于x的方程中,是一元二次方程的有()。
A. x^2 + 2x = 0B. ax^2 + bx + c = 0 (a ≠ 0)C. x^2 + 2y = 3D. (x + 1)^2 = 2x^2 + 1答案:A, B, D解析:一元二次方程必须满足两个条件:一是未知数的最高次数是2;二是二次项系数不为0。
C选项中x和y都是未知数,不是一元方程;A、B、D选项都满足一元二次方程的定义。
3.题目:在△ABC中,∠A = 60°,∠B和∠C的度数可能是()。
A. ∠B = 60°,∠C = 60°B. ∠B = 40°,∠C = 80°C. ∠B = 20°,∠C = 100°D. ∠B = 50°,∠C = 70°答案:A, B, D解析:三角形的内角和为180°。
2024北京大兴区初一(上)期末数学试卷及答案
2024北京大兴初一(上)期末数 学2024.01一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.大兴国际机场航站楼是全球唯一一座“双进双出”的航站楼,也是世界施工技术难度最高的航站楼,航站楼一共使用了12800块玻璃,白天室内几乎不需要照明灯光.将 12800用科学记数法表示为 (A )12.8×103 (B )1.28×103(C ) 1.28×104(D )0.128×1052。
-5的绝对值是 (A )5(B )−5 (C )−51(D )±53.如图,是由下列哪个立体图形展开得到的(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱 4.下列各组数中,互为相反数的是(A ))(−+3与)-(+3 (B )-(-4)与−4(C )−32与)(−32 (D )−23与)(−235.下列变形正确的是(A )若a =42,则 a =2 (B )若a =b ,则 −−a =b 2121 (C )若a =b ,则 a =b (D )若ac =bc ,则=a b6.如图,点C 是线段AB 上一点,AB =18,AC =6,点D 是 AC 的中点,则DB 的长为(A ) 3 (B ) 9(C ) 12 (D )157.如图,数轴上的点A ,B 表示的数分别是a ,b .如果a <b ,且<ab 0,那么该数轴的原点O 的位置应该在(A )点A 的左侧 (B )点B 的右侧 (C )点A 与点B 之间且靠近点A(D )点A 与点B 之间且靠近点B8.如图,点A ,O ,B 在一条直线上,∠AOC =∠DOE =78°,∠AOD=43°,那么∠BOE 的度数为(A )35° (B )43° (C )47° (D )59° 二、填空题(本题共16分,每小题2分) 9. 计算:2a a −=__________.10.圆周率是数学美的象征,它的无限不循环小数形式引发了人们对数学的好奇和探索.圆周率π 3.1415926=,用四舍五入法把π精确到百分位,得到的近似值是 .11.若x =2是关于x 的方程220x a +−=的解,则a = .12.写出一个含字母x 的一次二项....式.,满足当x =2时,它的值等于5,这个式子可以是____________. 13.计算:48321138''︒+︒= _____________.14.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62º的方向上,同时,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是 .15.一个角的补角恰好是这个角的2倍,则这个角的度数是_________________ . 16.某学校把WIFI 密码按照如下规律设置,根据提供的信息可以推断该校的WIFI 密码是_____________. 账号:xuexiao 1*2⊕3=030609 4*5⊕6=243054 9*2⊕5=4510554*6⊕8= 密码三、解答题(本题共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:()13(5)2011+−−−−. 18.计算:13255()()54÷⨯−÷−.19.计算:421110.51(2)5−−−⨯⨯−−(). 20.解方程:2(35)23(6)x x −=++. 21.解方程:121132x x +−=−. 22.如图,平面内有四个点A ,B ,C ,D .根据下列语句作图(保留作图痕迹),并回答问题.(1)连接AB ;(2)画射线AD ,并在线段AD 的延长线上用圆规截取DE =AB ;(3)作直线BC 与射线AD 交于点F .观察图形发现,线段AF +BF >AB ,得出这个结论的依据是: . 23.先化简,再求值:225(54)2(33)6x x x x −++−− ,其中2x =−.24.已知关于x 的方程 (3)213(1)k x x ++=++(k ≠0). (1)当k =1时,求方程的解;(2)若0k >,方程的解是整数,则x 有最 (填“大”或“小”)值,这个值是 ,此时,k = .25.如图,在数轴上有A ,B ,C ,D 四点,点A 表示的数是1,点B 表示的数是7,点C 位于点B 的左侧并与点B 的距离是2,点D 是线段AC 的中点.(1)在数轴上表示出点C ,点D ,直接写出点D 表示的数; (2)若点E 在数轴上,且满足EA =2EC ,求点E 是表示的数.26.某校组织若干师生到故宫进行参观活动,若学校只租用 45 座的客车,则刚好坐满;若只租用60座的客车,则可少租用1辆,且有一辆上只坐了15人,其余车辆都坐满. (1)参加此次活动的师生共有多少人?下面是解决该问题的两种方法,请选择其中的一种.......方法完成分析和解答.–1–2–3–41234567891011121314BA接写出45座客车和60座客车各租多少辆时,费用最少.27.如图,∠AOB =90º,∠COD =90º,∠AOC =30º,射线OP 在∠BOC 内, ∠BOP=n ∠COP .(1)当n =1时,请用量角器在图1中画出射线OP ,求∠DOP 的度数; (2)当n =2时,OQ 平分∠DOP ,直接写出∠BOQ 的度数.28.点A ,B ,C 在数轴上,对于线段AB 和线段AB 外一点C 给出如下定义:若点C 与线段AB 上的点的最小距离小于或等于12AB ,则称点C 是线段AB 的 “半关联点”. (1)如图,点A 表示的数是1,点B 表示的数是2,点D ,E ,F 在数轴上,它们表示的数分别是12,3,5,则在点D ,E ,F 中,线段AB 的半关联点”是 ;(2)若点A 表示的数是1,点B 表示的数是2,且点C 是线段AB 的 “半关联点”,则点C 表示的数c 的取值范围是 ;(3)若点A 表示的数是1,如点C 表示的数是1−,点C 是线段AB 的 “半关联点”,点B 表示的数b 的取值范围是 .DD图1备用图参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.a −10. 3.1411.2 −12.)3( 答案不唯一+x13.6010'︒ 14. 0815. 0616. 248803三、解答题(本题共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题6分,第27-28题,每题7分)17.解:)11(20)5(13−−−−+1352011=−−+…………………………………………………………………………………2分 2425=−…………………… ……………………………………………………………………4分 .1−=………………………………………………………………………………………………5分18.解:)43()51(525−÷−⨯÷34515125⨯⨯⨯= …………………………………………………………………………………3分34=………………………………………………………………………………………………5分 19.解:|)2(1|51)5.01(124−−⨯⨯−−−|41|51211−⨯⨯−−= ……………………………………………………………………………2分351211⨯⨯−−=……………………………………………………………………………………3分1031−−=…………………………………………………………………………………………4分 3110=−……………………………………………………………………………………………5分 20.解:)6(32)53(2++=−x x1832106++=−x x ………………………………………………………………………2分1018236++=−x x303=x10x =…………………………………………………………………………………5分21.解:212131−−=+x x2(1)63(21)x x +=−−……………………………………………………………………………3分36622 +−=+x x87x =78x =………………………………………………………………………………………5分22.解:…………………………………………………………………4分依据是:两点之间,线段最短.………………………………………………………………6分23.解:6)33(2)45(522−−++−x x x x66645522−−+−−=x x x x212x x =+− ……………………………………………………………………………………3分 2x =−∴原式2(2)(2)12=−+−−10=−.……………………………………………………………………………………5分24.解:(1)∵k =1,∴原方程可化为4213(1)x x +=++ 42133x x +=++ 43132x x −=+−2x =…………………………………………………………………3分(2) 小,1,2.………………………………………………………………………………………6分 25.解:(1)点D 表示的数为3.………………………………………………………………………………3分 (2)① 当点E 在点A 左侧时,则点E 不存在;–1–2–3–412345678910111213140D C BA② 当点E 在点A 和点C 之间时,则点E 表示的数是311; ③ 当点E 在点C 右侧时,则点E 表示的数是9. ∴综上所述,点E 表示的数是9311或.…………………………………………………………6分 26.(1)方法一:45x ,60(2)15x −+.…………………………………………………………………………2分 解:设该校租用45座的客车x 辆,租用60座的客车(1)x −辆. 4560(2)15x x =−+解得:7=x457315⨯=(人)答:该校参加活动师生共有315人. ………………………………………………………………5分 方法二:45x,15160x −+.………………………………………………………………………………2分 解:设该校参加活动师生共有x 人.15114560x x −−=+ 解得: 315x =答:该校参加活动师生共有315人.…………………………………………………………………5分 (2)45座和60座客车各租3辆时费用最少. ………………………………………………………6分 27.解:(1)30,90=∠=∠AOC AOB ,60=∠−∠=∠∴AOC AOB BOC . 90=∠COD ,30=∠−∠=∠∴BOC COD BOD . 1=n , 3021=∠=∠=∠∴AOC COP BOP , 60=∠+∠=∠∴BOP DOB DOP .………………………………………………………………………5分(2) 5=∠BOQ .………………………………………………………………………………………7分 28.(1)点D ; …………………………………………………………………………………………1分D(2)12≤1c<或2c<≤52; …………………………………………………………………………4分(3)1b−<≤13−或b≥5.……………………………………………………………………………7分。
初一数学试题大全
初一数学试题答案及解析1.下面由火柴棒拼出的一列图形中,第个图形由个正方形组成,通过观察可以发现:第个图形中火柴棒的根数是 .【答案】.【解析】略2.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C,夜晚则低至-1700C,则水星表面昼夜的温差为____________.【答案】597摄氏度【解析】求表面昼夜温差就是用最高温度减去最低温度即:427-(-170)=597℃.解:根据温差=最高气温-最低气温得:427-(-170)=597℃.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容3.分解因式2﹣4x+2的最终结果是()A.2x(x﹣2)B.2C.2(﹣2x+1)D.【答案】B【解析】本题首先利用提取公因式法提取公因式2,然后再利用完全平方公式进行因式分解.【考点】提公因式法与公式法的综合运用4.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是()A.0.8a元B.a元C.1.2a元D.2a元【答案】C【解析】一件商品的进价是 a 元,提价20%后出售,则这件商品的售价=a+a20%=1.2a,故选:C.【考点】列代数式.5.下列各式中与多项式2x-(-3y-4z)相等的是()A.2x+(-3y+4z)B.2x+(3y-4z)C.2x+(-3y-4z)D.2x+(3y+4z)【答案】D【解析】在去括号时,如果括号前面是负号时,则去掉括号后括号里面的每一项都要变号;如果括号前面是正号,则去掉括号后括号里面的每一项都不变.【考点】去括号法则6.某物流公司的甲、乙两辆货车分别从相距300千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶1.5小时时甲车先到达配货站C地,此时两车相距30千米,甲车在C地用1小时配货,然后按原速度开往B地;两车行驶2小时时乙车也到C地(未停留)直达A地.(友情提醒:画出线段图帮助分析)(1)乙车的速度是千米/小时,B、C两地的距离是千米,A、C两地的距离是千米;(2)求甲车的速度及甲车到达B地所用的时间;(3)乙车出发多长时间,两车相距150千米?【答案】(1))60千米/时;120千米;180千米(2)120千米/时,3.5小时(3)或【解析】(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C地,这15分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.(2)根据A、C两地的距离和甲车到达配货站C地的时间可求出甲车的速度,再根据行程问题的关系式求出甲车到达B地所用的时间即可解答.注意要加上配货停留的1小时.(3)此题分为两种情况,未相遇和相遇以后相距150千米,据此根据题意列出符合题意得方程即可解答.试题解析:(1)60千米/时;120千米;180千米(2)甲车的速度=180÷1.5=120千米/小时;甲车到达B地所用的时间=300÷120+1=3.5小时.(3)设乙车出发x小时,两车相距150千米,列方程得300-(60+120)x=150或60x+120(x-1)=300+150解得或答:乙车出发或小时,两车相距150千米【考点】一元一次方程的应用7.一张纸的厚度是0.1mm,假如将它连续对折10次后,则它折后的高度为()A.1mm B.2mm C.102.4mm D.1024mm【答案】C.【解析】试题解析:根据题意得:0.1×1010=102.4mm.故选C.【考点】有理数的乘方.8.某人将1000元存入银行,半年后取出,共得本息1027元,则银行利率x:.【答案】5.4%【解析】设银行年利率为x,根据题意得:1000+×1000x=1027,解得:x=5.4%.【考点】一元一次方程的应用9.某竞赛试卷由26道题组成,答对一题得8分,答错一题倒扣5分,小强虽然做了全部的26道题,但所得总分为零,他答对的题有()A.10道B.15道C.20道D.8道【答案】A【解析】本题首先设答对x道题,则答错的题数为(26-x)道,根据题意得:8x-5(26-x)=0,解得:x=10.【考点】一元一次方程的应用.10.(2015秋•陕西校级期末)已知|a+3|+(b﹣1)2=0,则3a+b= .【答案】﹣8.【解析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解:根据题意得:,解得:,则3a+b=﹣9+1=﹣8.故答案是:﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.11.有理数a,b,c在数轴上的位置如图所示,则|a﹣c|﹣|a﹣b|﹣|b﹣c|= .【答案】2a-2b【解析】由数轴可知a-c>0,a-b<0,b-c>0,然后根据绝对值的性质可求解:|a﹣c|﹣|a﹣b|﹣|b﹣c|=a-c-(b-a)-(b-c)=a-c-b+a-b+c=2a-2b.【考点】数轴与绝对值12.下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【答案】A【解析】试题分析:根据同底数幂的除法底数不变指数相减,积的乘方等于乘方的积,合并同类项系数相加字母及指数不变,差的平方等于平方和减积的二倍,可得答案.解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:A.【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.13.如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=5∠COE,求∠AOD的度数.【答案】120°【解析】由OE⊥AB可得∠EOB=90°,设∠COE=x,则∠DOE=5x,而∠COE+∠EOD=180°,即x+5x=180°,得到x=30°,则∠BOC=30°+90°=120°,利用对顶角相等即可得到∠AOD的度数.解:∵OE⊥AB,∴∠EOB=90°,设∠COE=x,则∠DOE=5x,∵∠COE+∠EOD=180°,∴x+5x=180°,∴x=30°,∴∠BOC=∠COE+∠BOE=30°+90°=120°,∴∠AOD=∠BOC=120°.14.化简的结果是()A.﹣5B.5C.﹣1D.1【答案】A【解析】首先根据去括号的法则进行去括号,然后进行单项式的求和计算.原式=5x-5x-5=-5.【考点】单项式的计算15.已知10箱苹果,以每箱15千克为标准,超过15的千克数记为正数,不足15的千克数记为负数,称重记录如下:,,,,,,,,,(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为15±0.5(千克),则这10箱中有几箱不符合标准的?【答案】(1)、150.6千克;(2)、2箱【解析】(1)、将各数进行相加,然后再加上10箱的标准重量得出答案;(2)、根据+0.7>+0.5,+0.6>+0.5得出答案.试题解析:(1)、0.2-0.2+0.7-0.3-0.4+0.6+0-0.1+0.3-0.2=0.6(千克)这10箱苹果的总质量为:15×10+0.6=150.6(千克)(2)+0.7>+0.5,+0.6>+0.5,且没有一个小于﹣0.5的数,因此这10箱有2箱不符合标准.【考点】有理数计算的应用16.一种细胞每过60分钟便由1个分裂成2个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年级期末测试题全套 (满分:100分时问:120分钟) 一、选择题(本题共10小题,每题2分,共20分)注意:请把选择题的答案填入答题 卷的表格中. 1.下列电视台台标中,是轴对称图形的是 ( )
2.下列计算正确的是 ( ) A.224347xxx B.3515xxx C.43xxx D.257xx 3.在一个暗箱里装有3个红球、5个黄球和7个绿球,它们除颜色外都相同.搅拌均 匀后,从中任意摸出一个球是红球的概率是 ( )
A.13 B.15 C.17 D.715 4.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为 ( ) A.1cm B.8cm C.8cm或10cm D.10cm 5.下列都是无理数的是 ( )
A.0.07,23,34 B..0.7,5,4
C.2,6, D.3.14,3,227 6.下列说法正确的是 ( ) A.将5.647精确到O.1是5.7
B.将6.95精确到十分位是7.0 C.近似数5.2x103与近似数5200的精确度相同 D.近似数4.8x104与近似数4.80万的有效数字相同
7.已知a+b=1,ab=3,则22ab一ab的值为 ( ) A.一4 B.8 C.10 D.--10 8.如图,将图中的正方形沿其中一条对角线对折后,再沿原正方形的另一条对角线对 折,最后将得到的三角形剪去一片后展开,得到的图形为 ( )
9.“健康重庆”就是要让孩子长得壮,老人寿命更长,全民生活得更健康.为了响 应“健康重庆”的号召,小明的爷爷经常坚持饭后走一走.某天晚饭后他慢步到附近的融
侨公园,在湖边亭子里休息了一会后,因家中有事,快步赶回家.下面能反映当天小明 的爷爷所走的路程y与时间x的关系的大致图象是 ( )
10.我们知道,正方形的四条边相等,四个角也都等于90.如图,在正方形ABCD外 取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1, PB=5;.下列结论: ①ΔAPDΔAEB;②EBED;③点B到直线AE的距离为2; ④162SAPDSAPB(v是三角形,三角形不好打出来嘿嘿,凑合看吧) .其中正确结论的序号是 ( ) A.①②③ B.①②④ C.①③④ D.②⑨④
二、填空题(本题共l0小题,每题2分,共20分)注意:请把填空题的答案填入答题 卷的横线上. j
11.3的相反数是______. 12.比较大小:43________8(填“>”,“<”或“=”). 13.小丽在镜子里看到对面墙上电子钟示数为,则此时实际时刻为______. 14.据市教委中招办介绍,今年全市高中阶段教育招生计划约为382000人.将数382000 保留2个有效数字,用科学记数法表示为_______. 15.如图是一个等边三角形的靶子,靶心为其三条对称轴的交点,飞镖随机地掷在靶上, 则投到区域A(包含边界)的概率是________. 16.如图,在ABC中,AB=AC,AD是BC上的高,若AB=5,BC=6,则AD=_______.(三角形ABC) 17.若ABC的三边a、b、c满足25(612)13ac0,则△ABC的面积为____. 18.实数a、b在数轴上对应点的位置如图所示,
化简:22()aabab________.
19.如图,长方形纸片ABCD的边长AB=4,AD=2.将长方形纸片沿EF折叠,使点A 与点C重合,则△FEC的面积为_______. 20.如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运
动,当BPQ是腰长为5的等腰三角形时,AP的长度为________.
三、计算题:(本大题5个小题,21--24题每小题4分,25题6分, 22分)解答时每小题必须给出必要的演算过程或推理步骤
21.220110313(1)(3)272 22.522372()(2)()(8)xxxxx
23.1818502 24. 2(2)(2)()nmnmmn 25.先化简,再求值:2(2)(4)(3)(2)abababa,其中a是27的立方根,
6是4的算术平方根 .
四、解答题:(本大题6个小题,26-30题每小题6分,31题8分,共38分)解答时 每小题必须给出必要的演算过程或推理步骤 26.为促进“平安重庆”建设,市公安局交巡警总队拟在我市某“三角形”转盘区域内新
增一个交巡警平台,使交巡警平台到三个十字路口A、B、C三点的距离相等,试确定 交巡警平台P的位置(要求:用尺规作图,保留作图痕迹,不写已知、求作、作法和 结论).
27.为了鼓励小强勤做家务,培养劳动意识,小强每月的总费用等于基本生活费加上奖 励(奖励由上个月他的家务劳动时间确定).已知小强4月份的家务劳动时间为20小时, 他5月份获得了400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之 间的关系如图所示,请根据图象回答下列问题. (1)上述变化过程中,自变量是_______, 因变量是_______; (2)小强每月的基本生活费为________元. (3)若小强6月份获得了450元的总费用, 则他5月份做了_______小时的家务. (4)若小强希望下个月能得到120元奖励, 则他这个月需做家务________小时.
28.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,.且AB=DE., A=D,AF=DC.求证:BC∥EF
29.如图,在ABC中,, B=45,C=30,ADBC于D,BD=6,求DC的长和ABC的面积(结果保留根号). 他5月份获得了400元的总费用.小强每月可获得的总费用与他上月的家务劳动时间之 间的关系如图所示,请根据图象回答下列问题. (1)上述变化过程中,自变量是_______, 因变量是_______; (2)小强每月的基本生活费为________元. (3)若小强6月份获得了450元的总费用, 则他5月份做了_______小时的家务. (4)若小强希望下个月能得到120元奖励, 则他这个月需做家务________小时.
28.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,.且AB=DE., A=D,AF=DC.求证:BC∥EF
29.如图,在ABC中,, B=45,C=30,ADBC于D,BD=6,求DC的长和ABC的面积(结果保留根号). 点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于 M、N. (1)如图l,当线段EF经过ABC的顶点C时,点N与点C重合,线段DE交AC 于M,求证:AM=MC; (2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连 MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由; (3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连 MN,EC,请猜想AM,MN,CN之间的等量关系,不必说明理由。 一、选择题(每小题2分,共20分) 二、填空题(每小题2分,共20分) 11. 3 12. < 13. 21:05 14. 5
108.3 15.
31
16. 4 17. 30 18. a 19. 25 20. 2或3或8 三、计算题:(21-24题每小题4分,25题6分,共22分)
21.22011031313272 22. 3
2527228xxxxx
解:原式=431)1(3 ------------3分 解:原式)8()()8(27625xxxxx------------3分
=3 ------------4分 127
x
------------4分
23.5021188 24. 2
(2)(2)()nmnmmn
题号 1 2 3 4 5 6 7 8 9 10
答案 D C B D C B C A A B 解:原式=25222322 ------------3分 解:原式=222224nmnmmn ------------3分
=22 ------------4分 =mnn252
------------4分
25. 先化简,再求值:
2
2432,abababa
其中a是27的立方根,b
是4的算术平方根.
解:原式=)2(]412344[2222abababababa --------------------------------------------------2分
=)2()74(2
aaba
--------------------------------------------------3分
=ba272 --------------------------------------------------4分
当24,3273ba时 --------------------------------------------------5分
原式=22732
--------------------------------------------------6分 =13 四、解答题:(26-30题每小题6分,31题8分,共38分) 26. 为促进“平安重庆”建设,市公安局交巡警总队拟在我市某“三角形”转盘区域内新增一个交巡警平台,使交巡警平台到三个十字路口 A、B、C三点的距离.....相等,试确定交巡警平台 P的位置(要求:用尺规作图,保留作图痕迹,不写已知、求作、作法和结论).
A