实变函数与泛函分析基础+第三版 (程其襄+张奠宙+著)+高等教育出版社+课后答案
实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
《实变函数与泛函分析基础》试卷和答案.doc

)(B) lim = c u A;___ co s (C) limA = n u A •8 0C(D) lim A = n n A.;试卷一:一、单项选择题(3分X5二15分)1、1、下列各式正确的是(______ CO 0C(A)limA n = u c 4;“Ts/r=l k=n2、设P为Cantor集,则下列各式不成立的是((A)P= c (B) mP = 0 (C) P = P (D) P = P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设{/…«}是E上的必.有限的可测函数列,则下而不成立的是( )(A)若/Jx)=>/(x),则/n(x)^/(x) (B) sup{/;(%)}是可测函数n(C) inf{/…(x)}是可测函数;(D)若//X)=>/(%),则/⑴可测5、设f(x)是山,切上有界变差函数,则下而不成立的是( )(A) /(%)在[a y h]上有界(B) /(x)在[a,b]上儿乎处处存在导数rb(C)八兀)在[。
上]上L 可积(D) I f\x)dx = f(b)-f(a)J a二填空题(3分X5二15分)1、(CAuC s B)n(A-(A-B))= ______________o _2、设E是[0,1]±有理点全体,则£= _____ ,£=______ 、E= _____ .3、设E是川中点集,如果对任一点集T都有_________________________________ ,则称E是厶可测的4、/⑴可测的________ 条件是它可以表成一列简单函数的极限函数.(填“充分”,“必耍”,“充耍”)5、设/(x)为[d,b]上的有限函数,如果对T' [a,b]的一切分划,使______________________________________________________ ,则称/(x)为[a,列上的有界变差函数。
实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x
≥
0,
1 xp 1
∞
0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ ÆÃ ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n
→
0(n
→
∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.
《实变函数与泛函分析基础》试卷及答案

《实变函数与泛函分析基础》试卷及答案(第2页,共19页)试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有得 分得 分(第3页,共19页)_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为 [],a b 上的有界变差函数。
实变函数第三版复习要点及习题

第一章集合
集合的运算(尤其集合列的交集与并集的运算;
集合列极限的计算;
基数(或势)的概念;
可数集的概念、性质及判别方法(会证明),常见的可数集;
不可数集(具有连续基数)的概念、性质,常见的具有连续基数的集合。
课后习题:7,9,10,11,12,13,15,17
第二章点集
◆集合间的距离;
◆几种特殊的点及其之间的关系、求法:聚点、内点、界
点、孤立点;
◆几种特殊的点集的概念、性质及计算:开核、边界、导
集、闭包;
◆开集、闭集、完备集的概念、性质,会证明一个集合是
开集或闭集;
◆直线上开集构造定理;
◆康托集(Cantor)的概念、性质;
◆课后习题:1,2,3,4,5,6,7,8,11
第三章测度论
●外测度的概念及性质;
●测度的概念及性质;
●常见的可测集类;
●可测集与开集、闭集、型集和型集的关系
●可测集相关理论的证明
●一些特殊可测集测度的计算
●课后习题:1,2,5,6,8
第四章可测函数
⏹可测函数的定义及性质
⏹常见的可测函数
⏹可测函数与简单函数、连续函数的关系
⏹三大收敛及其之间的关系
⏹可测函数相关理论的证明
⏹课后习题:1,4,6,7,8,9,10,11
第五章积分论
勒贝格积分的背景、定义方法
勒贝格积分的性质:注意条件和结论
勒贝格可积的条件
三大极限定理:Levi定理;Fatou引理;
Lebesgue控制收敛定理
三大极限定理的应用
Lebesgue积分的几何意义及Fubini定理
习题:2,3,5,6,7,11,12,20
计算题。
《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)

《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)ob 得分试卷⼀:⼀、单项选择题(3 分×5=15 分)1、1、下列各式正确的是()∞ ∞∞ ∞(A ) lim A n = ? ? A k ; (B ) lim A n = ? ? A k ; n →∞n =1 k =n n →∞n =1 k =n∞ ∞∞ ∞(C ) lim A n = ? ? A k ; (D ) lim A n = ? ? A k ;n →∞n =1 k =nn →∞n =1 k =n2、设 P 为 Cantor 集,则下列各式不成⽴的是()(A ) P = c (B) mP = 0 (C) P '= P(D) P = P3、下列说法不正确的是()(A) 凡外侧度为零的集合都可测(B )可测集的任何⼦集都可测 (C) 开集和闭集都是波雷⽿集(D )波雷⽿集都可测 4、设{ f n (x )} 是 E 上的a .e . 有限的可测函数列,则下⾯不成⽴的是()(A )若 f n (x ) ? f (x ) , 则 f n (x ) → f (x )(B) sup { f n (x )} 是可测函数n(C ) i nf { f n (x )} 是可测函数;(D )若 f n (x ) ? nf (x ) ,则 f (x ) 可测5、设 f(x)是[a , b ] 上有界变差函数,则下⾯不成⽴的是()(A) f (x ) 在[a , b ] 上有界(B) f (x ) 在[a , b ] 上⼏乎处处存在导数(C ) f '(x ) 在[a , b ] 上 L 可积 (D)af '(x )dx = f (b ) - f (a )⼆. 填空题(3 分×5=15 分)1、(C s A ? C s B ) ? ( A - ( A - B )) =2、设 E 是[0,1]上有理点全体,则 E '=, E =, E = .3 、设 E 是R n 中点集,如果对任⼀点集T 都有得分,则称E 是L 可测的4、f (x) 可测的条件是它可以表成⼀列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设 f (x) 为[a, b]上的有限函数,如果对于[a, b]的⼀切分划,使f (x) 为, 则称[a, b]上的有界变差函数。
泛函分析课后习题答案
___ ___ ___
1 n
d ( x, y ) 1 d ( x, y )
t 在 [o, ) 上是单增函数, 1 t
___ d ( x, y ) d ( x, z ) d ( y , z ) d ( x, y ) 1 d ( x, y ) 1 d ( x, z ) d ( y , z )
1 n
x1 B ,使 d ( x0 , x1 )
1 1 。设 d ( x0 , x1 ) 0, 则易验证 U ( x0 , ) on ,这就 n n
证明了 on 是 开集 显然 n on B 。若 x on 则对每一个 n,有 xn B 使 d ( x , x1 ) ,因 1 n 1 此 xn x(n ) 。因 B 是闭集,必有 x B ,所以 on B 。证毕 n 1 4 设 d(x,y)为空间 X 上的距离,证明 d ( x, y ) 是 X 上的距离 证明 (1)若 d ( x, y ) 0 则 d ( x, y ) 0 ,必有 x=y (2)因 d ( x, y ) d ( x, z ) d ( y, z ) 而 于是 d ( x, y ) =
___
因此 f o (t ) A 由于 A 是开集,必有 0 ,当 f C[a,b]且 d ( f , f 0 ) 时, f A 定义,n=1,2。 。 。 。 。则 d ( f n , f 0 ) | t n t0 | 0(n ) 因此当 | t n t0 | 时, f n A 。 但是 f n (t n ) a | t t0 | | t n t0 | a ,此与 f n A 的必要条件:对 任意
t B ,有 f n (t ) a 矛盾
实变函数与泛函分析基础习题.doc
实变函数与泛函分析基础习题.docn —1第⼀章集合4.证明,c s (u^)= nc-A.I —1 I证明 are C.( U All llli|⼯WS 、但⼯宅⼝ A ?,因此对任总2电44<,因⽽t —1<—1X € n C,4t- SxG n CM—1 c —1t —1得 H € c.( u A t y 所以 C.( 0 ^) = A C.A.<>i —1& 证明 lim A n = U nfi —?n —1 m —f>证明lix€ lim 则存在M 使⼀切n>N^eAn.所以⼯€ A⼉n u 0 Afl —*OQTIl ?fl ⼗ 1 f>*?l TT>?fl所以lim zt n C 0 n 4m . X € 0 A ⼼,则右F 使⼯€ Q 仏,即对任总m > n, {j fl —*8H —■ 1 Ffl—FB fl —1FII —fl WV-?fl x € 所以⼯ € lim /4n-n —*txj因此 lim 4n = U n 4m .R —*00Fl —1 ni —fl12.证明,所有系数为宵理数的多:爼成 I 放集.远明设俎是n 次存理系软多项式的全体,n=L2,-.*t WlM= J A n .A n 由n+1个 n —0独⽴的记号所決定,即⼏次多项式的n + l 个”理数系敖,其中肖项系数町取除0以外的⼀列#理ft, Kte 系数叮取⼆切〃理数,因此毎个记号迪⽴地跑対?个可数集,因此由M 定理 6X =⼇⼜由§4定理4亍=a.16. i ⽎A 是■数集合,则A 的所WVR f ?集作成的集4炉必可■证明设4 = {却严…}"的有限⽚集的全^A.An = {SZ2,,%}, A B 的F 集的 ' 兀?易汁算兀中焦有2"个尤索,⽽4 = J 4W ,因此久⾄多为町数的.乂 4中个尤奈纽成的集今是町数的,因⽽j 是叮数的.第⼆章点集注:E 。
(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档
试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。
《实变函数》习题库参考答案
《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。
从而移项可得结论。
4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。
在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。