A comparative structural and electrochemical study of
电化学方法研究锌镍合金镀层耐腐蚀性能

电化学方法研究锌镍合金镀层耐腐蚀性能韩玉娟;郑凯【摘要】Zn-Ni alloy coating and Zn coating were prepared by electrodepositing in alkaline electrolyte respectively. They were handled into working electrodes. Platinum electrode and calomel electrode were chosen as counter electrode and reference electrode respectively. They were immersed into 5% NaCl solution simultaneously. The electrochemical workstation was utilized to measure the corrosion performance after 120 h. The test result indicated that the corrosion potentials of the Zn-Ni alloy and Zn coating were respectively -0. 778 and -0. 989 V, rate of corrosion on Zn-Ni alloy and zinc coating were 0. 0405 and 0. 301 g/( m2 ·h) , which indicated that the corrosion rate of Zinc coating was seven point four times of that of Zn-Ni alloy, their real part values within the low frequency range from 1 to 10 Hz were 250 and 900 Ω/cm2 respectively, the value of Zn-Ni was 3. 5 times than that of Zn coating.%碱性介质中制备锌镍合金镀层与镀锌层,并制备成工作电极,分别选择铂电极和饱和甘汞电极作为对电极和参比电极,5%氯化钠溶液为测量介质,采用电化学工作站测量工作电极电化学特性。
聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。
超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。
目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。
超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。
随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。
2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。
而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。
目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。
生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。
因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。
钨铼合金电化学溶解工艺研究

第47卷第14期2019年7月广 州 化 工Guangzhou Chemical IndustryVol.47No.14Jul.2019钨铼合金电化学溶解工艺研究*郭 瑞,赵星晨,李 波,许万祥,王靖坤,周 严,李 进(西安瑞鑫科金属材料有限责任公司,陕西 西安 710016)摘 要:采用电化学溶解法对某钨铼合金废料在氢氧化钠电解体系中的溶解过程进行研究㊂考察了电流密度㊁电解液碱度㊁温度㊁电解液钨离子浓度对电解过程的影响㊂实验结果表明,在阳极电流密度400A /m 2㊁氢氧化钠浓度300g /L㊁电解液温度40~45℃的条件下平均槽电压为2.5V,合金电化学溶解率可达98%,使得大部分钨㊁铼以阴离子状态转入溶液中,完成钨铼合金的高效溶解,工艺简单高效,可实现工业化生产㊂关键词:电化学;钨铼合金;溶解 中图分类号:TF841.8 文献标志码:B文章编号:1001-9677(2019)14-0063-03*基金项目:国家重点研发计划(2018YFC1901704)㊂通讯作者:许万祥(1988-),男,工程师,硕士,主要从事稀贵金属综合回收相关研究㊂Study on Electrochemical Dissolution Process of Tungsten-rhenium Alloy *GUO Rui ,ZHAO Xing -chen ,LI Bo ,XU Wan -xiang ,WANG Jing -kun ,ZHOU Yan ,LI Jin(Xi’an Rarealloys Co.,Ltd.,Shaanxi Xi’an 710016,China)Abstract :The electrochemical dissolution of tungsten -rhenium alloy in sodium hydroxide electrolysis system was studied.The effects of current density,electrolyte alkalinity,temperature and the concentration of tungsten ion on the electrolysis process were inspected.The test results showed that the electrochemical dissolution rate of the alloy could reach 98%under the conditions of anode current density of 400A /m 2,sodium hydroxide concentration of 300g /L,electrolyte temperature of 40~45℃and the average cell voltage of 2.5V.The most of tungsten and rhenium were transferred into the solution of an anion state,and the efficient dissolution of the tungsten-rhenium alloy was completed.The process is simple and efficient,and industrial production can be realized.Key words :electrochemical;tungsten-rhenium alloy;dissolution钨铼合金是以钨元素为基体且与铼元素组成的固溶强化型合金㊂合金中常用的铼含量(质量分数)为3%,5%,10%,25%和26%㊂分低含量W-Re 合金(Re≤5%)和高含量W-Re 合金(Re≥15%)[1-3]㊂钨与铼制成各种成分钨铼合金,具有很多优良性能,像高熔点㊁高强度㊁高硬度㊁高塑性,电阻率高㊁高的再结晶温度㊁高的热电势值㊁低的蒸气压㊁低的电子逸出功和低的塑一脆性转变温度等,同时价格也比纯铼低75%~95%㊂所以钨铼合金在电子技术㊁热力控制㊁现代核子技术和宇宙航行技术㊁测温领域㊁仪器仪表㊁电器和其它尖端科学技术部门都得到了广泛的应用[4]㊂钨铼合金废料回收铼的方法主要有氧化升华法和 硝石熔融分解 离子交换法”,氧化升华法能耗高,吸收装置复杂,铼回收率低,硝石熔融分解法同样有能耗高㊁腐蚀性强等缺点[5]㊂本文根据钨铼合金物理化学特点,采用电化学溶解法处理某钨铼合金㊂1 实 验本研究选用的钨铼合金化学成分为:W 75%㊁Re 25%㊂称取一定量的钨铼合金作为阳极,阴极采用厚度0.3mm的钛网㊂阴阳极极距25mm,以MPS-3010LP-2为直流电源,氢氧化钠溶液为电解液,电解时间5h,通过改变输出电流来改变阴阳极电流密度进行电溶实验㊂实验过程中定期采用标准酸碱滴定法测定电解液的碱度度,钨㊁铼离子浓度的分析采用ICP 法,电解结束后将阳极残余物料煮沸烘干㊁称重,按下式计算溶解率㊂η=g 0-g 1g 0×100%式中:η 合金溶解率,%g 0 阳极重量,gg 1 阳极残极重量,g2 实验原理钨铼合金的电化学溶解就是利用钨和铼在氢氧化钠溶液中的溶解电极电势,控制槽电压和电流密度,使得钨和铼以离子状态进入溶液中㊂电溶过程阴极和阳极进行的主要反应如下:阳极过程主要化学反应:==Re-7e ReO -4==W-6e WO 2-464 广 州 化 工2019年7月副反应主要是:2H 2==O+4e O 2↑+4H +阴极过程主要化学反应:2H +==+2e H 2↑3 结果与讨论电解过程中的影响因素比较复杂,本文研究电流密度㊁电解液碱度㊁电解温度和钨离子浓度等因素对电化学溶解过程中槽电压和合金溶解率影响,并得到最佳工艺参数㊂3.1 电流密度的影响将配制的氢氧化钠溶液(300g /L)注入电解槽内,电解液温度40℃,电溶5h,不同电流密度下的槽电压和溶解效率如图1所示㊂图1 电流密度对槽电压和溶解率的影响Fig.1 The relationship between current density andcell voltage and dissolution rate图1表明,随着电流密度的增加,槽电压和电解能耗也随之增大㊂这是由于随着电流增大,阴极电解析氢变快,产生气泡降低了电解液的导电性能,浓差极化和电化学极化也增大,导致槽电压增大㊂低的电流密度电解能耗较低,但是使得产能也下降,综合考虑,合金溶解的电流密度选择400A /m 2为宜,合金溶解率可达98%㊂3.2 氢氧化钠碱度的影响控制电流密度400A /m 2,电解液温度40℃,电溶5h,电解液碱度对槽电压㊁合金溶解率的影响如图2所示㊂图2 氢氧化钠浓度对槽电压和溶解率的影响Fig.2 The relationship between hydroxide concentration andcell voltage and dissolution rate从图2可看出,随着电解液氢氧化钠浓度的增加,溶液的导电性增大,槽电压下降,合金的溶解率增大㊂在低碱度时,溶液的导电性差,电阻大,阳极容易引起钝化,导致槽电压高㊂当氢氧化钠浓度达到300g /L 时,合金溶解率可达到98%,因此,将电解液碱度氢氧化钠浓度控制300g /L 为宜㊂3.3 钨离子浓度的影响电流密度400A /m 2,氢氧化钠浓度度300g /L,电解液温度40℃,电溶5h㊂钨离子初始浓度对槽电压㊁合金溶解率的影响如图3所示㊂图3 初始钨离子浓度对槽电压和溶解率的影响Fig.3 The relationship between the concentration of initial tungsten ion and cell voltage and dissolution rate 由图3可见,初始钨离子浓度越大,槽电压上升,合金溶解率下降,这是由于钨酸根离子的导电性不如氢氧化钠电解液,随着钨酸根离子浓度的增加,电解液导电性能下降,导致槽电压上升,合金的溶解率下降㊂为保障良好的溶解率和较低的槽电压,钨离子浓度应维持在100g /L 以下㊂3.4 温度的影响控制电解电流密度400A /m 2,氢氧化钠浓度300g /L,电溶5h,不同温度下的槽电压和合金溶解率见图4㊂图4 温度对槽电压和溶解率的影响Fig.4 The relationship between temperature andcell voltage and dissolution rate图4表明,温度增高,槽电压是下降的㊂这是因为,温度升高增加了溶液中离子的扩散效率,电化学反应速率随之增大,降低了阴㊁阳极极化㊂温度太高会加快电解液的蒸发,造成工作环境恶化,因此,温度不宜太高,操作温度维持在40℃左右,合金的溶解率达到98%,控制电解温度40~45℃为宜㊂3.5 电解时间的影响控制电解电流密度400A /m 2,氢氧化钠浓度300g /L,电解温度40℃,电解时间对槽电压和合金溶解率的影响见图5㊂第47卷第14期郭瑞,等:钨铼合金电化学溶解工艺研究65图5 时间对槽电压和溶解率的影响Fig.5 The relationship between time and cell voltageand dissolution rate图5表明,随着电解时间的增加,槽电压前3h内是较缓幅度上升,而合金溶解率则较大幅度增大,随着电解时间的继续增加,槽电压呈现较大幅度上升,而溶解率则上升幅度减缓㊂当电解时间5h时,合金溶解率达到98%,此时槽电压2.9V,再继续增加电解时间,合金溶解率增幅较小,电解时间5h为宜㊂综合以上条件实验结果,得到的钨铼合金氢氧化钠体系电化学溶解优化工艺参数和指标为:电流密度400A/m2㊁钨离子浓度小于100g/L㊁氢氧化钠浓度300g/L㊁电解温度40℃㊁平均槽电压2.5V,电解5h合金溶解率达到98%㊂4 结 论(1)在氢氧化钠体系下钨铼合金电溶的参数为:阳极电流密度400A/m2㊁钨离子浓度<100g/L㊁氢氧化钠浓度300g/L㊁电解温度40℃㊂在此条件下,平均槽电压为2.5V,合金溶解率达到98%㊂(2)98%以上的有价金属钨㊁铼溶解转入溶液中,实现钨铼的高效溶解,为后续钨铼的分离提纯提供纯净的钨铼溶液,工艺简单易操作,易实现工业化生产㊂(3)此工艺为其他难溶合金物料的溶解提供借鉴㊂参考文献[1] 徐笑阳,刘新敏,成飞,等.全球钨废综合利用专利趋势和技术发展[J].中国钨业,2018,33(3):50-56.[2] 叶途明,易健宏,李丽娅,等.高比重钨合金研究的新进展[J].材料导报,2003(12):15-17.[3] 张文钲.铼的生产与应用研究进展[J].中国钼业,2008,32(4):6-10.[4] 张成强,张锦柱.铼的分离富集研究进展[J].中国钼业,2004,28(1):42-45.[5] 张文禄.浅谈钨铼合金残料的回收问题[J].中国钨业,1997(6):21-22.(上接第38页)[5] 程飞.地下钢制管道阴极保护技术现状与应用[J].当代化工.2017,46(9):1891-1893.[6] 刘军.试片法测量管道的断电电位[J].煤气与热力,2015,35(5):40-42.[7] 朱恒昌,钟丹清.IR降对输气管道阴极保护系统的影响及消除方法[J].全文版(工程技术),2016(5):156.[8] 李杰,杨雪,王志斌,等.国内外管道阴极保护电位测量方法差异分析[J].全面腐蚀控制,2016,30(12):3-5,79.[9] 迟善武.阴极保护恒电位仪的技术现状与展望[J].油气储运,2006(8):53-56,61.[10]张其敏,陈宁.埋地管道阴极保护效果监测技术分析[J].油气田地面工程,2008(9):9-10.[11]翁永基,阎茂成,李相怡.断电法消除管道阴极保护电位IR降的研究[J].油气储运,2002(5):30-34,58.[12]孙蕾,宁军,申龙涉,等.铁秦线阴极保护电位分析及改进措施[J].当代化工,2014,43(6):1100-1102.[13]NACE TM0497-2012埋地或水下金属管道系统阴极保护参数测试方法标准[S].休斯顿:美国腐蚀工程师协会,2012.[14]GBT21246-2007埋地钢质管道阴极保护参数测量方法[S].[15]李杰,杨雪,王志斌,等.国内外管道阴极保护电位测量方法差异分析[J].全面腐蚀控制,2016,30(12):3-5,79.[16]李自力,谢跃辉,郝宏娜,等.埋地管道阴极保护电位测量方法研究进展[J].腐蚀与防护,2012,33(1):55-59.[17]刘翔.油气管道阴极保护技术现状与发展趋势研究[J].中国石油和化工标准与质量,2018,38(9):183-184.[18]李自力,谢跃辉,郝宏娜,等.用试片断电法测量埋地管道的断电电位和去极化过程[J].腐蚀与防护,2012(3):255-257. [19]颜达峰,刘乃勇,袁鹏斌,等.消除IR降的阴极保护电位测量方法及实际应用[J].煤气与热力,2013,33(8):1-3.[20]沈光霁,徐卓,张若雯,等.管道阴极保护电位检查片测试方法及应用[J].全面腐蚀控制,2016,30(11):14-17,53. [21]刘学斌,丁华东,黄燕滨,等.牺牲阳极材料研究进展//第五届全国腐蚀大会[C].北京,2009.[22]施云芬,张世龙,王嘉浩,等.牺牲阳极防腐材料的研究进展[J].东北电力大学学报,2017,37(4):80-85.[23]张万友,王鑫焱,郗丽娟,等.阴极保护技术中牺牲阳极材料的研究进展[J].腐蚀科学与防护技术,2013,25(5):420-424. [24]胡士信.阴极保护工程手册[M].北京:化学工业出版社,1999:81.[25]冯洪臣.阴极保护安装与维护[M].北京:经济日报出版社,2010:8.[26]刘玲莉,张永盛,王富才.管道防腐层大修案例分析及大修选段原则[J].油气储运,2007,26(3):23-25.。
铜氨配合物还原动力学研究--硫酸四氨合铜

化学研究与应用Chemical Research and Application Vol.33,No.1 Jan.,2021第33卷第1期2021年1月文章编号:1004-1656(2021)01-0162-06铜氨配合物还原动力学研究——硫酸四氨合铜王慧婕,陈志萍*,杨晓峰,孙振豪,刘海清(中北大学理学院,山西太原030051)摘要:氨(或胺)常被用作液相还原法镀铜或制备铜纳米线的还原剂,但氨(胺)对铜离子还原过程及动力学的影响缺乏系统的研究。
本研究通过计时电量法测定了硫酸四氨合铜溶液中不同温度下在不同阶跃电位时Cu(NH3)42+还原为Cu的反应速率常数,进而求得标准速率常数^0(4.12xl0-5m•s"~7.33xl05m•s")及表观活化能(23.60kJ•mo「)。
所得参数为研究氨(胺)对铜离子还原反应影响规律提供基础数据,并可为铜纳米线制备过程中长径比的调控提供参考。
关键词:硫酸四氨合铜;计时电量;扩散系数;反应速率常数;活化能中图分类号:0646文献标志码:AReduction kinetics of copper-ammonia complex------tetraamminecopper sulfateWANG Hui-jie,CHEN Zhi-ping*,YANG Xiao-feng,SUN Zhen-hao,LIU Hai-qing(College of Science,North University of China,Taiyuan030051,China)Abstract:Ammonia(or amine)is often used as a reducing agent for liquid-phase reduction copper plating or preparation of copper nanowires,however,the research on the effects of ammonia(amine)on the reduction process and kinetics of copper ions are not sufficient and systematical enough yet.In this study,the rate constants of the reduction of Cu(NH3)42+to Cu at different step potentials were measured by chronocoulometry at different temperatures,then the standard rate constant K°(4.12xl0-5m•s_1~7.33xl0~5m •s_1)and apparent activation energy(23.60kJ•mol-1)were obtained.The parameters which have been obtained provide basic data for the study of the effect of ammonia(amine)on the reduction of copper ions,and provide reference for the regulation of the length-diameter ratio in the preparation of copper nanowires.Key words:tetraamminecopper sulfate;chronocoulometry;diffusion coefficient;reaction rate constant;activation energy铜离子还原反应广泛应用于化学镀铜⑴刀、液相还原制备铜纳米线[⑷等表面处理与纳米材料制备领域。
Pt电极上CO的同位素取代吸附机理研究_梁桑梓

第16卷第3期电化学Vol.16No.32010年8月ELECTROCHEMISTRYAug.2010文章编号:1006-3471(2010)03-0324-10Pt 电极上CO 的同位素取代吸附机理研究梁桑梓,刘少雄,廖玲文,陶骞,康婧,陈艳霞*(中国科技大学化学物理系,合肥微尺度物质科学国家实验室(筹),安徽合肥230026)收稿日期:2010-07-06,修订日期:2010-08-02*通讯作者,Tel :(86-551)3600035,E-mail :yachen@ustc.edu.cn中国科学院“百人计划”(2009-2011),国家自然科学基金(20773116),973重大科学研究计划(2010CB923302)资助摘要:本文依据偶极耦合理论和相干势近似方法,合理选择粗糙电极上吸附分子的频率分布函数、一氧化碳(CO )吸附层的结构参数以及偶极耦合作用常数,对13CO /12CO 同位素取代过程记录的红外光谱进行了拟合.研究发现,只有在拟合过程中引入低频CO 分子优先取代,就可成功地模拟整个同位素取代过程的红外光谱随表面吸附的13CO /12CO 组分的变化,并由此提出了吸附驱动的脱附机理,CO ad 的脱附不是热激发脱附,而是吸附到表面的CO 分子为其邻近位置CO ad 的脱附提供能量.伸缩振动频率较低的CO ad 处于台阶或缺陷位等较开阔的位置(尽管其吸附能较高),周围有较大的空间,利于来自溶液的CO 分子的吸附,因此在台阶或缺陷位优先发生同位素的取代.关键词:铂;CO ;偶极耦合作用;光谱拟合;电化学原位红外光谱;13CO ad /12CO 同位素取代中图分类号:O646文献标识码:A一氧化碳分子结构简单且对周围环境十分敏感,是研究金属与吸附物间成键作用的重要模型体系之一[1-5].另一方面,CO 对阳极催化剂的毒化已成为低温质子交换膜燃料电池商业化的一个主要障碍[6-8].因此,研究CO 在具有催化活性的过渡金属电极表面的吸附、脱附及氧化行为对基础研究和应用技术开发两方面都具有十分重要意义.电化学原位振动光谱技术已广泛应用于电化学溶液界面的研究,并为理解界面双电层的结构以及一些电催化反应过程的机理和动力学原理提供了分子水平上的宝贵信息[9-20].对于吸附在贵金属表面的CO 分子,相邻吸附的CO 分子间的偶极-偶极耦合作用[21-22]以及CO 与基底金属间的化学作用都将对其振动谱带的形状、频率和强度产生一定的影响.而且这些作用都会因局域环境的变化而变化,造成相关光谱的解析变得非常复杂.因此要成功利用振动光谱定量分析CO 的吸、脱附以及氧化过程乃至涉及以CO 作为中间产物的有机小分子电催化氧化动力学过程,均有必要结合偶极耦合理论探讨CO 以及M-CO 的振动谱带与CO 的覆盖度、吸附构型与取向之间的关系.对于由同种振子组成的原胞构成的表面,根据偶极耦合理论,吸附层中振子的红外谱带强度可近似表示为[21,23]I (ω)∝n ω2αv(1+αe U (q ))2δ(ω-Ω)(1)式中n 是单位面积上的分子数,ω是振子的振动频率.αe 和αv 是振子的电子和振动极化率.q 是二维波矢,函数U (q )是考虑相位后对各个分子偶极耦合常数U ij 的求和U (q )=∑j U ij e -iq ·rij,(r ij 是两个相邻分子间的距离)因为对于红外光谱来说,光的波长远大于表面分子的尺度,所以一般认为只有q =0时的U (0)是和红外相关的.δ(ω-Ω)是δ函数.振动频率Ω和孤立振动频率ωo 的关系为(Ωω2o)2=1+αv U (0)1+αe U (0)(2)由方程1可知,红外强度在Ω处有一个尖峰.从以上两式可以得到以下有关偶极耦合作用对表面吸附分子红外光谱影响的一些结论:1)偶极耦合将造成频率蓝移,即Ω>0;2)αv 越大,偶极耦合作用造成的频率蓝移更大;3)红外光谱的强度和αv 成正比,αv 反映了电场和阻尼振动之间的耦合强度,αv越大,耦合越大,振动从外界吸收的能量越多;4)αe的增大导致频率移动变小以及红外强度降低,这是因为电子能很快地对局域电场做出响应,由此产生的偶极矩总是倾向于抵消外场,所以电子对离子实的阻尼振动起到了屏蔽作用.屏蔽作用随αe的增大而增大;5)U(0)越大,频率移动越大;同时较大的U(0)会使红外强度减小.但是较大的U(0)通常出现在分子密度n较大的时候,较大的分子密度会使强度增大,净结果是的U(0)增大既有可能使强度增大,也有可能使强度减小.本文以室温和恒电位条件下在粗糙铂电极上实时记录的饱和吸附CO的同位素取代原位红外光谱数据为例,展示如何结合偶极耦合理论对光谱进行拟合、分析,从而推断CO在Pt电极上的取代脱附机理.研究同位素混合吸附层的红外光谱可以区分偶极耦合作用和化学作用对红外频率的影响[24];选择恒电位下CO饱和吸附层的同位素取代过程作为研究对象,是因为该体系可以在维持CO与基底间化学作用不变的前提下,探讨偶极耦合作用对CO吸附层的红外光谱的影响.混合吸附层的覆盖度和同位素比例等条件的改变引起的红外光谱的改变也可以用于验证偶极耦合理论的可靠性和表面的一些其它特性.本文分为以下几个部分:首先简单介绍铂电极上CO的同位素取代的原位红外光谱实验结果,接着讨论如何结合偶极耦合的理论和相干势近似法方法确定吸附分子的频率分布函数、CO吸附层的结构参数以及偶极耦合作用常数;然后对粗糙铂电极上吸附CO的红外光谱进行拟合、分析和优化,最后结合理论和实验数据,探讨了室温下CO的同位素取代机理.研究发现,只有在拟合中引入低频CO分子优先取代,才能成功地模拟了整个同位素取代过程的红外光谱随表面吸附的12CO/13CO组分的变化.并由此提出吸附驱动的脱附机理.1Pt薄膜上的同位素取代实验图1给出利用电化学原位红外光谱和质谱联用的方法,在饱和吸附了13CO ad的粗糙Pt 薄膜表面用12CO取代13CO ad的过程中实时记录的时间分辨红外光谱(图中已将时间坐标换算为对应时间下12CO ad和13CO ad的相对覆盖度(通过质谱的实时测量获得),具体实验条件以及数据处理方法参见[25]).可以看出,取代过程中,在铂表面观察到了线式和多重位吸附的CO,分别记为CO L和COM.与Pt(111)对相应的同位素取代结果不同[22],即取代过程中自始至终只有一个线式峰,这与Severson等人直接用同位素混合在多晶Pt上制备CO吸附层观察到的单峰红外光谱类似[26].还可看出,CO谱峰的频率随着12CO比例的增加而增大,且其峰宽有一个先增大后减小的过程.导致13CO L峰和12CO L峰无法被区分,从而无法按照传统的方法区别化学作用和偶极耦合作用对红外光谱的影响[25].根据偶极耦合作用理论,13CO L线式峰频率应低于13CO L峰的饱和频率.而在利用红外光谱和质谱实验实时监测整个取代过程中,完全没有看到第2个频率低于初始13CO L的频率的线式峰,这与理论不符合.很难想象在取代开始后1s 内,该红外光谱的CO L峰已经完全归属于12CO L.对此有必要作进一步偶极耦合的理论分析,从而真正理解这一取代过程及其与Pt(111)表面类似实验发生的过程的区别.图1Pt多晶电极上13CO ad/12CO同位素取代过程的红外光谱与表面13CO ad/12CO ad组成的关系[25]Fig.1IR spectra of saturated12CO-13CO adlayer as afunction of13COad/12COadratio recorded during13COad/12CO isotope exchange at Pt film electrode at0.1V2偶极耦合理论拟合Pt薄膜上CO 同位素取代实验的红外光谱·523·第3期梁桑梓等:Pt电极上CO的同位素取代吸附机理研究2.1拟合方法作者应用偶极耦合理论结合相干势近似方法模拟图1中光谱随13CO ad/12CO ad组成的变化.本法的简要思路如下:将除原点以外的所有分子的极化率看作是极化率皆为α的平均分子,利用偶极相互作用可以推出原点处的分子在局域场作用下的偶极矩[21].吸附层中存在的各种分子在原点时的偶极矩都可以用这种方法解出,因此各个偶极矩对浓度的加权平均应该与整个吸附层的平均偶极矩相等,从而又与平均极化率α相关联.这就是α应满足的自洽关系.图2中简单示意了两种分子存在时的自恰关系.Persson和Ryberg利用CPA推导出了任意种分子组成的吸附层的有效极化率的自洽关系[21]∑Mμ=1cμαμ{(1+(αμ-α)(1/A*)∫BZ d2qU(q)/[1+αU(q)])}-1=α(3)其中cμ,αμ分别是第μ种分子的浓度和极化率,A*是表面吸附结构的第一布里渊区的面积,α为待求的吸附层的极化率,U(q)是偶极耦合作用常数.图2CPA近似模型示意Fig.2A model illustrated the coherent potential approxi-mation计算中,用原点周围10ˑ10方阵的和近似表示.式中采用数值迭代的方法,将每一个ω值迭代,从而解出极化率的数值并推算其红外光谱.可对式(3)直接推广,当表面非常复杂时,吸附物/吸附位对不再是孤立的几种,可能有许多分子不是简单地产生线式或者桥式吸附,而是由于基底的缺陷或者受到分子间的排斥力而不均匀地吸附在独特的位置上.相应的,孤立振动频率也从离散的值成为连续的分布.式(3)的求和也推广为积分∫dωo f(ωo)α(ω/ωo){1+(α(ω/ωo)-α)(1/A*)∫BZ d2qU(q)/[1+αU(q)]}-1=α(4)f(ωo)可称为孤立振动频率分布函数(single-ton frequency distribution function,SFDF),满足归一条件∫f(ωo)dωo=1(5)根据定义,f(ωo)具有以下性质:对同一种吸附物,它反映了表面的吸附位的分布和性质;对同一表面不同的CO同位素分子吸附物,则因吸附位不发生变化,分布函数的形状不应有所区别,而只是在频率上有一个平移.计算中还有一些其他近似处理.因为多晶表面无法有效建模,也就没有确定的CO吸附结构.只能把表面吸附结构认为是完全均匀的分布,拥有正方形原胞.另外,在计算布里渊区积分时,由于各方向的U(q)和q的取向关系不大,基本只和q的长度相关(由计算验证),所以可把积分从原来的二维的正方形积分近似为只与长度有关的圆形积分.本文的拟合主要分为5步(参见2.2.1 2.2.5节),直至得出与实验比较符合的光谱.以下分别说明这一计算模型需要的主要输入参数,以及每一步各个参数的选择.图3引入CO M后对CO L的稀释a.计算模型;b.实际可能的一种情况Fig.3Dilution of COLby introduction of COMa.model used for calculation;b.a possible actualsituation1)静电场中的振动极化率αv.αv对于偶极耦合作用和光谱强度有非常关键的影响,它反映·623·电化学2010年了分子对外场响应的强度.气态CO分子的αv 实验值为0.057ˑ10-3nm3,表面吸附后,αv增大.就吸附层而言,相关计算通常取值为0.3ˑ10-3nm3左右.而在本文计算中,前3步的取值为0.32ˑ10-3nm3[22](2.2.1节 2.2.3节);第5步取αv=0.42ˑ10-3nm3(2.2.5节),因为计算中引入了多重吸附的CO而没有改变近似的吸附结构,线式的CO被稀释了(见图3).但这一稀释和实际情况不相符,原因即在CO M可以吸附在CO L的空隙而不会显著增加CO L之间的距离.过度的稀释必将导致CO L之间的偶极耦合减弱,因此本文采用了增大αv值的方式予以补偿.CO分子间的平均距离α虽然可以由基底的晶格结构参数和CO 的覆盖度近似求出,但在计算中发现强度转移的程度对于α的变化有很敏感的响应.在Pt(111)上的同位素取代实验中,由于强度转移,13CO比例为0.8时,13COL和12CO L几乎有相等的强度[22].本实验数据也是在13CO比例为0.8左右,CO L的宽度达到最大时,经过尝试,选择α=0.347nm使所得结果在光谱计算中成立.假若在Pt(111)表面上,这一平均距离意味着CO的覆盖度为0.56.那么在Pt 原子密度更小的其他晶面和多晶表面,这一平均距离对应的覆盖度应该更大.2)从C—O键中心到像平面的距离d.这个值对相互作用项U的大小略有影响,在所有计算中取一个常用的值d=0.1nm[27].这一长度与从Pt 原子层的表面到CO键中点的距离近似.3)阻尼系数γ和光谱峰的半高宽有关,一般选为5cm-1或3cm-1等值,本计算中借助调整γ值(3 10cm-1范围内)来得到比较符合实验结果的计算光谱.4)孤立振动频率分布函数(SFDF)f(ωo).包括各个吸附物/吸附位对的中心孤立振动频率,以及展宽的程度,优先取代顺序等分布函数的细节.这一输入条件对于计算有最为重要的影响,这里的每一步计算主要都是通过改变SFDF来逐步接近实验光谱的.2.2计算结果和SFDF的改进2.2.1δ函数的SFDF先考虑最简单的情况.假设一种同位素分子只有一个可能的孤立振动频率,每个分子完全相同,即不考虑SFDF任何形式的增宽,而是由两个δ函数构成.即:f(ω)=c12δ(ω-ω12)+c13δ(ω-ω13)(6)式中c12和c13,ω12和ω12分别是12CO和13CO的相对浓度和孤立振动频率.于是式(6)就回到了式(5)的情况,成为离散求和方程,且与原本的模型相同.应用这一方法即可检验CPA的可靠性,并讨论偶极耦合作用的定性结果.由不同同位素比例计算出的红外光谱见图4.由图可见,在线式区域产生了两个峰,根据频率可以明确地分别指认为12CO和13CO.定性说明如下:1)从13CO L到12CO L存在明显的强度转移,两个峰的强度近似相等时,13CO的比例为0.83,明显大于0.5;2)当13CO(12CO)的比例逐渐减小(增大),13CO L(12CO L)峰的频率逐渐红移(蓝移).强度转移和频率移动这两个偶极耦合作用的基本现象在每组计算光谱中都存在,而且对CO L峰更为明显.这说明以上建立的计算方法是合理的.图4以δ函数作SFDF计算的13CO ad/12CO同位素取代过程红外光谱随表面13CO ad/12CO ad组成的变化Fig.4Simulated IR spectra of the saturated12CO-13CO ad-layer as a function of13COad/12COadratio recordedduring13COad/12CO isotope exchange at Pt film e-lectrode at0.1V using function as SFDF以上计算结果与实验光谱的区别主要有两·723·第3期梁桑梓等:Pt电极上CO的同位素取代吸附机理研究点,首先,实验光谱在取代过程中只有一个线式峰,而计算光谱有两个.事实上此处的计算结果更加接近于Pt(111)上的实验光谱.其次,实验光谱有明显的非对称性,峰的低频侧比高频侧有更大的强度,而计算光谱是完全左右对称的.然而,非对称性却在很多实验中都被观察到,它常常被认为是来源于表面的缺陷或台阶位等处吸附的CO.由此可见,以上计算方法仅应用单纯的离散频率分布是有缺陷的.但它与Pt(111)实验结果的符合又说明这一计算方法对于处理表面缺陷或台阶位比较少的单晶表面的同位素取代是成功的.据此,作者认为如果合理的选择输入条件(尤其是表面吸附分子的频率分布函数),当可期望成功拟合多晶表面的实验结果.2.2.2SFDF的低频增宽为了改变计算光谱的对称性,此处于SFDF之中加入了低频增宽(如图5b).低频增宽可能有两种起因,一是由于CO偏离吸附位产生的统计增宽,对于线式位来说,这一增宽应该只在低频一侧.另一是源自频率略低的缺陷位,这一类吸附位在多晶上应当比单晶丰富而复杂.这两种因素都能产生低频增宽,在以孤立振动频率标记吸附位的模型中,两者无法被区分.f 12(ω)=k expβL(ω-ω12max)(ω12max-L≤ω≤ω12max)(7)式中,ω12max和L控制了分布的范围,β则与指数下降的速率有关,k是归一化因子.根据SFDF的定义,在同一表面,不同分子的SFDF应当只相差一个频率平移.两种分子在饱和时的SFDF于图5中以实线表示,而阴影部分表示取代过程中两种分子对饱和SFDF的实际占据.其中b假设了在取代过程中各不同频率的分子被取代的概率都相同,即实际的SFDF由饱和时的SFDF乘以该同位素分子的比例得到.以上SFDF内部的参数选择乃以拟合两种分子各自饱和时的实验光谱为标准,如此L=45 cm-1,β=2.5.比较实验(图1)和计算(图5a)的结果,即可看到,当只有一种分子存在时,计算光图5SFDF的低频增宽后模拟计算的13CO ad/12CO同位素取代红外光谱与表面13CO ad/12CO ad组成变化(a)及其采用的SFDF(b)(阴影部分为实际被占据的部分)Fig.5Simulated IR spectra of saturated12CO-13CO adlayeras a function of13COad/12COadratio recorded during13COad/12CO isotope exchange at Pt film electrode at 0.1V with the incorporation of low-frequencybroadening of SFDF(a)and the SFDF used for thecalculation(b),the shadowed region illustrates theactually occupied fraction谱已经能够比较好地模拟实验光谱.说明计算中参数和饱和SFDF的选择是合适的.然而,当两种分子共吸附时,计算光谱的线式峰仍然有两个,且各自变化,与实验光谱明显矛盾.实验光谱显示,13CO的线式峰频率总是随13CO比例的下降而减小,使得两个峰相互远离.这一本质上的差别促使作者考虑Pt多晶上的同位素取代可能发生了与Pt(111)表面非常不同的过程,或者说,存在以不同频率区别的优先取代.2.2.3增宽后SFDF的低频优先取代关于取代过程引入优先取代,首先可能被想到的是高频的部分优先取代,因为低频的CO可能吸附在吸附能较大的缺陷位上,根据热脱附机理,它们因热激发而脱附并被取代的概率相对较小.但是很明显,如果高频分子优先被取代,取代行为开始后出现的12CO峰的频率会比之前的计算更大,两个峰的分裂也因此而更大.为了使计算符合实验,此处只能考虑低频分子被优先取代的过程.相关计算设定,每种同位素分子饱和时的SFDF和上一步的相同,只是取代过程中SFDF的填充发生了变化.作为一个极端情况,可以考虑绝·823·电化学2010年对的低频优先取代,即取代过程中13CO频率分布有一个截止频率,在此频率以下的13CO被完全取代,在此以上的完全保留,积分面积等于相对浓度的条件决定了截止频率的位置.图6b示意这一取代过程,a是这一步典型的光谱拟合.与之前结果相比明显区别就是所得光谱只有一个峰,和实验一致.鉴于前面的计算仅仅调节参数的改变无法和实验一致,说明在多晶表面可能确实存在低频分子优先被取代的过程.此处计算光谱和实验光谱的区别主要在于峰的宽度较小,峰高较大,而且高频侧减小明显过快.原因可能是截止频率的设置可能过于绝对,真正的取代过程很可能是低频优先取代伴随和不同频率分子随机取代相结合的过程.可以进一步对计算条件做一些微调,以期得到更符合实验光谱的结果.图6加入SFDF低频增宽和低频优先取代模拟计算的13CO ad/12CO同位素取代红外光谱及其随表面13CO ad/12CO ad组成的变化关系(a)和计算采用的SFDF(b)(阴影部分为实际被占据的部分)Fig.6The simulated IR spectra of saturated12CO-13COadlayer as a function of13COad /12COadratio recor-ded during13COad/12CO isotope exchange at Pt film electrode at0.1V with the incorporation oflow-frequency broadening of SFDF and the prefer-ential displaced of low frequency species(a)andthe SFDF used for the calculation(b),the shadowillustrates the actually occupied fraction 2.2.4SFDF高频增宽和低频优先概率取代再对前面的SFDF参数选择作优化修改.首先,在饱和时的SFDF中加入一个比较小的高频增宽.理由是源于各个晶面上必然的线式吸附位,且吸附于其上的CO拥有不同的孤立振动频率.其次,低频优先取代,同时认定包含一定程度的随机取代.设定对某一含量的13CO(比例)时,某一频率以下的13CO被完全取代,而超过此频率的,也有部分分子被取代,且取代的概率随频率的增加而减小.总体上说,这一取代方式仍然是低频优先取代.如此计算的光谱即如图7所示,所得结果已和实验光谱有比较好的符合.图8比较了计算和实验光谱中CO L峰的频率和强度随同位素比例的变化.从频率看,实验和计算非常吻合:1)频率范围接近;2)当13CO比例约为0.8时,频率的变化趋势有明显的转折,对应于红外光谱的COL峰由以13CO为主转为以12CO为主.进一步证实了此时观察到的CO L峰应该是13CO L和12CO L峰的叠加,而非单纯的12CO L峰;3)倘如13CO的比例趋近于0,实验值和计算值的变化趋势则出现明显不同.再从强度变化看实验和计算有较大差别:1)实验光谱的强度变化占其值的8.75%左右,而计算光谱的强度变化仅占其值的5%左右,但两者的变化都不明显;2)实验光谱强度先增加后减小,在13CO的比例为0.7左右有一个最大值,而计算光谱的强度几乎线性增加.CO峰的强度和溶液中CO的分压有关,而这一点在作者的计算模型中无法添加,而且仅由分压的变化也无法完全解释计算和实验的区别.应当指出,以上修正的计算仍然存在一些原理上的缺陷:1)模型中只考虑了偶极耦合作用,而没有考虑可能存在的化学作用和溶液中各物种的影响;2)计算中输入许多参数,包括几乎完全自由定义的SFDF,它们或许并没有合适的物理意义,这难免会使计算结果隐含一些人为的因素.因而试图得出定量的结论是不太现实的.为此作者更进一步尝试了将多重吸附的CO引入计算模型,结果如下.2.2.5包含多重吸附的CO红外光谱拟合图9给出了于饱和吸附的同时包含线式、桥式和穴位吸附的CO的SFDF及SFDF在同位素取代·923·第3期梁桑梓等:Pt电极上CO的同位素取代吸附机理研究过程中的变化示意.发现按照这一模型当多重吸附分子的比例为3/16时,即能较好地拟合只含13CO或12CO饱和吸附的红外光谱,而且这时多重吸附的CO分子可被分为两个部分,桥式吸附的分子在频率上有对称分布;而引入穴位吸附的分子图7加入SFDF的低、高频增宽和低频优先取代模拟计算的13CO ad/12CO同位素取代红外光谱及其随表面13CO ad/12CO ad组成的变化关系(a)及计算采用的SFDF(b)(阴影部分为实际被占据的部分)Fig.7The simulated IR spectra of saturated12CO-13COadlayer as a function of13COad /12COadratio recor-ded during13COad/12CO isotope exchange at Ptfilm electrode at0.1V with incorporation of low-and high-frequency broadening of SFDF and prefer-ential displaced of low frequency species(a)andthe SFDF used for the calculation(b),the shadowillustrates the actually occupied fraction图8实验测定和模拟计算的CO红外光谱线式峰频率和强度随同位素比例的变化Fig.8The experimentally and calculated coverage-depend-ent COLband intensities and peak frequencies as afunction of the13COad coverage图9线式CO拟合加入多重吸附的SFDF(阴影部分为实际被占据的部分)Fig.9The SFDF for both multiply and liearly adsorbedCO,the shadow is the part of actual occupation图10依据图9模拟的SFDF计算的13CO ad/12CO同位素取代红外光谱及其随表面13CO ad/12CO ad组成的关系Fig.10Simulated IR spectra for both COL and COM ofsaturated12CO-13CO adlayer as a function of13COad/12COadratio recorded during13COad/12COisotope exchange at Pt film electrode at0.1Vwith the SFDF given in Fig.9目的在于模拟实验光谱中观察到的“长尾”.而且只有设定桥式吸附分子有低频优先取代而穴位吸附分子有高频优先取代才能保证不会在低频区出现分立的多个峰.计算得到的光谱如图10,可以看到线式峰的性质基本没有改变,而多重峰的变化也类似于实验中出现“平移”,只是由于分布函数的粗糙和CO M分子间较弱的偶极耦合(因为浓度偏低)而有些不平滑.计算中发现,除了强度转移作用,CO M对于CO L峰的光谱形状影响不大.应·033·电化学2010年该指出的是,由于CO M的强度约为CO L的1/15,实验和理论的任何误差对于CO M的影响都有可能导致无法作出有关CO M的取代过程任何可靠的结论,因此这个结果不能充分说明优先取代对于模拟CO M是一种必要的机制.3吸附驱动的脱附机理如前所述,具有较低孤立振动频率的线式CO 分子可能有两种:略为偏离线式吸附位的吸附和处在缺陷位的吸附.这两种吸附形态的吸附能并不比普通线式位CO分子更低,相反,一般认为吸附在缺陷位的CO拥有较高的吸附能.根据经典热力学,在吸附分子优先取代过程中,首先被取代的只能是吸附能比较低的分子,而并非孤立振动频率较低(吸附能较高)的分子.这就意味着在Pt/ CO的体系中发生的同位素取代也许是不符合热脱附的取代机理.基于上述分析,作者就上述优先取代过程提出另一种机理———吸附驱动的脱附机理.一次脱附过程是与一次吸附过程紧密相关的,当12CO分子运动到电极表面附近时,由于偶然的机会感受到基底的作用并被吸附,之后,处于邻近或者吸附在同一个基底原子上的13CO分子在它的分子的排斥以及释放的吸附能量的直接作用(驱动)下,而发生脱附.这一机理可以初步解释前面低频优先取代的结果,因为低频的CO分子通常是处于表面CO岛的边缘或缺陷位,一方面,这些位置具有较开阔的空间允许12CO分子进入;另一方面,这些位置的CO通常感受到不平衡的排斥力,从而使得缺陷位或岛边缘的13CO ad优先脱附,这一机理也得到作者之前观察到的室温下CO只能被CN-取代脱附[28],以及高温下CO的热脱附也优先发生在岛的边缘[29]的事实的支持.4结论应用偶极耦合理论和CPA方法计算Pt薄膜电极上12CO/13CO ad同位素取代红外光谱随其表面吸附组分的变化.建立粗糙电极上吸附分子的频率分布函数,优化模拟计算结构参数和耦合作用常数,以及假定低频CO分子优先取代的可能性,最终成功地模拟整个同位素取代过程的红外光谱,提出吸附驱动脱附机理,较合理解释了低频优先取代的本质所在.利用电化学原位红外光谱技术结合理论模拟,将有助于加深对分子水平的界面结构以及界面过程的机理和动力学的认识.与此相关的过程,如燃料电池的电催化反应机理和动力学过程的模拟、分析正在进一步研究之中.参考文献(References):[1]Heinen M,Chen Y X,Jusys Z,et al.CO adsorption ki-netics and adlayer build-up studied by combined ATR-FTIR spectroscopy and on-line DEMS under continuousflow conditions[J].Electrochimica Acta,2007,53:1279.[2]Wieckowski A,Rubel M,Gutiérrez C.Reactive sites in bulk carbon monoxide electro-oxidation on oxide-freeplatinum(111)[J].Journal of Electroanalytical Chemis-try,1995,382:97.[3]Watanabe S,Kinomoto Y,Kitamura F,et al.An infrared study of CO adsorbed on Pt(100)and Pt(110)elec-trodes:Dynamic aspects of CO at reconstructed surfaces[J].Journal of Electron Spectroscopy and Related Phe-nomena,1990,(54/55):1205.[4]Roth J D,Weaver M J.The electrooxidation of carbon monoxide on platinum as examined by surface infraredspectroscopy under forced hydrodynamic conditions[J].Journal of Electroanalytical Chemistry,1991,307:119.[5]Wasileski S A,Koper M T M,Weaver M J.Field-de-pendent chemisorption of carbon monoxide on platinum-group(111)surfaces:Relationships between bindingenergetics,geometries,and vibrational properties as as-sessed by density functional theory[J].The Journal ofPhysical Chemistry B,2001,105:3518.[6]Acres G J K,Frost J C,Hards G A,et al.Electrocata-lysts for fuel cells[J].Catalysis Today,1997,38:393.[7]Steele B C H,Heinzel A.Materials for fuel-cell technol-ogies[J].Nature,2001,414:345.[8]Brandon N P,Skinner S,Steele B C H.Recent advances in materials for fuel cells[J].Annual Review of Materi-als Research,2003,33:183.[9]Harrick N J.Internal reflection spectroscopy[M],Ossin-·133·第3期梁桑梓等:Pt电极上CO的同位素取代吸附机理研究。
英文文献-溶胶-凝胶法制备LiFePO4改进其电化学性能

Electrochimica Acta 92 (2013) 248–256Contents lists available at SciVerse ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taGel-combustion synthesis of LiFePO 4/C composite with improved capacity retention in aerated aqueous electrolyte solutionMilica Vujkovi´c a ,Ivana Stojkovi´c a ,Nikola Cvjeti´canin a ,Slavko Mentus a ,b ,∗,1a University of Belgrade,Faculty of Physical Chemistry,P.O.Box 137,Studentski trg 12-16,11158Belgrade,Serbia bThe Serbian Academy of Sciences and Arts,Kenz Mihajlova 35,11158Belgrade,Serbiaa r t i c l ei n f oArticle history:Received 2October 2012Received in revised form 3January 2013Accepted 5January 2013Available online 11 January 2013Keywords:Aqueous rechargeable Li-ion battery Galvanostatic cycling Gel-combustion Olivine LiFePO 4LiFePeO 4/C compositea b s t r a c tThe LiFePO 4/C composite containing 13.4wt.%of carbon was synthesized by combustion of a metal salt–(glycine +malonic acid)gel,followed by an isothermal heat-treatment of combustion product at 750◦C in reducing atmosphere.By a brief test in 1M LiClO 4–propylene carbonate solution at a rate of C/10,the discharge capacity was proven to be equal to the theoretical one.In aqueous LiNO 3solu-tion equilibrated with air,at a rate C/3,initial discharge capacity of 106mAh g −1was measured,being among the highest ones observed for various Li-ion intercalation materials in aqueous solutions.In addition,significant prolongation of cycle life was achieved,illustrated by the fact that upon 120charg-ing/discharging cycles at various rates,the capacity remained as high as 80%of initial value.The chemical diffusion coefficient of lithium in this composite was measured by cyclic voltammetry.The obtained val-ues were compared to the existing literature data,and the reasons of high scatter of reported values were considered.© 2013 Elsevier Ltd. All rights reserved.1.IntroductionThanks to its high theoretical Coulombic capacity (170mAh g −1)and environmental friendliness,LiFePO 4olivine became a desir-able cathodic material of Li-ion batteries [1,2],competitive to other commercially used cathodic materials (LiMnO 4,LiCoO 2).As evidenced in non-aqueous electrolyte solutions,a small vol-ume change (6.81%)that accompanies the phase transition LiFePO 4 FePO 4enables Li +ion insertion/deinsertion reactions to be quite reversible [1–3].The problem of low rate capability,caused by low electronic conductivity [4,5],was shown to be solv-able to some extent by reduction of mean particle size [6].Further improvements in both conductivity and electrochemical perform-ances were achieved by forming composite LiFePO 4/C,where in situ produced carbon served as an electronically conducting con-stituent [5,7–27].Ordinarily,both in situ formed carbon and carbon black additive,became unavoidable constituent of the LiFePO 4-based electrode materials [28–37].Zhao et al.[27]reported that Fe 2P may arise as an undesirable product during the synthesis of LiFePO 4/C composite under reducing conditions,however,other authors found later that this compound may contribute positively∗Corresponding author at:University of Belgrade,Faculty of Physical Chemistry,P.O.Box 137,Studentski trg 12-16,11158Belgrade,Serbia.Tel.:+381112187133;fax:+381112187133.E-mail address:slavko@ffh.bg.ac.rs (S.Mentus).1ISE member.to the electronic conductivity and improve the electrochemical per-formance of the composite [28–30].Severe improvement in rate capability and capacity retention was achieved by partial replace-ment of iron by metals supervalent relative to lithium [31–37].Thus one may conclude that the main aspects of practical applica-bility of LiFePO 4in Li-ion batteries with organic electrolytes were successively resolved.After the pioneering studies by Li and Dahn [38,39],recharge-able Li-ion batteries with aqueous electrolytes (ARLB)attracted considerable attention [40–50].The first versions of ARLB’s,suf-fered of very low Coulombic utilization and significantly more pronounced capacity fade relative to the batteries with organic electrolyte,regardless on the type of electrode materials [43].For the first time,LiFePO 4was considered as a cathode material in ARLB’s by Manickam et al.in 2006[44].He et al.[46],in an aqueous 0.5M Li 2SO 4solution,found that LiFePO 4displayed both a surprisingly high initial capacity of 140mAh g −1at a rate 1C and recognizable voltage plateau at a rate as high as 20C,which was superior relative to the other electrode materials in ARLB’s.Recently,the same authors reported a high capacity decay in aer-ated electrolyte solution,amounting to 37%after only 10cycles [48].In the same study,they demonstrated qualitatively by a brief cyclovoltammetric test,that a carbon layer deposited from a vapor phase over LiFePO 4particles,suppressed the capacity fade [48].Inspired by the recent discoveries about excellent rate capa-bility [46]but short cycle life [48]of LiFePO 4in aerated aqueous solution,we attempted to prolong the cycle life by means of protecting carbon layer over the LiFePO 4particles.Therefore we0013-4686/$–see front matter © 2013 Elsevier Ltd. All rights reserved./10.1016/j.electacta.2013.01.030M.Vujkovi´c et al./Electrochimica Acta92 (2013) 248–256249synthesized LiFePO4/C composite by a fast and simple glycine-nitrate gel-combustion technique.This method,although simpler than a classic solid state reaction method combined with ball milling[44,48],was rarely used for LiFePO4synthesis[19,27].It yielded a porous,foamy LiFePO4/C composite,easily accessible to the electrolyte.Upon the fair charging/discharging performance was confirmed by a brief test in organic electrolyte,we examined in detail the electrochemical behavior of this material in aqueous electrolyte,by cyclic voltammetry,complex impedance and cyclic galvanostatic charging/discharging methods.In comparison to pure LiFePO4studied in Ref.[48],this composite displayed markedly longer cycle life in aerated aqueous solutions.The chemical dif-fusion coefficient of lithium was also determined,and the reasons of its remarkable scatter in the existing literature were considered.2.ExperimentalThe LiFePO4/C composite was synthesized using lithium nitrate, ammonium dihydrogen phosphate(Merck)and iron(II)oxalate dihydrate(synthesized according to the procedure described else-where[51])as raw materials.Our group acquired the experience in this synthesis technique on the examples of spinels LiMn2O4 [52]and LiCr0.15Mn1.85O4[53],where glycine served as both fuel and complexing/gelling agent to the metal ions.A stoichiometric amount of each material was dissolved in deionized water and mixed at80◦C using a magnetic stirrer.Then,first glycine was added into the reaction mixture to provide the mole ratio of glycine: nitrate of2:1,and additionally,malonic acid(Merck)was added in an amount of60wt.%of the expected mass of LiFePO4.The role of malonic acid was to decelerate combustion and provide con-trollable excess of carbon[14].After removing majority of water by evaporation,the gelled precursor was heated to initiate the auto-combustion,resulting in aflocculent product.The combustion product was heated in a quartz tube furnacefirst at400◦C for3h in Ar stream,and then at750◦C for6h,under a stream of5vol.%H2in Ar.This treatment consolidated the olivine structure and enabled to complete the carbonization of residual organic matter.The VO2powder prepared by hydrothermal method was used as an active component of the counter electrode in the galvanostatic experiments in aqueous electrolyte solution.The details of the syn-thesis and electrochemical behavior of VO2are described elsewhere [54,55].The considerable stoichiometric excess of VO2was used,to provide that the LiFePO4/C composite only presents the main resis-tive element,i.e.,determines the behavior of the assembled cell on the whole.The XRD experiment was performed using Philips1050diffrac-tometer.The Cu K␣1,2radiation in15–70◦2Ârange,with0.05◦C step and2s exposition time was used.The carbon content in the composite was determined by its com-bustion in theflowing air atmosphere,by means of thermobalance TA SDT Model2090,at a heating rate of10◦C min−1.The morphology of the synthesized compounds was observed using the scanning electron microscope JSM-6610LV.For electrochemical investigations,the working electrode was made from LiFePO4/C composite(75%),carbon black-Vulcan XC72 (Cabot Corp.)(20%),poly(vinylidenefluoride)(PVDF)binder(5%) and a N-methyl-2-pyrrolidone solvent.The resulting suspension was homogenized in an ultrasonic bath and deposited on electron-ically conducting support.The electrode was dried at120◦C for 4h.Somewhat modified weight ratio,85:10:5,and the same drying procedure,were used to prepare VO2electrode.The non-aqueous electrolyte was1M LiClO4(Lithium Corpo-ration of America)dissolved in propylene carbonate(PC)(Fluka). Before than dissolved,LiClO4was dried over night at140◦C under vacuum.The aqueous electrolyte solution was saturated LiNO3solution.The cyclic voltammetry and complex impedance experiments were carried out only for aqueous electrolyte solutions,by means of the device Gamry PCI4/300Potentiostat/Galvanostat.The three electrode cell consisted of a working electrode,a wide platinum foil as a counter electrode,and a saturated calomel electrode(SCE) as a reference one.The experiments were carried out in air atmo-sphere.The impedance was measured in open-circuit conditions, at various stages of charging and discharging,within the frequency range10−2−105Hz,with7points per decade.Galvanostatic charging/discharging experiments were carried out in a two-electrode arrangement,by means of the battery testing device Arbin BT-2042,with two-terminal connectors only.In the galvanostatic tests in non-aqueous solution,working electrode was a2×2cm2platinum foil carrying2.3mg of compos-ite electrode material(1.5mg of olivine),while counter electrode was a2×2cm2lithium foil.The cell was assembled in an argon-filled glove box and cycled galvanostatically within a voltage range 2.1–4.2V.The galvanostatic tests in the aqueous electrolyte solution were carried out in a two-electrode arrangement,involving3mg of cathodic material,as a working electrode,and VO2in a multi-ple stoichiometric excess,as a counter electrode.According to its reversible potential of lithiation/delithiation reaction[55],VO2per-formed as an anode in this cell.The4cm2stainless steel plates were used as the current collectors for both positive and negative electrode.The cell was assembled in room atmosphere,and cycled within the voltage window between0.01and1.4V.3.Result and discussion3.1.The XRD,SEM and TG analysis of the LiFePO4/C compositeFig.1shows the XRD patterns of the composite LiFePO4/C pre-pared according to the procedure described in the Experimental Section.As visible,the diffractogram agrees completely with the one of pure LiFePO4olivine,found in the JCPDS card No.725-19. The narrow diffraction lines indicate complete crystallization and relatively large particle dimensions.On the basis of absence of diffraction lines of carbon,we may conclude that the carbonized product was amorphous one.Fig.2shows the SEM images of the LiFePO4/C composite at two different magnifications.Theflaky agglomerates,Fig.2left,with apparently smooth surface and low tap density,are due to a partial liquefaction and evolution of gas bubbles during gel-combustion procedure.These agglomerates consist of small LiFePO4/CFig.1.XRD patterns of LiFePO4/C composite in comparison to standard crystallo-graphic data.250M.Vujkovi´c et al./Electrochimica Acta 92 (2013) 248–256Fig.2.SEM images of LiFePO 4/C composite at two different magnification,20000×and 100000×.composite particles visible better at higher magnification,Fig.2,ly at the magnification of 100,000×,one may see that the size of majority of composite particles was in the range 50–100nm.The mean particle diameter,2r,as per SEM microphotograph amounted to 75nm.This analysis evidences that the gel-combustion method may provide nanodisprsed particles,desirable from the point of view of rate capability.For instance,Fey et al.[16]demonstrated that particle size reduction from 476to 205nm improved the rate capa-bility of LiFePO 4/C composite in organic electrolyte,illustrated by the increase of discharge capacity from 80mAh g −1to 140mAh g −1at discharging rate 1C.Also,carbon matrix prevented particles from agglomeration providing narrow size distribution,contrary to often used solid state reaction method of synthesis,when sintering of ini-tially nanometer sized particles caused the appearance of micron sized agglomerates [22].The SEM microphotograph (Fig.2)alone did not permit to rec-ognize carbon constituent of the LiFePO 4/C composite.However,carbonized product was evidenced,and its content measured,by means of thermogravimetry,as described elsewhere [9].The dia-gram of simultaneous thermogravimetry and differential thermal analysis (TG/DTA)of the LiFePO 4/C composite performed in air is presented in Fig.3.The process of moisture release,causing a slight mass loss of 1%,terminated at 150◦C.In the temperature range 350–500◦C carbon combustion took place,visible as a drop of the TG curve and an accompanying exothermic peak of the DTA curve.However,the early stage of olivine oxidation merged to some extent with the late stage of carbon combustion,and therefore,the minimum of the TG curve,appearing at nearly 500◦C,was not so low as to enable to read directly the carbon content.Fortunately,as proven by XRD analysis,the oxidation of LiFePO 4at tempera-ture exceeding 600◦C,yielded only Li 3Fe 2(PO 4)3and Fe 2O 3,whatFig.3.TGA/DTA curve of LiFePO 4/C under air flow at heating rate of 10C min−1.corresponded to the relative gain in mass of exactly 5.07%[9].Therefore,the weight percentage of carbonaceous fraction in the LiFePO 4/C composite was determined as equal to the difference between the TG plateaus at temperatures 300and 650◦C,aug-mented for 5.07%.According to this calculation the carbon fraction amounted to 13.4wt.%,and by means of this value,the electro-chemical parameters discussed in the next sections were correlated to pure LiFePO 4.Specific surface area of LiFePO 4,required for the measurement of diffusion constant,was determined from SEM image (Fig.2).Assuming a spherical particle shape and accepting mean particle radius r =37.5nm,the specific surface area was estimated on the basis of equation [17,22,45,46]:S =3rd(1)where the bulk density d =3.6g cm −3was used .This calculation resulted in the value S =22.2m 2g −1.In this calculation the contri-bution of carbon to the mean particle radius was ignored,however the error introduced in such way is more acceptable than the error which may arise if standard BET method were applied to the com-posite with significant carbon ly,due to a usually very developed surface area of carbon,the measured specific sur-face may exceed many times the actual surface area of LiFePO 4.3.2.Electrochemical measurements3.2.1.Non-aqueous electrolyte solutionIn order to compare the behavior of the synthesized LiFePO 4/C composite to the existing literature data,available predominantly for non-aqueous solutions,a brief test was performed in non-aqueous 1M LiClO 4+propylene carbonate solution by galvano-static experiments only.The results for the rates C/10,C/3and C,within the voltage limits 2.1–4.2V,were presented in Fig.4.The polarizability of the lithium electrode was estimated on the basis of the study by Churikov [56–67],who measured the current–voltage curves of pure lithium electrode in LiClO 4/propylene carbon-ate solutions at various temperatures.To the highest rate of 1C =170mA g −1in nonaqueous electrolyte,the corresponding cur-rent amounted to 0.25mA,which was equal to the current density of 0.064mA cm −2through the Li counter electrode.According to Fig.2in Ref.[67],for room temperature,the corresponding over-voltage amounted to only 6mV.Since lithium electrode is thus practically non-polarizable in this system,the voltages presented on the ordinate of the left diagram are the potentials of the olivine electrode expressed versus Li/Li +reference electrode.The clear charge and discharge plateaus at about 3.49V and 3.40V,respec-tively,correspond to the LiFePO 4 FePO 4phase equilibria [5].At discharging rate of C/10,the initial discharge capacity,within the limits of experimental error,was close to a full theoreticalM.Vujkovi´c et al./Electrochimica Acta 92 (2013) 248–256251Fig.4.The initial charge/discharge curves (a)and cyclic performance (b)of LiFePO 4/C composite in 1M LiClO 4+PC at different rates within a common cut-off voltage of2.1–4.2V.Fig.5.Charge/discharge profile and corresponding cyclic behavior of LiFePO 4/C in 1M LiClO 4+PC at the rate of 1C.capacity of LiFePO 4(170mAh g −1).This value is higher than that for LiFePO 4/C composite obtained by glycine [19],malonic acid [14]and adipic acid/ball milling [15]assisted methods.As usual,the discharge capacity decreased with increasing discharging rate (Fig.4b),and amounted to 127mAh g −1at C/3,and 109mAh g −1at 1C.For practical application of Li-ion batteries,a satisfactory rate capability and long cycle life are of primary importance.The charge/discharge profiles and dependence of capacity on the cycle number at the rate 1C are presented in Fig.5.The capacity was almost independent on the number of cycles,similarly to theearlier reports by Fey et al.[37–39].For comparison,Kalaiselvi et al.[19],by a glycine assisted gel-combustion procedure,with an additional amount (2wt.%)of carbon black,produced a similar nanoporous LiFePO 4/C composite displaying somewhat poorer per-formance,i.e.,smaller discharge capacity of 160mAh g −1at smaller discharging rate of C/20.On the other hand,better rate capability of LiFePO 4/C com-posite,containing only 1.1–1.8wt.%of carbon,in a non-aqueous solution,was reported by Liu et al.[21].For instance they mea-sured 160mAh g −1at the rate 1C,and 110at even 30C [21].This may be due to a thinner carbon layer around the LiFePO 4olivine particles.However the advantage of here applied thicker carbon layer exposed itself in aqueous electrolyte solutions,as described in the next section.3.2.2.Aqueous electrolyte solution3.2.2.1.Cyclic voltammetry.By the cyclic voltammetry method (CV)the electrochemical behavior of LiFePO 4/C composite in satu-rated aqueous LiNO 3solution was preliminary tested in the voltage range 0.4–1V versus SCE.The cyclic voltammograms are pre-sented in Fig.6.The highest scan rate of 100mV s −1,tolerated by this material,was much higher than the ones (0.01–5mV s −1)used in previous studies in both organic [13,24,25]and aqueous electrolyte solutions [47,48].Since one deals here with the thin layer solid redox electrode,limited in both charge consumption and diffusion length,the voltammogram is more complicated for interpretation comparing with the classic case of electroactive species in a liquid solution.A sharp,almost linear rise of current upon achieving reversible potential,with overlapped rising parts at various scan rates,similar to ones reported elsewhere [21,25],resembles closely the voltammogram of anodic dissolution ofaFig.6.Cyclic voltammograms of LiFePO 4/C in saturated LiNO 3aqueous electrolyte with a scan rate of 1mV s −1(left)and at various scan rates in the range 1–100mV s −1.252M.Vujkovi´c et al./Electrochimica Acta 92 (2013) 248–256Fig.7.Anodic and cathodic peak current versus square root of scan rate forLiFePO 4/C composite in aqueous LiNO 3electrolyte solution.thin metal layer [56],which proceeds under constant reactant activity.Since the solid/solid phase transitions LiFePO 4 FePO 4accompanies the redox processes in this system [5,8,57,58],the positive scan of the voltammograms depict the phase transition of LiFePO 4to FePO 4,while the negative scan depicts the phase transi-tion FePO 4to LiFePO 4.As shown by Srinivasan et al.[5],LiFePO 4may be exhausted by Li not more than 5mol.%before to trans-form into FePO 4,while FePO 4may consume no more than 5%Li before to transform into LiFePO 4,i.e.cyclic voltammetry exper-iments proceeds under condition of almost constant activity of the electroactive species.Although these aspects of the Li inser-tion/deinsertion process do not fit the processes at metal/liquid electrolyte boundary implied by Randles–Sevcik equation:i p =0.4463F RT1/2C v 1/2AD 1/2(2)this equation was frequently used to estimate apparent diffusion coefficient in Li insertion processes [5,17,21,46,59].To obtain peak current,i p ,in amperes,the concentration of lithium,C =C Li ,should be in mol cm −3,the real surface area exposed to the electrolyte in cm 2,chemical diffusion coefficient of lithium through the solid phase,D =D Li ,in cm 2s −1,and sweep rate,v ,in V s −1.The Eq.(2)pre-dicts the dependence of the peak height on the square root of sweep rate to be linear,as found often in Li-ion intercalation processes [17,21,25,59,60].This condition is fulfilled in this case too,as shown in Fig.7.The average value of C Li may be estimated as a reciprocal value of molar volume of LiFePO 4(V M =44.11cm 3mol −1),hence C Li =2.27×10−2mol cm −3.The determination of the actual surface area of olivine is a more difficult task,due to the presence of carbon in the LiFePO 4/C ly,classical BET method of sur-face area measurement may lead to a significantly overestimated value,since carbon surface may be very developed and participate predominantly in the measured value [15].Thus the authors in this field usually calculated specific surface area by means of Eq.(1),using mean particle radius determined by means of electron microscopy [17,22,45,46].Using S =22.2m 2g −1determined by means of Eq.(1),and an actual mass of the electroactive substance applied to the elec-trode surface (0.001305g),the actual electrode surface area was calculated to amount to A =290cm 2.This value introduced in Randles–Sevcik equation yielded D Li ∼0.8×10−14cm 2s −1.From the aspect of capacity retention,the insolubility of olivine in aqueous solutions is advantageous compared to the vanadia-based Li-ion intercalation materials,such as Li 1.2V 3O 8[61],LiV 3O 8[62]and V 2O 5[63],the solubility of which in LiNO 3solution was perceivable through the yellowish solutioncoloration.Fig.8.The Nyquist plots of LiFePO 4/C composite in aqueous LiNO 3solution at var-ious stages of delithiation;inset:enlarged high-frequency region.3.2.2.2.Impedance measurements.Figs.8and 9present the Nyquist plots of the LiFePO 4/C composite in aqueous LiNO 3solution at various open circuit potentials (OCV),during delithiation (anodic sweep,Fig.8)and during lithiation (cathodic sweep,Fig.9).The delithiated phase,observed at OCV =1V,as well as the lithi-ated phase,observed at OCV =0V,in the low-frequency region (f <100Hz)tend to behave like a capacitor,characteristic of a surface thin-layered redox material with reflective phase bound-ary conditions [64].At the OCV not too far from the reversible one (0.42V during delithiation,0.308V during lithiation),where both LiFePO 4and FePO 4phase may be present,within the whole 10−2–105Hz frequency range,the reaction behaves as a reversible one (i.e.shows the impedance of almost purely Warburg type).The insets in Figs.8and 9present the enlarged parts of the impedance diagram in the region of high frequencies,where one may observe a semicircle,the diameter of which corresponds theoretically to the charge transfer resistance.As visible,the change of open circuit potential between 0and 1V,in spite of the phase transition,does not cause significant change in charge transfer resistance.The small charge transfer resistance obtained with the carbon participation of 13.4%,being less than 1 ,is the smallest one reported thus far for olivine based materials.This finding agrees with the trend found by Zhao et al.[27],that the charge transfer resistance scaleddownFig.9.The Nyquist plots of LiFePO 4/C composite in aqueous LiNO 3solution at var-ious stages of lithiation;inset:enlarged high-frequency region.M.Vujkovi´c et al./Electrochimica Acta 92 (2013) 248–256253Fig.10.The dependence Z Re vs.ω−1/2during lithiation at 0.308V (top)and delithi-ation at 0.42V (down)in the frequency range 72–2.68Hz.to 1000,400and 150 when the amount of in situ formed carbon in the LiFePO 4/C composite increased in the range 1,2.8and 4.8%.For OCV corresponding to the cathodic (0.42V)and anodic (0.308V)peak maxima,the Warburg constant W was calculated from the dependence [21]:Z Re =R e +R ct + W ω−1/2(3)In the frequency range 2.7–72Hz,almost purely Warburg impedance was found to hold (i.e.the slope of the Nyquist plot very close to 45degrees was found).At the potential of cathodic current maximum (0.42V),from Fig.10, W was determined to amount to 7.96 s −1/2.At the potential of anodic maxima,0.308V, W was determined to amount to 9.07 s −1/2.In the published literature,for the determination of diffusion coefficient on the basis of impedance measurements,the following equation was often used [66,68,69]:D =0.5V M AF W ıE ıx2(4)where V M is molar volume of olivine,44.1cm 3, W is Warburg con-stant and ıE /ıx is the slope of the dependence of electrode potential on the molar fraction of Li (x )for given value of x .However,the potentials of CV maxima in the here studied case correspond to the x range of two-phase equilibrium,where for an accurate deter-mination of ıE /ıx a strong control of perturbed region of sample particles is required [69],and thus the determination of diffusion coefficients was omitted.3.2.2.3.Galvanostatic measurements.The galvanostatic measure-ments of LiFePO 4/C in saturated LiNO 3aqueous solution were performed in a two-electrode arrangement using hydrother-mally synthesized VO 2[55]as the active material of thecounterFig.11.Capacity versus cycle number and charge/discharge profiles (inset)for thecell consisting of LiFePO 4/C composite as cathode,and VO 2in large excess as anode,in saturated LiNO 3aqueous electrolyte observed at rate C/3.electrode.Preliminary cyclovoltammetric tests of VO 2in saturated LiNO 3solution at the sweep rate 10mV s −1,evidenced excellent cyclability and stable capacity of about 160mAh g −1during at least 50cycles.The voltage applied to the two-electrode cell was cycled within the limits 0and 1.4V.Due to a significant stoichiometric excess of VO 2over LiFePO 4/C composite (5:1)the actual voltage may be considered to be the potential versus reference VO 2/Li x VO 2electrode.Fig.11shows the dependence of the discharging Coulombic capacity of the LiFePO 4/C composite on the number of galvano-static cycles at discharging rate C/3,as well as (in the inset)the voltage vs.charging/discharging degree for 1st,2nd and 50th cycle.The charge/discharge curves do not change substantially in shape upon cycling,indicating stable capacity.For an aqueous solution,a surprisingly high initial discharge capacity of 106mAh g −1and low capacity fade of only 6%after 50charge/discharge cycles were evidenced.This behavior is admirable in comparison to other elec-trode materials in aqueous media reported in literature (LiTi 2(PO 4)3[42],LiV 3O 8[57]),and probably enabled by a higher thermody-namic stability of olivine structure [1].Fig.12presents the results of cyclic galvanostatic investigations of LiFePO 4/C composite in aqueous LiNO 3solution at various dis-charging rates.The charging/discharging rate was initially C/3for 80cycles and then was increased stepwise up to 3C.ThecapacityFig.12.Cyclic performance of LiFePO 4/C in saturated LiNO 3aqueous electrolyte at different charging/discharging rates.。
碳酸锰的几种漂亮结构
Yolk-structured microspheres of spinel LiMn2O4 are successfully prepared by a specially designed multi-step synthesis procedure involving precipitation, controlled oxidation, selective etching and chemical lithiation. Solid-structured and hollow-structured LiMn2O4 are also synthesized by a similar method for comparison. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller method and IR spectroscopy are employed to study their structures and compositions. The electrochemical
case of large particle sizes. Although the nano-structured LiMn2O4 is very effective in improving the rate capability, the low tap density of nano-sized powders directly leads to the low energy density of a cell. To achieve a high tap density, electrode materials are preferred to have micron-sized particles, especially with spherical shapes which can pack more densely.21–25 In our study, we want to nd a balance between high tap density and short diffusion distance. Inspired by the work of Qian et al. who have synthesized hollow structures of Mn2O3, MnO2 and Mn2O3 microspheres,26–28 we design and synthesize a special yolk-structured LiMn2O4 microsphere (Scheme 1b). In this structure model, the outer shell is porous and composed of many nanoparticles, which can enlarge the specic surface area of the electrode and provide more reaction sites for lithium insertion and extraction. The core is relatively dense to increase the volumetric energy density. The spacing between the shell and the core can buffer any volume change of the core during heating/cooling or charge/discharge. In the present work, we rst synthesize a yolk-structured Mn2O3 as a precursor and then follow a simple solid-state reaction or chemical lithiation to produce the yolk-structured LiMn2O4 microsphere (LMO-Y) (Scheme 1a). Moreover, we compare the electrochemical performance of LMO-Y with those of hollow LiMn2O4 microspheres (LMO-H) (Scheme 1c) and solid LiMn2O4 microspheres (LMO-S) (Scheme 1d).
210875185_超浸润油水分离膜及其研究进展
表面技术第52卷第2期超浸润油水分离膜及其研究进展景境1,刘战剑1,张曦光1,任丽娜1,汪怀远1,2(1.东北石油大学 化学化工学院,黑龙江 大庆 163318;2.天津大学 化工学院,天津 300350)摘要:受到自然界中动植物表面超疏水/超亲水特性的启发,仿生超浸润膜材料作为一种新兴的油水分离材料引起了科研人员的广泛关注。
首先通过对影响膜材料表面润湿性的基础模型进行分析,包括Young方程、Wenzel模型和Cassie模型,总结了制备超浸润膜材料需要调控的2个关键因素——表面张力和纳微多级结构。
其次,对比分析了不同类型超浸润膜的油水分离过程,概述了超浸润油水分离膜的技术优势,包括油水选择性好、分离效率高、操作简单、能耗低等。
揭示了常见超浸润膜对稳定油水乳液的分离机理,即基于膜孔径小于乳液尺寸的筛分效应;通过膜材料对油水截然相反的浸润性实现界面破乳和选择性分离。
在此基础上,重点综述了近年来常见超浸润油水分离膜的研究进展,其中包括超疏水/超亲油膜、超亲水/水下超疏油膜、Janus膜、智能响应膜,并对不同类型的超浸润膜材料在分离过程中存在的技术优势和问题进行了分析。
最后,提出了该领域研究存在的问题和面临的挑战,并对未来超浸润膜材料的发展方向和应用前景进行了展望。
关键词:超浸润性;膜材料;乳化油;油水分离中图分类号:TQ028.4 文献标识码:A 文章编号:1001-3660(2023)02-0172-11DOI:10.16490/ki.issn.1001-3660.2023.02.015Research Progress of Superwetting Oil-water Separation Membrane JING Jing1, LIU Zhan-jian1, ZHANG Xi-guang1, REN Li-na1, WANG Huai-yuan1,2(1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Heilongjiang Daqing 163318, China;2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China)ABSTRACT: Inspired by the superhydrophobic and superhydrophilic properties of the animal or plant surfaces in nature, biomimetic superwetting membranes as a new kind of oil-water separation material has attracted widespread attention from scientific researchers due to its tremendous development potential and broad application prospects in the field of oil-water separation. The basic theoretical models affecting the surface wettability of membrane materials were discussed by收稿日期:2021–12–09;修订日期:2022–03–14Received:2021-12-09;Revised:2022-03-14基金项目:黑龙江省自然科学基金(LH2020E011);中国博士后基金(2021M700756);黑龙江省博士后基金(LBH–Z20124);东北石油大学科研启动基金(2019KQ85)Fund:National Natural Science Foundation of Heilongjiang Province of China (LH2020E011); China Postdoctoral Science Foundation (2021M700756); Heilongjiang Postdoctoral Science Foundation (LBH-Z20124); Scientific Research Foundation of Northeast Petroleum University (2019KQ85)作者简介:景境(1998—),女,硕士生,主要研究方向为油水分离。
富锂锰基正极材料结构优化设计与电化学性能研究进展
富锂锰基正极材料结构优化设计与电化学性能研究进展邱家欣;江奇;李欢;刘青青;段志虹;卢晓英【摘要】In order to solve the problems of low initial coulomb efficiency,poor lithium ion diffusion and fast voltage attenuation on the Li-rich manganese-based cathode material,a cathode material for lithium-ion batter-ies,optimizing material structure(structural optimization design)was developed to enhance the electrochemical performances of this material.Until now,many superior structural designs were introduced and proved good effects,such as micro/nano-meter structure,mesoporous structure and so on.In this paper,the Li-rich manga-nese-based cathode materials were classified by the working mechanism of structural design on their electro-chemical performances.And the working mechanism of how did the structural design change the lithium ion dif-fusion,material structure stability,material irreversible phase change and Mn ion dissolution were discussed in detail.At the same time,the further research and development direction and trend about structural optimization design were put forward.%针对锂离子电池用正极材料——富锂锰基材料的首次效率低、锂离子扩散差及电压衰减快等问题,研究者开发利用优化材料结构(结构优化设计)来提高富锂锰基正极材料的电化学性能.到目前为止,已报道了许多优秀的结构,如微米/纳米结构、介孔结构等,并取得了不错效果.就结构设计对富锂锰基正极材料电化学性能的影响作用机理来进行分类,详细研究和探讨结构优化设计如何通过影响锂离子扩散、材料结构稳定性、材料不可逆相变和Mn离子溶解等因素来提高材料电化学性能的机理,并提出进一步的优秀结构设计的研究发展趋势与方向.【期刊名称】《功能材料》【年(卷),期】2018(049)003【总页数】6页(P3007-3012)【关键词】富锂锰基正极材料;电化学性能;结构优化设计;研究进展【作者】邱家欣;江奇;李欢;刘青青;段志虹;卢晓英【作者单位】西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031;西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031;西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031;西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031;西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031;西南交通大学电气工程学院,机械工程学院,材料先进技术教育部重点实验室,成都610031【正文语种】中文【中图分类】O640 引言近年来,富锂锰基正极材料因其具有高放电比容量、成本低和环境友好等特点,逐步受到研究者的青睐,是极具潜力的下一代锂离子电池正极材料[1-2]。
VC和FEC在硅负极界面的特性
电池BATTERY BIMONTHLY Vol.49,No.3 Jun.,2019第49卷第3期2019年6月DOI:10.19535/j.1001-1579.2019.03.012 VC和FEC在硅负极界面的特性甘朝伦,袁杰,陈黎(张家港市国泰华荣化工新材料有限公司,江苏苏州215634)摘要:用电化学循环伏安测试、电化学阻抗测试和X射线光电子能谱(XPS)分析研究硅负极在不含添加剂和含2%氟代碳酸乙烯酯(FEC)、2%碳酸亚乙烯酯(VC)的1mol/L LiPF6/EC+DMC+EMC(体积比1:1:1)3种电解液中的电化学性能及固体电解质相界面(SEI)膜的组成。
在含2%FEC的电解液中,硅负极丝首次充放电效率最高,为77.9%;阻抗最小,因为电极表面形成了LiF和碳酸锂组成的稳定SEI膜;在含2%VC的电解液中,硅负极的比容量最低,为525.09mAg/g;阻抗最高,为电极表面形成较厚的含碳酸锂、微量LiF及Li,PF,O;的SEI膜。
关键词:硅负极;添加剂;固体电解质相界面(SEI);锂离子电池中图分类号:TM912.9文献标志码:A文章编号:1001-1579(2019)03-0228-04Properties of VC and FEC on interface of silicon based anode electrodeGAN Chao-lun,YUAN Jie,CHEN Li(Zhangjiagang Guotai Huarong New Chemical Materials Co.,Ltd.,Suzhou,Jiangsu215634,China)Abstract:Cyclic voltammetry,electrochemical impedance testing and X-ray photoelectron spectroscopy(XPS)analysis were used to study Si anodes at1mol/L LiPF6/EC+DMC+EMC(volume ratio1:1-1).Electrochemical performance and solid electrolyte phase interface(SEI)film composition of three electrolyte systems containing no additives,2%fluoroethylene carbonate(FEC)and 2%vinylene carbonate(VC).Among the electrolytes containing2%FEC,the Si anode had the highest initial charge and discharge efficiency and the lowest impedance.The surface of the electrode formed a stable SEI film composed of LiF and lithium carbonate;in the electrolyte containing2%VC,Si anode had the lowest specific capacity and the highest impedance,and a thick SEI film containing lithium carbonate,a trace amount of LiF and Li x PF y O2was formed on the surface of the electrode.Key words:silicon based anode;additive;solid electrolyte interface(SEI);Li-ion battery硅基负极材料在充放电过程中会发生约3倍的体积膨胀和收缩⑴,在反复充放电过程中,硅负极会发生裂解.导致电池性能急剧下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A comparative structural and electrochemical study ofmonoclinic Li3Fe2(PO4)3and Li3V2(PO4)3Se´bastien Patoux a,Ca˘lin Wurm a,Mathieu Morcrette a,Gwenae¨lle Rousse b,Christian Masquelier a,*a Laboratoire de Re´activite´et de Chimie des Solides,CNRS UMR6007,Universite´de Picardie Jules Verne,33rue Saint-Leu,80039Amiens Cedex,Franceb Institut Laue Langevin,BP156,F-38042Grenoble Cedex9,FranceAbstractPure monoclinic Li3M2(PO4)3(M:Fe,V)powders(<1m m in diameter)were obtained by an original route that involved initial homogenization of precursors in aqueous solution followed by slow evaporation and annealing under controlled atmosphere at moderate temperatures.The crystal structure of Li3V2(PO4)3was determined for thefirst time through Rietveld refinements of neutron diffraction data. As for Li3Fe2(PO4)3,Li is distributed within three crystallographic sites,fully occupied at room temperature.The values of the temperature factors on Li(2)and Li(3)sites(five-fold coordination)were found significantly higher than that of Li(1)(four-fold coordination). Li3V2(PO4)3shows four reversible redox phenomena upon insertion of two Liþ(V3þ/V2þcouple),at1.98,1.88,1.73and1.70V vs. Li.By comparison,Li3Fe2(PO4)3shows two reversible redox phenomena upon insertion of two Liþ(Fe3þ/Fe2þcouple),at2.88and2.73V vs. Li.Experimental capacities close to the theoretical ones were obtained after optimal composite electrode preparation through ball-milling.In situ X-ray diffraction showed very minor changes from Li3M2(PO4)3to Li5M2(PO4)3.Additionally,Li is extracted from Li3V2(PO4)3towards V2(PO4)3(V4þ/V3þand V5þ/V4þcouples)through four redox phenomena at3.59,3.67,4.06and4.35V vs.Li.Despite all these phase transitions,the[M2(PO4)3]framework is remarkably stable on cycling,particularly for M:Fe,while partial vanadium dissolution into the electrolyte occurs either on deep reduction to1.5V or deep oxidation to4.6V vs.Li.#2003Elsevier Science B.V.All rights reserved.Keywords:Structural study;Monoclinic;Crystallographic1.IntroductionRecently,polyanion3-D structures built of PO4tetrahedra and FeO6octahedra have engendered much interest for their potential use as cheap positive electrodes for lithium rechargeable batteries[1].Efforts towards this relatively novel class of intercalation hosts for lithium have focused on systems such as the olivine Li1Àx FePO4[2,3]and NASICON compositions Li x Fe2(SO4)3[4]or Li3þx Fe2(PO4)3[5,6]into which reduction/oxidation of Fe3þ/Fe2þoccurs at potentials close to3.43,3.55and2.8V vs.Li/Liþ,respectively.For applications,the material of choice of the so-called poly-anionic structures is with no doubt the olivine LiFePO4that, since the pioneering discovery of Padhi et al.[2]has gained much interest[7–9].Recent optimization of LiFePO4has focused on:(i)increasing the electronic conductivity of composite electrodes through carbon coating on the active material particles[7,8];and(ii)lowering the synthesis temperature to$4008C with the use of strongly reactive iron oxalate under N2[9].LiFePO4stands as a serious candidate for the next generation of Li-based polymer or Li-ion batteries.Materials of general composition A x MM’(PO4)3(A:Li, Na,...;M and M0:transition metal element)adopt either the ‘‘A’’-form or‘‘B’’-form(NASICON)that differ in the3-D connectivity between MM0(PO4)3units.Among this very rich family of compositions and crystal structures,the NASICON Li3Fe2(PO4)3[5,6],LiTi2(PO4)3[10]and Li3V2(PO4)3[11,12]were shown to react electrochemically with lithium at2.8,2.5and3.7V vs.Liþ/Li,for the Fe3þ/2þ, Ti4þ/3þand V3þ/4þcouples,respectively.Delmas and co-workers were thefirst to demonstrate nice reversibility through a two-phase process between LiTi2(PO4)3and Li3Ti2(PO4)3(138mAh/g)[10]but the practical use of these materials was still under question,due to their low intrinsic electronic conductivity.We recently paid particular atten-tion to circumvent this handicap and reported[13,24]thatJournal of Power Sources119–121(2003)278–284*Corresponding author.E-mail address:christian.masquelier@sc.u-picardie.fr(C.Masquelier).0378-7753/03/$–see front matter#2003Elsevier Science B.V.All rights reserved.doi:10.1016/S0378-7753(03)00150-2energetic ball-milling of Fe(III)-containing phosphates with conductive carbon(carbon SP or acetylene black)resulted in a very significant improvement of their electrochemical performances.Lithium extraction out of the monoclinic form of Li3V2(PO4)3(anti-NASICON)has been demonstrated by Barker and Saidi[14]and Sato et al.[15].More recently, promising behaviour was reported by Saı¨di et al.[16]and Nazar et al.[17–19]in the course of our study.Our study aims to compare the electrochemical and structural behaviour of isotypical iron and vanadium phosphates upon lithium inser-tion and/or extraction.We will show,after a detailed exam-ination of the crystal structures of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3(determined from powder neutron diffrac-tion data)that,despite an impressive number of phase transi-tions,very minor structural changes occur over a wide range of lithium contents into the M2(PO4)3framework.While Fe(III)can only be reduced to Fe(II)(Li3þx Fe2(PO4)3), V(III)can be either oxidized to V(IV)(Li3Àx V2(PO4)3)or reduced to V(II)(Li3þx V2(PO4)3).Similar comparisons were recently reported[20]for Li1Æx MP2O7(M(III)¼Fe,V). 2.ExperimentalPure A-Li3M2(PO4)3(M:Fe,V)powders were obtained by an original route that involved initial homogenization of precursors in aqueous solution(1mol/l)followed by slow evaporation of H2O at1008C and volatile species at3008C under air and further annealing(400–8008C)of the resulting solid until crystallization.Stoichiometric amounts of Fe(NO3)3Á9H2O and LiH2PO4were mixed in the case of Li3Fe2(PO4)3.Stoichiometric amounts of NH4VO3(V(V)) and LiH2PO4were mixed in the case of Li3V2(PO4)3.In this case,the annealing was conducted up to7508C(12h)under a gasflow of N2/H2(10%)to achieve reduction of V(V)to V(III).Note that for both compounds,the initial mixing of precursors in solution was essential to favour lower synthesis temperatures that resulted in smaller particle sizes(spheri-cal,less than1m m in diameter)than by direct solid state synthesis(particle sizes>50m m).The crystal structure of A-Li3V2(PO4)3was solved from room temperature powder diffraction data recorded on the high resolution neutron powder diffractometer D1A (l¼1:9104A˚)at ILL-Grenoble(France).The crystal struc-ture of A-Li3Fe2(PO4)3was determined from room tem-perature powder diffraction data recorded on the neutron multicounters powder diffractometer G4.2(l¼2:3433A˚) at LLB of Saclay(France).Both structures were obtained from Rietveld refinements[21]using the program Fullprof [22]from an initial set of atomic coordinates of Li3Fe2(PO4)3previously determined from single-crystal diffraction data[23].Differential scanning calorimetry mea-surements(DSC)were performed on a Mettler DSC25 device driven by the interface TC11,with a heating rate of 10K/min.The electrochemical tests were performed in standard Swagelok TM cells with a lithium foil at the negative elec-trode and A-Li3M2(PO4)3(M:Fe,V)/carbon composites at the positive electrode.A Whatman GF/D borosilicate glass fiber sheet saturated with a1M LiPF6electrolyte solution in 1:1(w/w)of dimethyl carbonate/ethylene carbonate con-stitutes the separator member.The active material powders were mechanically ball-milled with Super P carbon(SP, MMM Carbon,Belgium)in the proportions200/40mg (16.67%of carbon)in a stainless steel container using a SPEX8000mixer to generate sufficient impacts/shocks [24].A MacPile automatic cycling/data recording system (Biologic SA,Claix,France)operating in galvanostatic mode at C/10regime,was used for the electrochemical data recording.For in situ X-ray diffraction,a modified Swage-lok-type was mounted,horizontally,on a D8Bruker dif-fractometer(Co K a radiation,y–y geometry,PSD counter) and monitored by a MacPile system in a galvanostatic intermittent titration technique(GITT)mode at C/20regime (1h)with open circuit(1h)to collect the X-ray data.3.Results and discussions3.1.Crystal structures at room temperatureFor both Li3Fe2(PO4)3and Li3V2(PO4)3,lithium order-ing at room temperature over three crystallographic sites generates a slight monoclinic distortion[23]that cannot be well spotted by standard X-ray diffraction nor low-resolu-tion neutron plementary synchrotron X-ray diffraction experiments were carried out at LURE (Orsay)to confirm the purity of Li3Fe2(PO4)3[24]and Li3V2(PO4)3.Similarly to the iron counterpart[23], Li3V2(PO4)3presents a monoclinic distortion of the classic orthorhombic cell at room temperature(Fig.1).We con-firmed by differential scanning calorimetry and tempera-ture-controlled X-ray diffraction the sequences of a ðmonoclinicÞ$bðorthorhombicÞ$g(orthorhombic) phase transitions due to lithium disordering between room temperature and573K.Note that under air,Li3V2(PO4)3is not stable above800K,at which temperature oxidation of V(III)takes place.The Rietveld refinements of the neutron diffraction patterns of A-Li3Fe2(PO4)3and A-Li3V2(PO4)3,recorded at room temperature(a-forms),are presented in Fig.2.The space group P21/n(first setting,binary axis c)was preferred rather than P21/c(binary axis b)in order to keep the same setting as that of the original paper of Bykov[23].A-Li3Fe2(PO4)3 (a¼8:571(1)A˚,b¼12:017(1)A˚,c¼8:616(1)A˚,g¼90:52(1)8,V¼887(1)A˚3)and A-Li3V2(PO4)3(a¼8:605-(1)A˚,b¼12:038(1)A˚,c¼8:591(1)A˚,g¼90:60(1) V¼890(1)A˚3)are isostructural with the monoclinic form of Fe2(SO4)3with Z¼4[25].Satisfactory conventional R-factors were obtained R wp¼3:69%and R B¼3:76%for A-Li3Fe2(PO4)3,whereas R wp¼7:08%and R B¼7:97%S.Patoux et al./Journal of Power Sources119–121(2003)278–284279for A-Li 3V 2(PO 4)3.Hence,less accuracy was obtained for A-Li 3V 2(PO 4)3as vanadium is essentially transparent to neutron radiation.However,all the bond-strengths and polyhedra distortions for both compounds are in perfect accordance with the formula of Zachariasen [26,27].All the 20independent atoms of the unit cell are in general position 4e (Table 1).The transition element M (M:Fe or V)is distributed over two independent positions.At room temperature,lithium ions fully occupy three distinct sites,two of them being in five-fold coordination (Li(2)and Li(3)),whereas Li(1)is in four-fold coordination.The peculiar distribution of lithium ions within the framework is worth of consideration as they are located within (a ,c )‘‘conduction planes ’’(Fig.3)that generate strong anisotropy in ionic conduction.More interestingly,even is the fact that for both compounds,the re fined temperature factors on Li(2)and Li(3)sites (five-fold coordination)are signi ficantly higher than that of Li(1),which indicates that ionic con-duction is likely to occur mainly along [001].To further support this point,during the order –disorder a !b !g transitions,only the Li(2)and Li(3)sites are involved,their occupancy factors becoming fractionate.As discussed else-where [28],these observations are of importance for a good understanding of the complex phase transitions that occur during lithium extraction from Li 3V 2(PO 4)3.3.2.Insertion of lithium between 3.0and 1.0V vs.Li Lithium insertion is possible into both A-Li 3M 2(PO 4)3(M:Fe,V)compounds.Experimental galvanostaticandFig.1.X-ray diffraction pattern (exp.)of the room temperature form of A-Li 3V 2(PO 4)3recorded from a synchrotron radiation with l ¼0:9616A˚.The experimental pattern is compared with two simulated patterns (simul.)calculated in monoclinic P 21/n or orthorhombic Pcan spacegroup.Fig.2.Neutron diffraction Rietveld profiles of the experimental (circles)and calculated (full lines)patterns for (a)A-Li 3Fe 2(PO 4)3and (b)A-Li 3V 2(PO 4)3.The vertical lines indicate the possible Bragg positions.Differences between experimental and calculated patterns are also drawnbelow.Fig.3.Projection on the (a ,c )plane of the lithium ions distribution in A-Li 3M 2(PO 4)3(M:Fe,V).Segments are drawn between neighboring Li positions to indicate possible conduction pathways.280S.Patoux et al./Journal of Power Sources 119–121(2003)278–284derivative curves are plotted in plete lithium insertion leads to compositions close to Li5M2(PO4)3in which Fe or V are reduced to M(II).Both compounds show, atfirst sight,similar electrochemical behaviour on reduction with the existence of a well-defined intermediate composi-tion Li4M2(PO4)3.It is remarkable to note that the1V difference between the average positions of Fe3þ/Fe2þand V3þ/V2þredox couples is the same as that observed for these two couples in Li1þx FeP2O7and Li1þx VP2O7[20] and also the same as that established in aqueous solution. From PITT measurements,we indicated recently[24] that lithium insertion within the two-phase domains Li3Fe2-(PO4)3–Li4Fe2(PO4)3(2.88V vs.Li)and Li4Fe2(PO4)3–Li5Fe2(PO4)3(2.73V vs.Li)was kinetically limited more by electron or ion transport within each phase rather than from phase front migration.The existence of an intermedi-ate phase Li4Fe2(PO4)3results probably from lithium inser-tion into a given new crystallographic site that generates local reduction of the nearest Fe positions.A close exam-ination of the relative positions of MO6octahedra within the structure besides the interstitial space available for Li insertion does not favour the M(1)nor the M(2)site to be reducedfirst between Li3Fe2(PO4)3and Li4Fe2(PO4)3. Hence,we believe that a new lithium distribution occurs within the interstitial space for Li4Fe2(PO4)3which does not necessarily generate Fe3þ/Fe2þcharge ordering.This is supported by the experimental data of Manthiram[29]on lithium insertion into monoclinic Fe2(SO4)3:there is,in this case,only one intercalation plateau(at 3.6V vs.Li) between Fe2(SO4)3and Li2Fe2(SO4)3,even though iron isTable1Atomic coordinates and isotropic displacement factors obtained by Rietveld refinements of neutron diffraction data for A-Li3Fe2(PO4)3(normal)and A-Li3V2(PO4)3(bold)Atoms Sites Wyckoff positions B iso(A˚2)Occupancy M1(Fe)4e0.2462(5)0.1079(3)0.4619(4)0.26(7)1M1(V)0.2461a0.1072a0.4606a0.61a1M2(Fe)4e0.7541(2)0.3950(3)0.4708(4)0.22(7)1M2(V)0.7534a0.3943a0.4703a0.59a1P14e0.1030(9)0.1484(5)0.1069(8)0.9(2)10.1068(9)0.1489(8)0.1014(11) 1.4(2)1P24e0.60393(9)0.3495(6)0.1160(8)0.6(1)10.6004(9)0.3493(7)0.1164(11) 1.5(2)1P34e0.0359(7)0.4932(6)0.2512(11) 1.0(1)10.0349(9)0.4924(7)0.2474(12) 1.1(2)1O14e0.4292(7)0.3309(5)0.0885(7)0.9(1)10.4257(9)0.3305(6)0.0915(9) 1.5(2)1O24e0.9237(7)0.1497(5)0.1151(7)0.6(1)10.9262(9)0.1471(6)0.1108(10) 1.3(2)1O34e0.3527(7)0.2620(5)0.4806(7)0.6(1)10.3547(8)0.2607(6)0.4799(8) 1.2(2)1O44e0.8022(7)0.2193(5)0.4972(64)0.3(2)10.8041(9)0.2185(7)0.4952(9) 1.5(2)1O54e0.1669(8)0.0389(5)0.0580(7) 1.4(1)10.1727(10)0.0394(7)0.0518(8) 1.6(2)1O64e0.6455(7)0.4713(5)0.0920(7)0.8(1)10.6435(9)0.4747(6)0.0883(9) 1.2(2)1O74e0.4507(7)0.0689(4)0.3678(8)0.4(1)10.4500(8)0.0667(5)0.3688(9)0.9(2)1O84e0.9273(8)0.4037(5)0.3132(7)0.6(1)10.9277(9)0.4033(6)0.3196(9) 1.0(2)1O94e0.1709(6)0.4317(4)0.1710(7)0.4(1)10.1697(9)0.4291(6)0.1697(9) 1.4(2)1O104e0.5979(7)0.0701(4)0.1273(8)0.6(1)10.6098(9)0.0750(6)0.1346(10) 1.6(2)1O114e0.1635(6)0.1868(5)0.2636(7)0.3(2)10.1660(9)0.1862(7)0.2670(9) 1.5(2)1O124e0.6374(7)0.3168(5)0.2868(8) 1.0(1)10.6399(9)0.3176(6)0.2868(9) 1.1(2)1Li14e0.288(2)0.320(2)0.275(2)0.1(4)10.292(3)0.328(2)0.298(2)0.5(4)1Li24e0.571(2)0.202(2)0.419(2) 1.4(5)10.571(3)0.195(2)0.421(3) 2.9(6)1Li34e0.901(3)0.243(2)0.291(3) 5.2(7)10.911(4)0.233(3)0.305(4) 4.7(8)1a Due to the‘‘transparency’’of vanadium in neutron diffraction,these parameters must be refined one by one,and cannot be incorporated in the final refinement.S.Patoux et al./Journal of Power Sources119–121(2003)278–284281distributed over two distinct crystallographic sites.Despite the phase transition at x ¼1,optimized electrodes of Li 3þx Fe 2(PO 4)3cycle remarkably well in the potential range 3.5–2.0V for 0 x 1:8(320Wh/kg for a mean voltage of 2.75V)as can be seen in Fig.5.In situ X-ray diffraction experiments [30]con firmed the existence of two two-phase domains and revealed only very minor,and reversible,changes in the framework over a whole dis-charge/charge cycle.As for A-Li 3Fe 2(PO 4)3,lithium may be inserted into A-Li 3V 2(PO 4)3according to,at first sight,a similar mechan-ism:two main intercalation plateaus at 1.86and 1.73V vs.Li are distinguished.More careful experiments than those recently reported by Sato [31]reveal though that there are actually four distinct phenomena at 1.98,1.86,1.73and 1.70V vs.Li (Fig.4),each of them corresponding roughly to 0.5electrons exchanged per formula unit.The theore-tical capacity was achieved experimentally,with the com-plete reduction of the V 3þions into V 2þions.There is however a rapid capacity fade on cycling due to vanadium dissolution into the electrolyte,as already mentioned for LiVP 2O 7[20].In situ X-ray diffraction (Fig.5)shows a very similar behaviour for both compositions,the framework being maintained throughout the whole insertion range.As a number of diffraction peaks of the monoclinic P 21/n unit cell overlap,satisfactory re finement of the lattice para-meters of the intermediate composition Li 4M 2(PO 4)3and of the final composition Li 5M 2(PO 4)3was dif ficult.We found however very similar trends for both compounds between the two de finite compositions Li 3M 2(PO 4)3and Li 4M 2(PO 4)3:contraction along [100](À1.5%),Fig.4.Left part:charge-discharge and discharge –charge profiles of A-Li 3Fe 2(PO 4)3and A-Li 3V 2(PO 4)3recorded under galvanostatic conditions (C /10)in the 1.50–4.65V range vs.Li þ/Li.Right part:derivative curves of potentiodynamic intermitent titration technique (PITT)data (10mV steps for t max ¼1h,I min equivalent to C/20).Fig.5.In situ X-ray diffraction recorded during Li insertion in GITT mode into (a)Li 3Fe 2(PO 4)3and (b)Li 3V 2(PO 4)3.Diffractometer D8Bruker,Co K a ,y –y geometry,PSD counter.282S.Patoux et al./Journal of Power Sources 119–121(2003)278–284elongation along[010]and[001](þ1.6andþ1.5%, respectively)and increase of the monoclinic distortion to91.18.This represents only a minor global volume change and accounts for the nice reversibility of the system.3.3.Extraction of lithium between3.0and4.65V vs.LiIn this region of potentials,only Li3V2(PO4)3is of interest as Fe3þcannot be oxidized to Fe4þbelow5V vs.Liþ/Li. The oxidation of V3þto V4þby lithium extraction out of monoclinic Li3V2(PO4)3was reported by Nanjundaswamy [32]and Sato[33]and more recently by Barker[14,16]and Nazar[17].On the other hand,successful attempts to prepare the NASICON form of Li3V2(PO4)3by ion exchange from the sodium analogue Na3V2(PO4)3allowed to identify an interesting Li-extraction plateau at3.77V vs. Li for the V3þ/V4þredox couple[12].Contrary to Sato et al.[33],we found that there was no need to dope monoclinic Li3V2(PO4)3with zirconium to get nice reversibility of this material upon oxidation.Only careful electrode preparation(intimate mixing with conduc-tive carbon)is needed to fully oxidize V3þinto V4þfrom the pristine Li3V2(PO4)3to the Li-extracted LiV2(PO4)3(Fig.4) which corresponds to an energy density of$500Wh/g.Our results are extremely similar to those reported recently [16,17]:three reversible voltage plateaus at3.59,3.67and 4.06V vs.Li are clearly distinguished,stressing the exis-tence of Li2.5V2(PO4)3,Li2V2(PO4)3and LiV2(PO4)3com-positions as intermediate phases.Note that even under C/5 charge and discharge rates,very small polarization of the cell was observed.The nature of the intermediate phases has been addressed elsewhere by means of ex situ neutron diffraction[17]or in situ X-ray diffraction[28].As we mentioned earlier in this paper,the greater mobility of lithium on Li(3)sites(five-fold coordination)probably favors this site to be emptiedfirst during oxidation.If so, from the examination of Li–vanadium nearest environments(d Li(1)–V(1)¼ 2.95A˚,d Li(2)–V(2)¼ 2.90A˚,d Li(3)–V(2)¼2.73A˚)this would be associated with oxidation of vanadium on the V(2)sitefirst.In the same way,the very low mobility of lithium on Li(1)sites(four-fold coordination)is a good indication that this site is probably the remaining one occupied at the intermediate composition LiV2(PO4)3. Between Li3V2(PO4)3and LiV2(PO4)3,the volume of the monoclinic unit cell was found to decrease from890to 824A˚3as a result of oxidation of V3þto V4þ.It is interesting to note then that despite this rather big unit cell contraction (D V=V¼À7:4%)the overall Li3V2(PO4)3–LiV2(PO4)3is highly reversible as only13%of the capacity was lost after 100cycles at room temperature at C/10,between3.0and4.2V vs.Li(Fig.6).Additional cycling tests within nar-rower voltage windows(3.0–3.5V;first two plateaus,1eÀexchanged and3.9–4.2V;third plateau,1eÀexchanged) lead to a similar stability.On increasing the upper cut-off voltage to4.65V vs.Li, LiV2(PO4)3may be further oxidized to$V2(PO4)3which leads to a specific capacity of197mAh/g.Fig.4shows a dissymmetry between the shapes of the charge and discharge galvanostatic curves.The fourth oxidation peak at4.35V (stronger polarization of the cell for this step)presents on discharge a large hysteresis that is hidden within thefirst broad reduction peak on discharge between4.0and3.8V. There is no structural irreversibility even on extracting lithium to V2(PO4)3as indicated by:(i)the four plateaus on charge are still observed on extensive cycling;and(ii)in situ X-ray diffraction[28]showed that the pattern of Li3V2(PO4)3after a full cycle is the same as that of the pristine compound.Fig.6shows however a more rapid decay of the capacity on cycling than when the upper voltage cut-off is limited to4.2V.As mentioned for Li1Àx VP2O7 [20],progressive dissolution of vanadium in the electrolyte and/or electrolyte decomposition at high voltage may be at the origin of this phenomenon.Note that upon oxidation from LiV2(PO4)3to V2(PO4)3,we observed a unit cell expansion from824to835A˚3.Chemical extraction of lithium(using NO2BF4in acet-onitrile for7days under stirring)out of monoclinic Li3V2(PO4)3allowed preparation of V2(PO4)3with no lithium residue(confirmed by chemical analysis).A similar experiment had already been reported by Gopalakrishnan et al.[34]to prepare the NASICON form of V2(PO4)3by Fig.6.Evolution of specific capacities under a C/10cycling regime at ‘‘high’’potential(HP)for A-Li3V2(PO4)3,using different cut-off voltages, and at low potential(LP)for both A-Li3Fe2(PO4)3and A-Li3V2(PO4)3(full symbols:on discharge;opened symbols:on charge).S.Patoux et al./Journal of Power Sources119–121(2003)278–284283sodium extraction out of Na3V2(PO4)3(in this case,Cl2in CHCl3was used).The obtained V2(PO4)3was placed in an air-free cell for X-ray diffraction and indexed to a mono-clinic unit cell in the same space group(P21/n)as that of Li3V2(PO4)3.The overall unit cell contraction found is of D V=V¼À6%,with the in situ X-ray diffraction data (À6.2%)and in good agreement with the results of Nazar et al.(À6.6%)[17].4.ConclusionA-Li3V2(PO4)3and A-Li3Fe2(PO4)3are two interesting positive electrode materials for lithium and lithium-ion batteries.In A-Li x V2(PO4)3(0x5),we highlighted the presence of eight(4þ4)two-phase domains in the 1.0–4.65V vs.Liþ/Li range.The Li3V2(PO4)3–LiV2(PO4)3 reaction,which corresponds to the exchange of one electron per V and the complete oxidation of V3þinto V4þ,is nicely reversible with a good capacity retention($130mAh/g)in cycling,at a mean potential of3.86V thus giving an energy density of$500Wh/kg.Such a material,with a cheaper transition metal element,could almost approach the perfor-mances of LiCoO2.The use of the third electron,conducting to A-V2(PO4)3,would increase these numbers,but the cycling behaviour is not optimized yet.A-Li3Fe2(PO4)3, which is only active for lithium insertion,can reversibly exchange two electrons at$2.75V vs.Liþ/Li($350Wh/ kg)onto two distinct plateaus,both corresponding to the reduction of the Fe3þions into Fe2þfor A-Li5Fe2(PO4)3. AcknowledgementsThe authors are grateful to Juan Rodriguez-Carvajal for the neutron diffraction data collecting at LLB Saclay and Erik Elkaim and uriat for the synchrotron measure-ments at Lure,Orsay.J.-M.Tarascon is gratefully acknowl-edged for his support in the project and his critical review of the manuscript.References[1]J.B.Goodenough,A.K.Padhi,K.S.Nanjundaswamy,C.Masquelier,US Patent,5,910,382(1999).[2] A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,J.Electrochem.Soc.144(4)(1997)1188–1194.[3] A.K.Padhi,K.S.Nanjundaswamy,C.Masquelier,S.Okada,J.B.Goodenough,J.Electrochem.Soc.144(5)(1997)1609–1613.[4]S.Okada,K.S.Nanjundaswamy,A.Manthiram,J.B.Goodenough,in:Proceedings of the36th Power Sources Conference,6–9June1994.[5] A.K.Padhi,K.S.Nanjundaswamy,C.Masquelier,J.B.Goodenough,J.Electrochem.Soc.144(8)(1997)2581–2586.[6] C.Masquelier,A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,J.Solid State Chem.135(1998)228–234.[7]N.Ravet,J.B.Goodenough,S.Besner,M.Simoneau,P.Hovington,M.Armand,in:Proceedings of the196th Meeting of the Electrochemical Society,Hawai,October1999(Abstract127). [8]H.Huang,S.C.Yin,L.F.Nazar,Electrochem.Solid State Lett.4(10)(2001)A170–A172.[9] A.Yamada,S.C.Chung,K.Hinokure,J.Electrochem.Soc.148(3)(2001)A224–A229.[10] C.Delmas,F.Cherkaoui,A.Nadiri,P.Hagenmuller,Mater.Res.Bull.22(1987)631–639;C.Delmas,A.Nadiri,J.L.Soubeyroux,Solid State Ionics28–30(1988)419–423.[11]K.Yoshida,K.Toda,K.Uematsu,M.Sato,Key Eng.Mater.157–158(1999)289–296.[12]J.Gaubicher,C.Wurm,G.Goward,C.Masquelier,L.Nazar,Chem.Mater.12(2000)3240–3242.[13]M.Morcrette,C.Wurm,C.Masquelier,in:Proceedings of the1stLithium Battery Discussions,Arcachon,France,27–30May2001.[14]J.Barker,M.Y.Saidi,US Patent6,203,946(2001).[15]M.Sato,H.Ohkawa,K.Yoshida,M.Saito,K.Uematsu,K.Toda,Solid State Ionics135(2000)137–142.[16]M.Y.Saı¨di,J.Barker,H.Huang,J.L.Swoyer,G.Adamson,Electrochem.Solid State Lett.7(7)(2002)A149–A151.[17]L.Nazar,H.Huang,S.-C.Yin,T.Kerr,in:Proceedings of the11thInternational Meeting on Lithium Batteries,Monterey,CA,2002.[18]S.C.Yin,H.Grondey,P.Strobel,H.Huang,L.F.Nazar,J.Am.Chem.Soc.125(2003)326–327.[19]H.Huang,S.C.Yin,T.Kerr,N.Taylor,L.F.Nazar,Adv.Mater.14(21)(2002)1525–1528.[20] C.Wurm,M.Morcrette,G.Rousse,L.Dupont,C.Masquelier,Chem.Mater.14(2002)2701–2710.[21]H.M.Rietveld,J.Appl.Crystallogr.2(1969)65.[22]J.Rodriguez-Carvajal,Phys.B192(1993)55.[23] A.B.Bykov,A.P.Chirkin,L.N.Demyanets,S.N.Doronin,E.A.Genkina,A.K.Ivanov-shits,I.P.Kondratyuf,B.A.Maksimov,O.K.Mel’nikov,L.N.Muradyan,V.I.Simonov,V.A.Timofeeva,Solid State Ionics38(1990)31–52.[24]M.Morcrette,C.Wurm,C.Masquelier,Solid State Sci.4(2002)239–246.[25]P.C.Christidis,P.J.Rentzeperis,Z.Kristallogr.141(1975)233–245.[26]W.H.Zachariasen,Acta Cryst.16(1963)385–389.[27]N.E.Brese,M.O’Keeffe,Acta Cryst.B47(1991)192–197.[28]M.Morcrette,S.Patoux,C.Wurm,C.Masquelier,ECS Lett.,inpress.[29] A.Manthiram,J.B.Goodenough,J.Power Sources26(1989)403–408.[30] C.Wurm,The`se de Doctorat,Universite´Paris-XI Orsay,12July2002.[31]M.Sato,S.Tajimi,H.Okawa,K.Uematsu,K.Toda,Solid StateIonics,in press.[32]K.S.Nanjundaswamy,A.K.Padhi,J.B.Goodenough,S.Okada,H.Ohtsuka,H.Arai,J.Yamaki,Solid State Ionics92(1996)1–10. [33]M.Sato,H.Ohkawa,K.Yoshida,M.Saito,K.Uematsu,K.Toda,Solid State Ionics135(2000)137–142.[34]J.Gopalakrishnan,K.K.Rangan,Chem.Mater.4(1992)747–749.284S.Patoux et al./Journal of Power Sources119–121(2003)278–284。