三相桥式全控整流电路毕业设计论文

合集下载

三相桥式全控整流电路分析报告

三相桥式全控整流电路分析报告

一、三相桥式全控整流电路分析三相桥式全控整流电路原理图如图所示。

三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。

其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。

宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。

接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。

所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。

这时电流由a相经VT1流向负载,再经VT6流入b相。

变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。

加在负载上的整流电压为ud=ua-ub=uab经过60°后进入第(2)段时期。

这时a相电位仍然最高,晶闸管VTl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。

这时电流由a相流出经VTl、负载、VT2流回电源c相。

变压器a、c 两相工作。

这时a相电流为正,c相电流为负。

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。

其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。

二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。

控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。

三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。

当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。

四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。

但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。

五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。

实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。

因此,在参数设计时需要重点考虑这些因素。

同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。

六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。

同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。

七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。

本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。

通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。

但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。

三相桥式全控整流电路的设计与仿真

三相桥式全控整流电路的设计与仿真

三相桥式全控整流电路的设计与仿真一•设计要求1)完成三相桥式全控整流电路的设计、仿真;2)设计要求:输入AC3*110V,50Hz,输出电流连续,阻感负载,要求输出直流电压60V~200V,计算其主开关器件所承受的最大正反向电压,器件的额定电流,并建立合适的仿真模型,对主电路进行仿真。

然后根据三相桥式整流电路的驱动控制要求,设计其控制电路,产生符合电路驱动所要求的触发波形。

二•题目分析三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。

它是由半波整流电路发展而来的。

由一组共阴极的三相半波可控整流电路(共阴极组晶闸管依次编号T1.T3.T5 )和一组共阳极接法的晶闸管(依次编号T4.T6.T2 )串联而成。

六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。

根据要求的输入电压值与输出的电压范围,计算出晶闸管承受的最大正、反向电压值。

然后根据三相桥式整流电路的驱动控制要求,设计其控制电路,产生符合电路驱动所要求的触发波形。

再用Multisim 软件进行仿真,调试,得到仿真图形。

1 .主电路图原理图t图一主电路原理图2.三相桥式全控整流电路的特点及其要求:一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。

一般1、3、5为共阴极,2、4、6为共阳极。

①两管同时导通形成供电回路,其中共阴极组和共阳极组各一个,且不能为同一相器件。

②对触发脉冲的要求:a.按VT1-VT2-VT3-VT4-VT5-VT6 的顺序,相位依次差60。

b.共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极组VT4、VT6、VT2也依次差120。

c.同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

③U d —周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

三相桥式全控整流电路设计

三相桥式全控整流电路设计

电力电子技术课程设计报告题目:三相桥式全控整流电路设计学院:专业:学号:姓名:指导教师:时间: 20三相桥式全控整流电路设计(第一组)目录一.基本原理 (2)1. 三相桥式全控整流电路特性分析 (2)2. 三相桥式全控整流电路定量分析 (6)3. 晶闸管额定电流、额定电压的选择 (6)二.仿真实验 (7)1.仿真电路中不含滤波电容和滤波电感 (7)2.仿真电路中含滤波电容和滤波电感 (8)3.仿真实验结论 (10)三. 硬件实验 (10)1.硬件电路(protel绘制) (10)(1)主电路 (10)(2)触发电路 (11)(3)保护电路 (13)(4)总硬件电路(主电路和控制电路) (14)(5)硬件电路PCB板 (15)2.元器件选型及计算 (17)四. 课程设计总结 (18)五. 元件清单报表............................... ................ (19)六.三相桥式全控整流电路装置的用途 (19)七.设计任务书 (21)八.参考文献 (22)一. 基本原理1.三相桥式全控整流电路特性分析三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1(1)三相桥式全控整流电路的特点:一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。

一般1、3、5为共阴极,2、4、6为共阳极。

①2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

②对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。

2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。

3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。

③Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

④需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)⑤晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

三相桥式全控整流电路

三相桥式全控整流电路

摘要整流电路就是把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。

整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

关键词:整流,变压,触发,过电压,保护电路目录第1章三相桥式整流原理 (3)第2章系统主电路 (4)2.1 三相全控桥的工作原理 (4)2.2阻感负载时的波形分析 (4)第3章触发电路设计 (6)3.1芯片的连接 (6)3.2 触发电路原理说明 (7)第4章保护电路的设计 (9)4.1 晶闸管的保护电路 (9)4.2 直流侧阻容保护电路 (10)第5章参数的计算 (11)5.1 整流变压器参数 (11)5.2 晶闸管参数 (12)第6章MATLAB 建模与仿真 (13)6.1 MATLAB建模 (13)6.2 MATLAB 仿真 (15)6.3 仿真结构分析 (17)心得体会 (18)第1章三相桥式整流原理目前,在各种整流电路中,应用最为广泛的是三相桥式全控整流电路。

习惯将电路中阴极连在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。

三相桥式全控整流电路通过变压器与电网连接,经过变压器的耦合,晶闸管电路得到一个合适的输入电压,是晶闸管在较大的功率因素下运行。

本设计中,主电路由三大部分构成,分别为主电路、触发电路、保护电路。

三相桥式全控整流电路

三相桥式全控整流电路

三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。

其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。

三相桥式全控整流电路可以满足多种多种
应用场合的需求。

三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。

结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。

控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。

电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。

三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。

但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。

三相桥式全控整流电路是一种常用的多相变流器。

它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。

三相桥式全控整流电路的设计与仿真

三相桥式全控整流电路的设计与仿真

三相桥式全控整流电路的设计与仿真目录第一章绪论 (2)1.1 设计目的 (2)1.2 设计意义 (2)第二章设计总体思路 (3)2.1设计要求 (3)(1)设计指标 (3)2.2设计思路 (3)2.3基本原理 (4)2.4基本框图 (5)第三章单元电路设计 (5)3.1 主电路 (5)3.2 触发电路 (7)3.3 保护电路 (11)第四章电路分析与仿真 (14)4.1三相桥式全控整流电路 Matlab仿真电路图(阻感负载) (14)仿真电路图 (14)阻感负载仿真图 (15)总结 (19)附录 (20)1、主电路图 (20)2、触发电路图 (21)3、总电路图 (22)参考文献 (24)1第一章绪论1.1设计目的1、通过对三相桥式电路的设计,掌握整流电路的工作原理,提高我们的运用科学理论知识能力、工程实践能力2、通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。

1.2设计意义电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)和高效利用能源均至关重要。

我国目前仍旧是一个发展中的国家,尚处于前工业化阶段,传统产业仍然是我国国民经济的主力军,因此在近期或在较长一段时期内,传统产业的改造和发展将在很大程度上决定着我国经济的发展。

而电力、机械、冶金、石油、化工、交通运输是传统产业的重要支柱,这些产业技术水平的高低直接关系到我国工业基础的强弱。

毫无疑问,电力电子技术是提高这些产业技术水平的重要手段,它是对我国传统产业实现技术改造、建立自动化工业体系的关键应用技术。

下面就电力电子技术在国民经济各部门的应用进行简要讨论。

概括起来说,电力电子技术主要应用于电机调速传动、工业供电电源、电力输配电和照明四大方面。

自20世纪50年代末开始,电力电子技术在应用需求的推动下迅速发展成一门崭新的技术。

可以预见,在21世纪,电力电子技术2在现代化社会的建设中的应用将起着重要作用并得到飞跃性的发展。

三相桥式整流电路设计

三相桥式整流电路设计

一、设计的基本要求1.1、主要技术数据1)电源电压:交流220V/50Hz2)输出电压范围50V~100V3)最大输出电流:10A4)具有过流保护功能,动作电流:12A5)具有稳压功能6)效率不低于70%1.2、主要用途三相桥式整流电路在电力电子领域中的应用及其重要,也是应用最为广泛的电路。

不仅在一般的工业领域的应用非常广泛,如中频炉、发电机励磁、自动控制等,也广泛应用于交通运输、电力系统、通信系统、能源系统、以及其他领域。

二、总体方案三、电路原理说明3.1、主电路原理说明3.1.1、工作原理三相全控桥式整流电路是由一组共阴极接法的三相半波可控整流电路和一组共阳极接法的三相半波可控整流电路串起来组成的,如上图所示。

为了便于表达晶闸管的导通顺序,把共阴极组的晶闸管依次编号为VT1、VT3、VT5,而把共阳极组的晶闸管依次编号为VT4、VT6、VT2。

假设六个晶闸管换成六个整流二极管,则电路为不可控电路。

相当于晶闸管触发角α=0°时的情况。

三相电压正、负半周各有三个自然换相点,六个自然换相点依次相差60°。

对于共阴极组,阳极电位最高的器件导通;对于共阳极组,阴极电位最低的器件导通。

六个自然换相点把一个周期分成以下六段:1)ωt1<ωt≤ωt2时,共阴极组VT1导通,共阳极组VT6导通,ud=uab。

2)ωt2<ωt≤ωt3时,共阴极组VT1导通,共阳极组VT2导通,ud=uac。

3)ωt3<ωt≤ωt4时,共阴极组VT3导通,共阳极组VT2导通,ud=ubc。

4)ωt4<ωt≤ωt5时,共阴极组VT3导通,共阳极组VT4导通,ud=uba。

5)ωt5<ωt≤ωt6时,共阴极组VT5导通,共阳极组VT4导通,ud=uca。

6)ωt6<ωt≤ωt1时,共阴极组VT5导通,共阳极组VT6导通,ud=ucb。

通过以上分析,可知三相全控桥式整流电路有以下几个基本特点:1)任何时刻必须有两个晶闸管同时导通,一个为共阴极组,一个为共阳极组,以便形成通路2)晶闸管在组内换相,同组内晶闸管的触发脉冲互差120°,由于共阴极组与共阳极组的自然换相点互差60°,所以每隔60°有一个元件换相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相桥式全控整流电路毕业设计论文1系统概述1.1总体方案设计1.2系统工作原理2系统电路设计2.1三相桥式全控整流电路2.2系统触发电路2.3控制及偏移电源2.4给定电源3主电路器件参数计算3.1整流变压器参数计算3.2晶闸管的额定电压及额定电流3.3平波电抗器的电感计算21系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(PowerMOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

31.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。

整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:电网主变压器可控整流电路直流电动机给定电压同步变压器集成触发器脉冲变压器负偏移电压图1系统总框图1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。

故主电路是典型的三相桥式整流电路带阻感负载。

而除了主电路以外,系统还有控制电源电路和触发电路。

控制电源电路通过7815芯片将电网交流电整理输出为+15V,提供触发电路的+Uco;通过7915芯片将电网交流电整理输出为-15V,提供触发电路的-Up.触发电路结构机构相对比较复杂,由同步变压器,脉冲变压器,3个KJ004集成块和1个KJ041集成块组成。

可以形成6路双脉冲,分别去控制主电路的6个晶闸管。

触发器按一定的顺序输出脉冲,这样可以使主电路3组晶闸管依次打开。

42系统电路设计2.1三相桥式全控整流电路该模块主电路图可表示为如下:图2三相桥式全控整流主电路图该电路中,在每个晶闸管都并联了保护电路,由一个电容和电阻做成。

同时又在变压器二次侧上串联了一个快速熔断器,起过电流保护作用。

由于我们的电路可以应用于生产实践中,而实际中,电网电压是有波动的,所以一定要加上保护电路。

在电路中变压器二次侧接成星形是为了得到零线,而一次侧接成三角形是为了避免3次谐波流入电网。

阴极连接在一起的3个晶闸管(VT1,VT3,VT5),称为共阴极组,这种接法为共阴极接法。

阳极连接在一起的3个晶闸管(VT4,VT6,VT2),称为共阳极组,这种接法为共阳极接法。

而我们习惯上也希望是晶闸管是按顺序导通,即导通顺序为VT1-〉VT2-〉VT3-〉VT4-〉VT5-〉VT6。

5表1三相桥式全控整流电路晶闸管工作情况时段共阴极组中导通的晶闸管共阳极组中导通的晶闸管整流输出电压udIVT1IIVT1IIIVT3VT6VT2VT2ua-ub=uabIVVT3ua-uc=uacVVT5ub-uc=ubcVIVT5时段共阴极组中导通的晶闸管共阳极组中导通的晶闸管整流输出电压udVT4VT4VT6ub-ua=ubauc-ua=ucauc-ub=ucb从表中,我们可以总结出三相桥式全控整流电路的一些特点:(1)每个时刻均需2个晶闸管同时导通,形成想负载供电的回路,其中一个是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。

(2)对触发脉冲的要求:6个晶闸管的脉冲按VT1-〉VT2-〉VT3-〉VT4-〉VT5-〉VT6的相序,相位依次相差60度;VT1,VT3,VT5的脉冲依次相差120度,共阳极组VT4,VT6,VT2也依次相差120度;同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2脉冲相差180度。

(3)整流输出电压Ud一周期脉动6次,每次脉动的波形一样,故该电路为6脉波整流电路(4)在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。

为此,可用两种方法:一种是使脉冲宽度大于60度(一般去80°-100°),成为宽脉冲触发。

另一种方法是:在出发某个晶闸管时,给序号紧前的一个晶闸管补发脉冲。

即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差60°,脉宽一般为20°-30°,即为双脉冲触发。

6一般三相桥式全控整流电路都是给阻感负载和反电动势阻感负载比如直流电动机供电。

直流电动机可以看做是阻感负载的一种,它的波形图和三相桥式全控整流电路带阻感负载的波形图基本上是一致的,以下就为三相桥式全控整流电路带阻感负载a=0的波形图。

图3三相桥式全控整流电路带阻感负载a=0的波形图当a≤60时,Ud波形连续,电路的工作情况十分相似,各个晶闸管的通断情况,输出整流电压Ud波形,晶闸管承受的电压波形等都是一样的。

而当a>60时,带阻感负载时的工作情况就和带电阻负载时有不同之处了。

带阻感负载时,由于有电感L的作用,Ud波形会出现负的部分。

若电感L的值足够大的话,Ud中正负面积可以认为基本相等,这样的话平均值就近似为零了。

而电阻负载时,ud波形不会出现负的部分。

所以我们可知带阻感负载时,三相桥式全控整流电路的a角移相范围为0°~907图4三相桥式全控整流电路带阻感负载a=90的波形图从上图我们可以看到,如果电感值等于90°时,Ud中正负面积可以认为基本相等,这样的话平均值就近似为零了。

而整流输出电压是不能为负的,所以带阻感负载时,三相桥式全控整流电路的a角最大值为90°。

其实三相桥式全控整流电路带负载不同,波形的区别不是很大,主要的区别在负载的电流波形上,因为如果是阻感负载的话,电感有平波的作用,在电感为无限大时,我们可以看做输出电流波形为一条直线。

但是电感不可能无限大,而且直流电动机的电感也不是很大,所以还是会有纹波,而且如果出现电流断续的情况的话,那么电动机的机械特性将会很软,所以为了克服这个缺点,我们一般会给主电路中直流输出侧,直流电动机串联了一个平波电抗器。

平波电抗器的作用是用来减少电流的脉动和延长晶闸管的导通时间。

只要电感为足够大时就能使电流连续了,就不会出现时电动机机械特性很软的情况了。

这样也可以近似的将负载电流特性看为一条水平的直线。

82.2系统触发电路2.2.1KJ004芯片KJ004芯片,又叫做晶闸管移相触发集成电路。

它是双列式直插式集成电路,由于它可以输出两路相位互差180°的移相脉冲,正负半周脉冲相位比较均衡,并且输出负载能力大,移相性能好,,而且它对同步电压要求低,目前广泛应用于单相、三相全控桥式晶闸管的双脉冲触发。

它的管脚图如下,为16脚芯片。

图5KJ004的管脚排列表2KJ004的引脚说明引脚号1符号V1功能同相脉冲输出端用法接正半周导通晶闸管的脉冲功率放大器及脉冲变压器234NCCtV+空脚锯齿波电容连接端通过电容接4脚同步锯齿波输出端通过电阻移相综合端5V_工作负电源输入端接用户系统负电源9678NCGNDVt空脚地端控制电源地端同步电源信号输入接同步变压器端9V移相、偏置及同步使用时分别通过三信号综合端个等值电阻接锯齿波、偏置电压及移相电压101112NCVpVw空脚方波脉冲输出端脉冲信号输入端通过电容接12脚分别通过一个电阻与电容接电源及11脚13Vc负脉冲调制及封锁接调制脉冲源输出控制端或保护电路输出14Vc+正脉冲调制及封锁接调制脉冲源输出控制端或保护电路输出接负半周应导通晶闸管的脉冲功率放大器及脉冲变压器15OUT反相脉冲输出端16Vcc系统工作正电压输接控制电路电源入端我们按照以上的管脚说明来接外部电路图,其中每个管脚都要按照说明来接,较为复杂,在集成触发电路中我列出了电路图。

2.2.2KJ041芯片KJ041芯片,又称为六路双脉冲形成器。

将它和三个KJ004连接到一起就可以达到六路双脉冲触发电路,这样三相桥式全控整流电路的各个晶闸管就可以按10条件稳定的进行触发,使电路可以正常的运行。

KJ041芯片是三相全控桥式触发线路中经常使用的芯片,具有取脉冲形成和电子开关控制封锁双脉冲形成功能它可以同时发出六路脉冲触发。

其管脚图如下:图6KJ041的管脚排列表3KJ041管脚说明引脚号1符号A功能电网A相正半周的触发脉冲输入端:2C-电网C相负半周的触发脉冲输入端:3B电网B相正半周的触发脉冲输入端:4A-电网A相负半周的触发脉冲输入端:5C电网C相正半周的触发脉冲输入端:6B-电网B相负半周的触发脉冲输入端:输出脉冲封锁端,用法7L该端高电平封锁输出8GND工作参考地端。

接供电电源的地11端;910NCB-空脚对应B-与A的“或”输出端11C对应C与B-的“或”输出端12A-对应A-与C的“或”输出端13B对应B与A-的“或”输出端对应B与C-的“或”输出端对应A与C-的“或”输出端系统工作正电压输入端我们按照以上的管脚说明来接外部电路图,其中每个管脚按照说明来接,完成它们各自的功能,它较KJ004芯片接法相对简单一些,同样在集成触发电路中列出了电路图。

2.2.3同步变压器同步变压器,为触发脉冲信号提供电压幅值U。

在KJ004芯片中,表中列出引脚8的作用为同步电源信号输入端,使用时要接同步变压器的二次侧,KJ004芯片所接的电压要求为30V,所以我们可求得同步变压器匝数比K的计算公式如下:K=U1/U2=7.33同步变压器的电路图如下所示:悬空使用中接触发B相负半周晶闸管的功放单元输入端;使用中接触发C 相正半周晶闸管的功放单元输入端:使用中接触发A相负半周晶闸管的功放单元输入端;使用中接触发B相正半周晶闸管的功放单元输入端;使用中接触发c相负半周晶闸管的功放单元输入端;使用中接触发A相正半周晶闸管的功放单元输入端;接控制电路电源14C-AVcc151612图7同步变压器电路图同步变压器和整流变压器接在同一电源上,这就保证了触发脉冲与主电路电源的同步。

相关文档
最新文档