Heterogeneous Responses of Chinese Cities' Housing Prices to Monetary Policies
中国东中西部城市房价波动的涟漪效应——以中国东中西部代表的九城市为例

HUANG ix e Fe 。 u
பைடு நூலகம்
( aut o n gm n n cnmi , ainU i rt o eh o g , ain1 2 ,C i ) F cl Ma a e e t dE o o c D l nv syf Tcnl y D l 1 0 4 hn yf a s a e i o a 6 a
中 图分 类 号 :9 5 1 N4. 文 章 标 识码 : A 文章 编号 :0 73 2 (0 1 0 . 261 10 ・2 1 2 1 50 0 —0 l
●
Ripe E e to a sa e S ls P i s Voa i y a n ie e E se n, p l f c fRe l t t ae r e lti mo g Chn s a t r E c l t Ce t I n e t r t s nr d W se n Cie a a i
以 中国 东 中西部代 表 的 九城 市为例
黄飞雪
( 连 理 工 大 学 管 理 与 经 济 学部 , 宁 大 连 162 ) 大 辽 0 4 1
摘
要 : 对 中 国 东 中 西 部城 市房 价 波 动 的是 否 存 在 涟 漪效 应 的 问题 , 出综 合 运 用 格 兰 杰 因 果 检 验 、 整 一 体 针 提 协
Ab ta t T i su y So jciei t ov h rbe f ipeefcso a s t s lsp ie oait mo g sr c : hs td ’ be t s osletep o lm o p l f t fr l t e ae r sv lti a n v r e e ea c ly
中国住房价格长期和短期波动的区域差异:原因与政策含义

The Regional Differences of Long and Short Term Fluctuation of China's Housing Prices 作者: 黄志虎[1];陈立中[1]
作者机构: [1]暨南大学经济学院,广东广州510632
出版物刊名: 兰州商学院学报
页码: 111-117页
年卷期: 2011年 第5期
主题词: 面板数据;住房价格波动;区域差异;面板数据模型;误差修正模型
摘要:本文利用1999—2008年全国35个大中城市面板数据,通过面板数据模型和误差修正模型,讨论了区域住房价格长期及短期波动差异,并分析了区域住房价格波动差异的成因。
实证结果发现,从长期趋势看,人口规模对东、西部地区影响较大,对中部地区影响不显著;人均可支配收入对中部地区住房价格影响最大;心理预期仅对东部住房价格波动有较大影响。
从短期趋势看,购房者对各地区住房价格的预期不尽相同,东部为理性预期,而中西部表现为适应性预期;收入对东部住房价格短期波动影响不显著,对中部影响最显著。
无论是住房价格的长期或短期波动,利率对各地区的影响均不大。
从政策含义角度看,完善房地产市场结构有利于抑制住房价格,利率政策则不太有效。
房价溢出效应与货币政策异质效果:综述与展望

房价溢出效应与货币政策异质效果:综述与展望纪晗【摘要】本文从表现、成因以及影响三个方面对房价溢出效应的国内外相关研究做了全面的梳理与分析,总结了房价溢出效应在国家、区域、省份(州)以及城市间的广泛存在性和具体表现程度;构建出以社会交互和预期传染为内在机理,以人口、资金和信息流动为具体渠道,以区域间房地产市场的异质性、联动性和经济关联性为条件的完整形成机制理论框架;验证了货币政策在区域房地产市场间的异质性效果。
最后,参照世界各国经验以及我国区域房地产市场的具体表现,本文提出了重点观测东部地区楼市表现以及根据各地区政策敏感程度实行差异化房地产管理的政策建议。
%A comprehensive exploration for spillover effects in housing price has been made on domestic and for-eign related research from the aspects its performance in empirical evidence,causes and influence in this paper. Its exis-tence across nations, regions, provinces (states) and cities has been approved, meanwhile the degree of spillover has been summarized. A complete theoretical framework of housing price spillover’s formation mechanism has been built with social interaction and expectation transmission as internal mechanism,with population flows,capital flows and information flows as spread channels, with the heterogeneity, comovement and economic relevance between re-gional real estate markets as conditions. Moreover,the heterogeneity of monetary policy effect across regions has been confirmed. Finally,with reference to the experience of advanced countries in the world as well as the manifestation of regional real estate market in China,I propose a keyobservation on the performance of eastern housing market and dif-ferential property management policy according to each region’s policy sensitivity.【期刊名称】《金融发展研究》【年(卷),期】2015(000)007【总页数】7页(P35-41)【关键词】房价波动;溢出效应;区域经济;货币政策【作者】纪晗【作者单位】东北财经大学社会与行为跨学科研究中心,辽宁大连 116025【正文语种】中文【中图分类】F820随着经济的发展,不同地区间的经济联系日趋增强,区域间经济变量的交互关系越来越受到学术界的关注。
中国房价与家庭消费关系的主导机制识别——基于生命周期模式的证据

2021年第3期第61卷(总291期)No.32021Vol.61General No.291中国房价与家庭消费关系的主导机制识别*——基于生命周期模式的证据杨锐锋,何兴强摘要:运用中国家庭追踪调查数据(CFPS ),通过综合考察房产财富、房价、预期和未预期房价对不同年龄段有房和无房家庭消费的影响差异,对我国房价与家庭消费关系的主导机制进行系统的实证识别。
研究发现:房价或房产财富与年轻家庭消费的正相关性,均显著大于中年和老年家庭;房价对有房和无房家庭消费的影响几乎无差异,与三个年龄段有房和无房家庭消费的影响也均无显著差异;未预期房价仅与年轻家庭消费显著正相关、且大于中年和老年家庭。
上述发现拒绝财富效应和信贷约束效应的理论预测,支持共同因素效应的预期收入机制。
研究结果表明,仅房价上涨对我国居民家庭消费的促进效应是有限的,未来预期收入增长才是房价和家庭消费关系的主导机制,是促进我国经济良性内循环的重要动力。
关键词:家庭消费;房价;财富效应;信贷约束效应;共同因素DOI :10.13471/ki.jsysusse.2021.03.017一、引言房价上涨是否促进了居民消费?该问题一直倍受学界和政策制定者的关注,也是当前我国促进消费、扩大内需,畅通国内经济大循环要直面的重要问题。
英美等国普遍表现为高房价与高消费率并存(Attanasio et al.,2009)。
有研究发现我国的高房价却并没有带来高消费率①(张浩等2017;何兴强和杨锐锋,2019),甚至有发现房价上涨挤出了家庭消费(胡颖之和袁宇菲,2017),颜色和朱国钟(2013)还认为我国存在“房奴效应”。
关于房价或房产财富与家庭消费的关系,在理论诠释上主要可归结为财富效应、信贷约束效应和共同因素效应三种机制(Khorunzhina ,2021),不同机制下两者之间的关系将呈现出不同的生命周期模式。
根据财富效应机制,房价上涨房产财富增加,老年家庭倾向于增加更多的消费。
楼市调控新政词汇(中英对照)

楼市调控新政词汇(中英对照)建制镇designated town贷款利率mortgage interest rate基准利率benchmark interest rate住房转让property transaction理性消费rational consumption舆论引导to guide the public with correct opinions计划单列市separately listed city土地增值税land value-added tax新增建设用地newly-added construction land住房用地供应residential land supply住房支付能力housing payment capacity住房保障制度housing security system最低首付款the minimum down payment保障性安居工程affordable housing project人均可支配收入per capita disposable income确定价格控制目标to set price control targets住房价格控制目标property price control targets准入退出机制the access and exit mechanisms棚户区改造the renovation of shanty houses住房限购措施measures for home purchase restrictions 约谈问责机制response-on-demand accountability新一轮楼市调控措施a new round of measures to rein in property prices差别化住房信贷政策diversified housing credit policies增加公共租赁住房供应to increase the supply of public rental housing中小套型普通商品住房small and medium-sized commodity housing公开、公平、公正原则the principles of openness, impartiality and fairness。
Inflation Hedging Characteristics of Chinese Real Estate Market1

CCER学刊(季刊) 2003年6月 第2期 总第16期 Journal of Economic StudiesInflation Hedging Characteristics of Chinese Real Estate Market1Chu Yongqiang∗(National University of Singapore 117566)Abstract: Nowadays Chinese real estate market is developing very fast, more andmore individuals, as well as institutional investor are considering investing in realestate. For this purpose, we must know the return characteristics of real estate, ascompared with the inflation rate. In this article, we study the inflation hedgingcharacteristics of Chinese real estate market following the OLS methodologydeveloped by Fama and Schwert(1977). And we use ARIMA model to firstdecompose the inflation rate to expected and unexpected inflation rate. The resultsof OLS do not provide evidence to support the hypothesis that real estate acts aseffective inflation hedge. And we also use cointegration test to study the long termrelationship of real estate market and inflation, then the Granger causality test iscarried out to see the causality relationship. Again we find no evidence of long termhedge ability of Chinese real estate. However the causality test do show that theinflation leads real estate return.Key Words: Chinese Real Estate Market, Inflation Hedging, Expected InflationRateSection I: IntroductionThe relationship between real estate return and inflation has been subjected to extensive empirical research since the seminal paper by Fama and Schwert (1977). The Chinese Market is of interest because of the following reasons,. First Chinese real estate market is an emerging, highly speculative market, which is expected to show much different characteristics compared with the mature market. Second, the inflation hedging characteristics in China has not been studied. Third, more and more attention has been made about the direct investment on real estate, so it is important to study the investment return with respect to the corresponding inflation rate.In this article, we will firstly use the conventional OLS methodology to test the inflation hedging ability of real estate return based on the quarterly data from 1996-2002. And then a cointegration test based on the extended yearly data will be done to study the long term relationship and Granger Causality test will also be employed to study the causality relationship between real estate return and inflation rate.The rest of this article will be organized as follows: Section II will provide a brief literature view of inflation hedging characteristics of various assets, especially those of real estate; the theoretical framework will be given in Section III; The methodology of various 1本文为本刊合作网站CENET推荐文章。
异质信念对中国房价波动的影响效应研究
异质信念对中国房价波动的影响效应研究郑世刚【期刊名称】《《工程管理学报》》【年(卷),期】2019(033)005【总页数】6页(P141-146)【关键词】异质信念; 房价波动; 影响效应【作者】郑世刚【作者单位】湖北经济学院经济与贸易学院湖北武汉 430205【正文语种】中文【中图分类】F293.3中国房价持续上涨,但经济基本面对房价波动的解释能力却不断削弱 [1,2],房价持续偏离基础价值,引发了社会各界对房价泡沫的担忧。
大量研究从宏观层面找寻房价持续上涨的原因所在,其中经济增长、居民收入、人口结构、通货膨胀、土地供给、货币政策以及限购政策等方面的因素被广泛讨论,但并未得到统一、满意的解释。
20世纪70年代以来,大量研究证实异质信念对资产价格具有一定的解释能力。
Miller [3]通过静态均衡分析发现,由于卖空限制,悲观投资者的意见无法通过交易自由表达,因此股价主要反映了乐观投资者的观点,从而股价被高估。
Harrison等[4]、Hong等[5]考虑了异质信念的动态情形,提出投资者除了考虑资产的基础价值外,还会考虑在售期权,从而资产价格可能超过最乐观投资者的预期。
与其他资产市场相比,异质信念能更好地刻画房地产市场的基本特征[6],但许多房地产市场模型并未考虑投资者的异质信念,如Iacoviello[7]。
2008年以来,部分学者开始将异质信念引入到房价波动的研究中,Piazzesi等[8]描述了不同年龄组家庭的异质预期,并将其作为代际交叠模型(OLG模型)的外生变量,Tomura [9]采用了同样的做法,但不同的是,他将家庭预期处理为内生变量。
中国基于异质信念对房价波动的研究并不多,张涛等[10]提出当居民存在对于公共设施支出的异质信念时,政府可能会有额外的动机增加支出以加剧居民的异质信念,从而形成更高的房价以获取更多的土地收入,并造成房价超过基础价值。
陈国进等[11]利用全国数据和时变现值模型分析了异质信念和通货幻觉对中国房价泡沫的影响,在此基础上,刘金娥等[6]发现异质信念对房地产市场具有一定的解释能力,并且相对于通货幻觉,异质信念的影响更为显著。
基于特征价格模型的住宅需求价格弹性分析_深圳住宅市场实证研究.
Heckman和Nesheim(2004)强调供需配对均衡至关重要,因为在均衡状态下市场上出售的每一个特征都应与需求匹配。但是,如果均衡状态下供需匹配,为什么还会出现如图1所示的购买者为较大的住宅支付更高边际价格的情形呢?出现这种情形可能与对较大住宅的偏好有关。对较大住宅的偏好可能来自投资动机:同样的交易和管理成本分摊在较大住宅上单位成本相对较低,从而降低了投资的机会成本。这种投资动机只是一个近似的假定,并不一定适用于每个交易。因此,这里的“投资”组成部分是指hedonic模型中对应于单位面积边际价格上升的部分。在购买动机是满足基本居住需求时,对住宅的需求有可能转向较小户型。也就是说,如果hedonic定价函数形状如图1所示,这些购买者可以较低的边际价格来获得基本
Leong和Wong(2006)尝试采用香港高层住宅交易样本进行了实证研究。
本文采用深圳福田和龙岗两区的住宅交易样本来估计住宅购买者效用函数中的各重要特征度量。该样本数据时间跨度为2004年8月至2006年1月。每条交易记录均包含交易时间,可以通过实证分析来跟踪和比较样本期间深圳经济特区内外房价的逐月变动情况。
即由凹到凸(相对特征值而言)的拐点上,如此将不会增加基本居住需求的“住所”组成部分的税负。图2表示在规定的最小面积Q 1之上征收累进从价税可能产生的影响。累进税率在Q 1正上方即起征点接近于零,然后向右逐渐提高。由于只对在均衡价格曲线中凸向X轴区间的住宅征收,将不会打击作为必需品的“住所”建
设和购买的积极性。
(1)
式中,
e D(size)是住宅面积需求弹性的绝对值,mc(size)是住宅供应边际成本,P(size)是图1和图2所示的hedonic包络函数。这一方程表明需求弹性是一个关键参数。
文化多样性对中国城市住房价格的影响
物资产 (包括房地产市场) 的投资欲望就越低。 Guiso 等[9] 发现, 信任程度与投资行为占比之间存在正
相关关系。 信任水平越低, 居民的城市归属感越弱, 投资参与率越低。 这表明文化异质性造成的不信任
庄 赟, 汪雯雯
( 集美大学财经学院, 福建 厦门 361021)
[ 摘 要] 利用中国 254 个地级及以上城市的商品房价格数据, 以汉语方言多样性衡量文化多样性,
研究以方言为代表的地域文化对城市住房价格的影响。 研究表明, 在控制了城市的经济发展水平、 城市生
态环境状况等因素后, 以方言种类衡量的文化多样性对城市商品房价格具有显著的负影响, 即文化越多样
房的购买能力及消费投资意愿越弱, 最终影响到城市住房价格, 从而降低住房价格水平。
( 二) 研究假设
文化和语言是长期并存的, 语言促使文化的产生和高速发展, 文化的发展反过来又会使得语言形
态更加丰富。 方言是地方文化最明显的特征 [12] 。 高翔等 [13] 在研究文化对区域经济的影响时, 就是用
方言总数, 以此作为该地区的方言多样性指数。 比如天津市, 其辖区和辖县使用保唐片和承怀片两个
方言片, 因此天津市的方言多样性指数为 2。
3 控制变量
解决变量遗漏可能造成的偏误问题, 在模型中加入影响城市房价的控制变量 ( 所有控制变量都采
用市辖区数据) 。 参考前人研究成果, 并考虑数据的可获得性, 选取建成区绿化覆盖率、 财政支出收
化多样性是否会抑制住房价格, 为中小城市房地产的健康发展提供新思路和实证依据。
一、 理论机制与研究假设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Commun.Theor.Phys.56(2011)791—796 Vo1.56,No.4,October 15,2011 Heter0gene0us Responses of Chinese Cities’Housing Prices to Monetary Policies YAN Yan(闫妍), WANG Yan—Ting(T延颞), and ZHU Xiao—Wu(朱晓武)。, 1School of Management,Graduate University,Chinese
2Key Laboratory of Frontiers in Theoretical Physics,
Beijing 100190,China
Academy of Sciences,Beijing 100080,China Institute of Theoretical Physics,Chinese Academy of Sciences,
0School of Business,China University of Political Science and Law,Beijing 100088,China
(Received May 4,2011;revised manuscript received June 2,2011) A bstract js works examine the responses of housing prices to the monetary policies in various Chinese cities. Thjrtv-five large and medium sized Chinese cities are classified into six clusters applying the minimum variance clustering method according t0 the calculated correlation coe圩icients between the housing price indices of every two cities.Time diference correlation analysjs is then employed to quantify the relations between the housing price indices of the six ciusters and the monetary policies.It招suggested that the housing prices of various cities evolved at diferent paces and their responses to the monetary policies are heterogeneous,and local economic features are more important than geographic distances in determining the housing price trends.
PACS numbers:89.65.Gh Key words:monetary policy,housing price,heterogeneous responses,cluster
1 Introduction Influenced by difierent economic forces,the housing values vary greatly among regions.In China,the aver— age housing sales price of the whole country increased 5.7 percent in 2009,but great imbalance existed among 70 large and medium sized cities,with the highest housing sales price growth rate of 16.6 percent in Shenzhen,and the lowest of-2 percent in Tangshan fsource:the State Information Center1.However,all the cities were required to implement the same macroeconomic policies despite of the differences among regions,usually too late for some relatively developed cities and too early for underdevel- oped cities. In recent ten years,the housing market imbalance among difierent regions within one country has become common phenomena all over the world.Smith,Hess,and Liang f2oo5)t J classified us metros into eight clusters ac- cording to the synthetic socio—economic indices using prin— cipal component analysis.Miller and Peng(2006)t ex- amined the home price indices of 277 metropolitan areas with ARIMA models.and analyzed the relations between volatility and other variables,such as GDP.Miles(2008)t3] developed individual GARCH models for the housing mar— kets of fifty states.and indicated that there were GARCH effects in over half of the states,whose signs and mag- nitudes varied widely. Since 2006,some scholars have proposed that Chinese real estate market should also be
classified into different categories.Xiong,Deng,and Ma f200711 j divided Chinese provinces into six clusters ac— cording to supply-demand equilibrium and configuration equilibrium of real estate market.Liang and Gao(2007)t5j classified 28 provinces into three regions(eastern,middle, and western),and analyzed the factors determining hous— ing price fluctuations based on error correction model and panel data mode1.Both studies classified mainly by the geographic locations with the province data.In this paper, the cities are categorized by the similarity of the housing price trends rather than geographic distances. Real estate is a capital intensive industry,and the housing price fluctuations are very sensitive to monetary policies.An expansionary monetary policy is expected to raise the housing investment and housing price via the interest rate effect.the wealth effect.the credit channe1 in— cluding the bank lending channe1.and the balance—sheet channe1.[6-7]Lastrapes f20021【8】analyzed monthly data and found that both housing prices and housing sales(new starts and existing homes)rise in a short—run in response to the positive shocks of money supply.Zhang,Gong, and Bu f20061【9】indicated that the correlation coefficient between Chinese property price and mortgage lending is positive,while an increase in mortgage interest rate can effectively suppress the rise of property price.Ding and Tu(2007)[10J indicated that the efficiency of monetary pol—
icy transmission through the channel of housing price is
Supported by the Hundred Talent Program of the Chinese Academy of Sciences.the National Natural Science Foundation of C!hina under Grant Nos.71103179 and 71102129,Program for Young Innovative Research Team in China University of Political Science and Law, 2010 Fund Project under the Ministry of Education of China for Youth Who are Devoted to Humanities and Social Sciences Research 10YJC630425 T Corresponding author.E—mail:zhuxiaowu@cup1.edu.ca @201 1 Chinese Physical Society and IOP Publishing Ltd http: Www.iop.org/E3以ournal/ctp http://ctp. tp.ac.cn