初二动点问题(含答案)
(完整)初二数学动点问题归类复习(含例题、练习及答案)(2)

初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC =8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC 上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM ==.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ =,可得5425258CQ =÷=. 所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展:如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =. 二、直角三角形:因动点产生的直角三角形问题 例2:(2008年河南省中考第23题)如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S . ① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1思路点拨:1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点. 2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4). Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5. 因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=. 解得1211t =,2211t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时211t = ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535tt-=.解得258t=.如图5,当∠OMN=90°时,N与C重合,5t=.不存在∠ONM=90°的可能.所以,当258t=或者5t=时,△MON为直角三角形.图4 图5考点伸展:在本题情景下,如果△MON的边与AC平行,求t的值.如图6,当ON//AC时,t=3;如图7,当MN//AC时,t=2.5.图6 图7三、平行四边形问题:因动点产生的平行四边形问题例3:(2010年山西省中考第26题)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2思路点拨:1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边.解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=35,所以BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=55.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得NP PO NODO OF DF==,即51055NP PO==.解得5NP=,25PO=.此时点N的坐标为(25,5)-.图3 图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG 相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=2.8;②若△EBF∽△GCF,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t=;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON 2+EN 2=OE 2,即:62+(5﹣t )2=(10﹣t )2解得:t =3.9.∵≠3.9,∴不存在实数t ,使得点B ′与点O 重合.考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在. 拓展练习:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
初中八年级下册数学动点问题试题附答案

初中八年级下册数学动点问题试题附答案问题一已知点A(-2, 5)和点B(4, -1),求线段AB的中点的坐标。
解答一根据坐标的定义,线段的中点坐标可以通过求两个端点的坐标的平均值得到。
因此,我们可以计算出线段AB的中点的坐标如下:中点坐标x = (x<sub>A</sub> + x<sub>B</sub>)/2 = (-2 + 4)/2 = 1中点坐标y = (y<sub>A</sub> + y<sub>B</sub>)/2 = (5 - 1)/2 = 2 所以线段AB的中点的坐标是(1, 2)。
问题二已知点C(3, -2)和点D(-5, 6),求线段CD的长度。
解答二根据坐标的定义,计算线段的长度可以使用两点之间的距离公式。
对于两点(x<sub>1</sub>, y<sub>1</sub>)和(x<sub>2</sub>,y<sub>2</sub>),它们之间的距离可以通过以下公式进行计算:距离= √((x<sub>2</sub> - x<sub>1</sub>)^2 + (y<sub>2</sub> - y<sub>1</sub>)^2)因此,我们可以计算出线段CD的长度如下:距离= √((-5 - 3)^2 + (6 - (-2))^2) = √(64 + 64) = √128 = 8√2所以线段CD的长度为8√2。
问题三已知点E(2, -3)和线段DE的长度为10,求点D的坐标。
解答三根据坐标的定义,求点D的坐标可以通过已知点E的坐标和线段DE的长度进行计算。
首先,我们将点D的坐标记为(x, y)。
然后,根据两点之间的距离公式,我们可以得到以下方程:10 = √((x - 2)^2 + (y - (-3))^2)对上述方程进行化简,我们可以得到以下方程:100 = (x - 2)^2 + (y + 3)^2这是一个关于x和y的二次方程。
初二数学动点问题练习(答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴22112132BG BE EG===-=,.A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNMG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
八年级数学综合复习(动点问题)(北师版)(含答案)

学生做题前请先回答以下问题问题1:一次函数背景下研究动点问题的思考方向是什么?问题2:分析运动过程时,需要注意哪几个要素?问题3:存在性问题和动点问题的区别与联系是什么?问题4:等腰三角形存在性(夹角固定,一定两动)问题与等腰三角形存在性(两定一动)问题在处理时的异同有哪些?.综合复习(动点问题)(北师版)一、单选题(共5道,每道20分)1.如图,一次函数的图象与x轴、y轴分别相交于点A,B,直线经过点A,且与y轴交于点C.点P以每秒个单位长度从点B向点C运动,过点P作PD⊥AB,垂足为D,在射线DA上截取DE=DP,连接PE.设点P的运动时间为t,△PDE与△ABC重叠部分的面积为S,则S与t的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题2.如图,直线与x轴、y轴分别交于点A,点B,与直线交于点C.动点E从点B出发,以每秒1个单位长度的速度沿BO方向向终点O运动,动点F同时从原点O出发,以每秒1个单位长度的速度沿折线OC-CB向终点B运动,当一点停止运动时,另一点也停止运动.设点F运动的时间为t(秒).(1)设△OEF的面积为S,则S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数之动点问题3.(上接第2题)(2)当时,若△BEF是等腰三角形,则t的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题4.如图,在平面直角坐标系中,,BC⊥y轴于点C,点A在x轴正半轴上,且∠OAB=45°.动点P从点C出发,以每秒2个单位长度的速度,沿折线CB—BA运动;动点Q从点A出发,以每秒1个单位长度的速度,向终点O运动,当一点停止运动时,另一点也停止运动.设点Q运动的时间为t秒.(1)设△OPQ的面积为S,则S与t的关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题5.(上接第4题)(2)当点P在线段BA上时,存在某个时刻使得△APQ为等腰三角形,则此时t的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题。
初二数学动点问题归类复习(含例题、练习及答案)

初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PM QN==.所以45333BP BM PM=-=-=.②如图6,当QC=QD时,由cosCHCCQ=,可得5425258CQ=÷=.所以QN=CN-CQ=257488-=(如图2所示).此时4736PM QN==.所以725366BP BM PM=+=+=.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5 图6考点伸展:如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解256BP=.二、直角三角形:因动点产生的直角三角形问题例2:(2008年河南省中考第23题)如图1,直线434+-=xy和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值.图1思路点拨:1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4). Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5. 因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得12t =,22t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t = ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =, 所以535t t -=.解得258t =. 如图5,当∠OMN =90°时,N 与C 重合,5t =. 不存在∠ONM =90°的可能.所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展:在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7三、平行四边形问题:因动点产生的平行四边形问题 例3:(2010年山西省中考第26题)在直角梯形OABC 中,CB //OA ,∠COA =90°,CB =3,OA =6,BA=.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系.(1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2EB ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.图1 图2思路点拨:1.第(1)题和第(2)题蕴含了OB 与DF 垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO 为边和对角线分类,再进行二级分类,DO与DM 、DO 与DN 为邻边.解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得NP PO NODO OF DF==,即510NP PO==NP=,PO=.此时点N的坐标为(-.图3 图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG ,则有,即,解得:t=2.8;②若△EBF∽△GCF ,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM =BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t =;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵≠3.9,∴不存在实数t,使得点B′与点O重合.考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.拓展练习:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
初二动点问题(答案)

初二动点问题1.分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.。
八年级数学上册三角形全等之动点问题(习题及答案)(人教版)
第1页共8页三角形全等之动点问题(习题)
例题示范
例1:已知:如图,正方形ABCD 的边长为4,动点P 从点A 出发以每秒2个单位的速度沿AB-BC -CD 方向运动,到达点D 时停止运动.连接AP ,
DP .设点P 运动的时间为t 秒,求当t 为何值时,△ADP 的面积为
6.
【思路分析】
1.研究背景图形,标注
四边形ABCD 是边长为4的正方形,四条边都相等,四个角均为90°.
2.分析运动过程,分段
①分析运动过程:动点P 的起点、终点、状态转折点,以及对应
的时间范围.
0≤t ≤6
2s 2s 2s D C B A (2/s) P :②根据状态转折点分为三段:02t ≤≤,24t ≤,46t ≤,需要
对每一段分别进行分析.
3.表达线段长,建等式
①当02t ≤≤时,即点P 在线段AB 上,
P
D
C
B A 此时AP=2t ,AD=4,
1
2ADP S AD AP △,
即1
6422t ,
3
2t ,符合题意.
②当24t ≤时,即点P 在线段BC 上,
P D C B A A B C D A B C D。
初二动点问题(含答案)-2
图3G F BCAD LE 动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想 一、单动点问题小菜一碟:如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为例 (10年房山二模压轴)25. (1)如图1,已知矩形ABCD 中,点E 是BC 上的一动点,过点E 作EF ⊥BD于点F ,EG ⊥A C 于点G ,CH ⊥BD 于点H ,试证明CH=EF+EG; ;图2图1GFHDHGF DAACE(2) 若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥A C的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3) 如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4) 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.1.(2009临沂25)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90∠=,且EF交正方形外角DCGAEF∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.<在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF∴∠=∠.#90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF∴∠=∠.,ANE ECF ∴△≌△(ASA ). AE EF∴=.ADFC\EB图1AD`C GE B图3ADFC GEB;A DF…GEBMAD、C G E BN2.(2009年江西中考题25)如图1,在等腰梯形ABCD 中,AD221==AB BE 160cos =︒⋅=BE BG 360sin =︒⋅=BE EG 3337373333326+m 2)6(3m -21922+-=m m PN 92192=+-m m 3=m 6=m 2=x 36=-m 36-=m 35-=x 22)6(219m m m -=+-5=m 4=x 81、(2012贵州遵义12分)如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE⊥AB 于E ,连接PQ 交AB 于D . (1)当∠BQD=30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化如果不变,求出线段ED 的长;如果变化请说明理由. ;2、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; 、②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,AQDB 【∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
人教版八年级上册数学期末动点问题压轴题(含答案)
人教版八年级上册数学期末动点问题压轴题(含答案)1.在平面直角坐标系中,点A 的坐标为()4,0,点B 为y 轴正半轴上的一个动点,以B 为直角顶点,AB 为直角边在第一象限作等腰Rt ABC .(1)如图1,若3OB =,则点C 的坐标为______;(2)如图2,若4OB =,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt BDE △,连接AE ,求证:AE AB ⊥;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt OBF .连接CF ,交y 轴于点P ,求线段BP 的长度.2.如图1,在△ABC 中,AB AC =,点E 在线段BC 上,连接AE 并延长到G ,使得EG AE =,过点G 作GD BA ∥分别交BC ,AC 于点F ,D .(1)求证:△≌△ABE GFE ;(2)若3GD =,1CD =,求AB 的长度;(3)如图2,过点D 作DH BC ⊥于H ,P 是直线DH 上的一个动点,连接AF ,AP ,FP ,若45C ∠=︒,AF 2)条件下,求△AFP 周长的最小值.3.如图,在Rt ABC △中,90ACB ∠=︒,点D 是AB 上一动点,连接CD ,以点C 为直角顶点,CD 为直角边作等腰直角DCE △,DE 交BC 于点F .(1)如图1,若20B ∠=︒,当CDF 为等腰三角形时,请直接写出此时BDF ∠的度数; (2)如图2,若ED AB ⊥,点G 为EF 上一点,BD GE FG +=. △求证:BFD A ∠=∠; △求证:2AB FG =.4.如图,已知CD 是线段AB 的垂直平分线,垂足为D ,C 点在D 点上方,△BAC =30°,P 是直线CD 上一动点,E 是射线AC 上除A 点外的一点,PB =PE ,连接BE .(1)如图1,若点P 与点C 重合,求△ABE 的度数;(2)如图2,若P 在C 点上方,试猜想线段PD ,AC ,CE 的数量关系并说明理由; (3)若AC =6,CE =2,则PD 的值为 .(直接写出结果)5.如图,在△ABC 中,AB =AC ,△BAC =90°,BC =8cm ,过点C 作直线MN △BC ,动点D 从点C 开始沿射线CB 方向以每秒3厘米的速度运动,动点E 也同时从点C 开始在直线MN 上以每秒1厘米的速度向远离C 点的方向运动,分别连接AD ,AE ,设运动时间为()0t t >秒.(1)若点E在射线CM上,当t=2时,直接写出CE,CD,BD的长;(2)在(1)的条件下,求证:△ABD△△ACE;(3)若点E在射线CN上,是否存在某一时刻t,使得△ABD和△ACE全等?若存在,求出t的值,若不存在,请说明理由.6.如图,等边ABC的边长为7cm,现有两动点M,N分别从点A、B同时出发,沿三角形的边按照图中标识的方向运动,已知点M的速度为1cm/s,点N的速度为2.5cm/s,当点N第一次到达点B时,点M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动过程中,点M,N能否与ABC中的某一顶点构成等边三角形,若能求出对应的时间t,若不能请说明理由.(3)当点M、N在边BC上运动时,连接AM、AN,能否得到以MN为底边的等腰三角形AMN?若能,请求出此时MN的边长,若不能请说明理由.7.已知△ABC的三个内角均为60,且AB=BC=AC=4cm,如图1,P、Q分别是边AB、BC上的动点,点P从顶点A、点Q从顶点B同时出发,且它们的速度都是1cm/s,连接AQ、CP相交于点M.(1)试判断图1中AQ与CP的数量关系,并证明你的结论.(2)在图1上P、Q两点运动的过程中,△CMQ变化吗?若变化,请说明理由;若不变,求出△CMQ的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ,CP交点为M,则△CMQ变化吗?若变化,请说明理由;若不变,求出△CMQ的度数.8.如图,边长为4cm的等边△ABC中,点P、Q分别是边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ,CP 交于点M,在点P,Q运动的过程中.(1)求证:△ABQ△△CAP;(2)△QMC的大小是否发生变化?若无变化,求△QMC的度数;若有变化,请说明理由;(3)连接PQ,当点P,Q运动多少秒时,△PBQ是直角三角形?9.如图,在Rt△ABC中,△ACB=90,△A=30°,AC=BC=6,CD平分△ACB 交斜边AB于点D,动点P从点C出发,沿折线CA―AD向终点D运动.(1)点P 在CA 上运动的过程中,当CP = 时,△CPD 与△CBD 的面积相等;(直接写出答案)(2)点P 在折线CA ―AD 上运动的过程中,若△CPD 是等腰三角形,求△CPD 的度数; (3)若点E 是斜边AB 的中点,当动点P 在CA 上运动时,线段CD 所在直线上存在另一动点M ,使两线段MP 、ME 的长度之和,即MP +ME 的值最小,则此时CP 的长度= .(直接写出答案)10.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =; (2)连接EF ,判断BEF △的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.11.如图1,在等边△ABC 中,点E 是边AC 上的一定点,过点E 作EH △AB ,交BC 于点H .(1)求证:△CEH是等边三角形;(2)如图2,点D是射线BC上的一动点(不与点B,C重合),以DE为一边,在DE的右侧作等边△DEF.△当点D在边BC上(不与点H重合)时,求证:△DEH△△FEC.△当点D在射线BC上(不与点H重合)时,直接写出线段CE,CF,CD之间满足的数量关系.12.已知△ABC为等边三角形,边长为8,点D,E分别是边AB,BC上的动点,以DE 为边作等边三角形DEF.(1)如图1,若点F落在边AC上.△求证:AD=BE;△当△BDE为直角三角形时,求BE的长.(2)如图2,当AD=2BE时,点G为BC边的中点,求GF的最小值.13.△ABC是等边三角形,点D是AC边上动点,△CBD=α(0°<α<30°),把△ABD 沿BD对折,得到△A′BD.(1)如图1,若α=15°,则△CBA′=.(2)如图2,点P在BD延长线上,且△DAP=△DBC=α.△试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.△若BP =10,CP =m ,求CA ′的长.(用含m 的式子表示)14.如图,在△ABC 中,△ACB =90°,AC =BC ,D 是边AB 上的动点,连接CD ,点B 关于直线CD 的对称点为E ,射线AE 与射线CD 交于点F ,设BCD α∠=.(1)△当20α=︒时,连接CE .则△AFC 的大小是___________; △当45α<︒时,求AFC ∠的大小.(2)在△中△的条件下,若AD BC =,求证:AF CF =.15.如图,在△ABC 中,△ACB =90°,AC =BC ,D 是AB 边上的一个动点,连接CD ,点B 关于直线CD 的对称点为E ,射线AE 与射线CD 交于点F .(1)连接CE ,求证:△CAE =△CEA (2)当BD <AD 时,求△AFC 的大小;(3)若AD =AC ,试猜想AE 与CD 的数量关系,并证明.16.如图,△ABC 中,AB =BC =CA =3,点D 是边AB 延长线上的一动点,分别以C ,D 为圆心,CD 长为半径作弧,两弧在CD 上方交于点E ,连接EB 并延长EB ,交过点A 且垂直于AD 的直线于点F .(1)求证:EB=DA;(2)当110DCA∠=时,求△DEF的度数;(3)在点D运动过程中,线段BF的长度是否会发生变化?若不会发生变化,则求出BF 的长度;若会发生变化,请说明理由.17.已知:如图,ABC中,AB=AC,△A=45°,E是AC上的一点,△ABE=13△ABC,过点C作CD△AB于D,交BE于点P.(1)直接写出图中除ABC外的所有等腰三角形;(2)求证:BD=12PC;(3)点H、G分别为AC、BC边上的动点,当DHG周长取取小值时,求△HDG的度数.18.如图,△ABC是等腰直角三角形,△ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使△DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC 的AB 边上高为 ; (2)求BP 的长(用含t 的式子表示); (3)就图中情形求证:△ACP △△BCD ; (4)当BP :BD =1:2时,直接写出t 的值.19.如图1所示,在边长为6 cm 的等边△ABC 中,动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动设点P 的运动时间为t (s ),t >0(1)当t = 时,△P AC 是直角三角形;(2)如图2,若另一动点Q 从点C 出发,沿线段CA 向点A 运动,且动点P ,Q 均以1cm/s 的速度同时出发,那么当t 取何值时,△P AQ 是直角三角形?请说明理由;(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动,且动点P ,Q 均以1cm/s 的速度同时出发.当点P 到达终点B 时,点Q 也随之停止运动,连接PQ 交AC 于点D ,过点P 作PE △AC 于E ,试问线段DE 的长度是否变化?若变化,请说明如何变化;若不变,请求出DE 的长度.20.ABC 中,CD 平分ACB ∠,点E 是BC 上一动点,连接AE 交CD 于点D .(1)如图1,若110ADC ∠=︒,AE 平分BAC ∠,则B ∠的度数为______;(2)如图2,若100ADC ∠=︒,53DCE ∠=︒,27B BAE ∠-∠=︒,则BAE ∠的度数为______;(3)如图3,在BC 的右侧过点C 作CF CD ⊥,交AE 延长线于点F ,且AC CF =,2B F ∠=∠.试判断AB 与CF 的位置关系,并证明你的结论.参考答案:1.(1)点C (3,7);(3)2.2. (2)2; (3)23.(1)70︒4.(1)90°(2)PD 12+AC =CE , (3)1或55.(1)CE =2cm ,CD =6cm ,BD =2cm(3)存在,t =46.(1)点M 、N 运动143秒后重合; (2)点M 、N 运动时间为2秒时,AMN 是等边三角形;点M 、N 运动时间为6秒时,CMN 是等边三角形;(3)当点M 、N 运动8秒时,AMN 是以MN 为底边等腰三角形.7.(1)AQ CP =(2)不变,60CMQ ∠=︒(3)不变,120CMQ ∠=︒8. (2)△QMC 的大小不发生变化,△QMC =60°; (3)43秒或83秒9.(1)6(2)45︒或90︒或67.5︒或37.5︒(3)310. (2)等边三角形,(3)是定值,11. (2)△线段CE ,CF ,CD 之间满足的数量关系为CD =CF +CE 或CD =CE -CF 或CD =CF -CE .12.(1);△BE =83或163; (2)213.(1)30°(2)△BP AP CP =+;△102m -14.(1)△45°;△45°15.(2)45°;(3)AE =CD ,16. (2)50°(3)不会,617.(1)△ADC ,△CPE ,△BCE 都是等腰三角形,(3)45°18.(1)3(2)当0<t ≤3时,PB =6-2t ;当t >3时,PB =2t -6;(4)t 的值为2或6.19.(1)3(2)2或4,(3)不变化,3DE20.(1)40°;(2)10°;(3)AB△CF,。
实用文档之初二数学动点问题练习(含答案)
实用文档之"动态问题"所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形OE CDAαlOCA(备用图)4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.ADC E B图1AD F CGE BM C B A E D图1N MAB CD E M N 图2 A C BE D N M 图3AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值; (3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.A DEB图3ADC E B 图2AD FC G B N①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.A D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBFCPNM (第25题)在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.图3A D E BFCPN M 图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1 A D E BFCG图2A DEBFPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===--=当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠,∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态问题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 数形结合思想 转化思想
1、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q 从点C 开始沿CB 边向B 以3cm/s 的速度运动.P 、Q 分别从点
A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts .
(1)当t 为何值时,四边形PQCD 为平行四边形?
(2)当t 为何值时, PQ=CD ?
2、如图,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一
点,则DN+MN 的最小值为
3、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.
(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;
(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;
(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.
C
B A E D 图1 N M A B
C
D
E M N 图2 A C B E D N M 图3
4、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.
90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .
经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由
5、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.
求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;
A
D F C G
E B 图1 A D F
G B 图3
A D F
G B 图2
6、如图,△ABC 中,点O 为AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的外角平分线CF 于点F ,交∠ACB 内角平分线CE 于E .
(1)试说明EO=FO ;
(2)当点O 运动到何处时,四边形AECF 是矩形并证明你的结论;
(3)若AC 边上存在点O ,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.
7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?。