最新初二上学期初二数学动点问题练习含答案

合集下载

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 题目描述:在二维坐标系中,有一个动点P,起始坐标为(3, 2),经过以下规则的移动:每次向上移动一格,或向右移动一格。

现有以下几组指令,请计算指定指令下动点P的坐标。

a) 指令1:向上移动3格,向右移动5格,再向上移动2格。

b) 指令2:向上移动4格,向右移动2格,再向下移动1格。

c) 指令3:向右移动7格,向上移动1格。

2. 解题过程及计算:a) 指令1:- 向上移动3格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 3) = (3, 5)。

- 向右移动5格:移动后坐标为(3 + 5, 5) = (8, 5)。

- 再向上移动2格:移动后坐标为(8, 5 + 2) = (8, 7)。

指令1执行后动点P的坐标为(8, 7)。

b) 指令2:- 向上移动4格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 4) = (3, 6)。

- 向右移动2格:移动后坐标为(3 + 2, 6) = (5, 6)。

- 再向下移动1格:移动后坐标为(5, 6 - 1) = (5, 5)。

指令2执行后动点P的坐标为(5, 5)。

c) 指令3:- 向右移动7格:由于起始坐标为(3, 2),所以移动后坐标为(3 + 7, 2) = (10, 2)。

- 向上移动1格:移动后坐标为(10, 2 + 1) = (10, 3)。

指令3执行后动点P的坐标为(10, 3)。

3. 答案总结:根据指令执行结果,动点P的坐标如下:- 指令1执行后动点P的坐标为(8, 7)。

- 指令2执行后动点P的坐标为(5, 5)。

- 指令3执行后动点P的坐标为(10, 3)。

注:以上计算过程以及答案仅供参考,具体计算时请以实际情况为准。

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。

2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。

求证:无论点P在圆上如何移动,OP的长度始终为5。

3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。

当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。

4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。

求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。

5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。

求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。

6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。

当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。

7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。

求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。

8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。

点C是线段AB上的动点,其坐标为(x,y)。

求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。

练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。

- 对于圆上的动点问题,可以利用圆的半径性质来证明。

- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。

- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。

初二数学动点问题练习(含答案)

初二数学动点问题练习(含答案)

1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。

当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC =23. ∴AO =12AC=3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.O E CDA α lOCA (备用图) CB AE D 图1 N M A B C D E M N 图2A CB E D N M 图3解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FGB 图1 A D FC G E B 图3A D FGB 图2A D F C GE B M A D FG B N7、在等腰梯形ABCD 中,AD ‖BC,E 为AB 的中点,过点E 作EF ‖BC 交CD 于点F.AB=4,BC=6, ∠ B=60°。

初二数学动点问题练习(含答案)

初二数学动点问题练习(含答案)

动态问题之袁州冬雪创作所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.处理这类问题的关键是动中求静,矫捷运用有关数学知识处理问题.关键:动中求静.数学思想:分类思想 数形连系思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开端沿AD 边以1cm/秒的速度移动,点Q 从C 开端沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒. 当t=时,四边形是平行四边形;6 当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开端,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为;(2)当90α=°时,断定四边形EDBC 是否为菱形,并O E CDAα lOCA(备用图)说明来由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300. ∴AB =4,AC∴AO在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 颠末点C ,且AD ⊥MN于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE 又∵AC=BCCBAE D图1 N MA B CDE M N图2ACB EDNM图3∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张教师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BCEF 行线CF 于点F ,求证:AE =EF .颠末思考,小明展示了一种正确的解题思路:取AB 的中点M ,毗连ME ,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那末结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明来由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明来由.解:(1)正确.ADF C GE B图1ASA ).(2)正确.ASA ).6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的间隔为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t 值7、如图1求:(1间隔;(2ADFC GE B图3ADFGB 图2ADFC G E BN23明来由解(1)如图1,于点∵为的中点,(2不发生改变.图1A DEBFCGA DEBFC图4(备A DEBFC图5(备A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)如图2cos30︒=中,PN的周长=PM在线段DC等边三角形.3当时,如图4548中点.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF CMN GGRG图2A D E BF CPNMG H(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,颠末1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B P与点Q解:(1∴②∵,∴,又∵,,则/秒.(2)设颠末秒后点与点第一次相遇,由题意,得上相遇,∴颠末803秒点P与点Q第一次在边AB上相遇.9、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不管E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF 的面积是否发生变更?如果不变,求出这个定值;如果变更,求出最大(或最小)值.【答案】解:(1)证明:如图,毗连AC∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC.∵∠BAD=120°,∴∠ABF=60°.∴△ABC和△ACD为等边三角形.∴∠ACF=60°,AC=AB.∴∠ABE=∠AFC.∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA).∴BE=CF.(2)四边形AECF 的面积不变,△CEF 的面积发生变更.来由如下:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF .∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值.作AH ⊥BC 于H 点,则BH =2,22AECF ABC 11S S BC AH BC AB BH 4322∆==⋅⋅=⋅-=四形边.由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变更而变更,且当AE最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.∴S △CEF =S四边形AECF ﹣S △AEF()()221432323332=-⋅⋅-=.∴△CEF 的面积的最大值是3.【考点】菱形的性质,等边三角形的断定和性质,全等三角形的断定和性质,勾股定理,垂直线段的性质.【分析】(1)先求证AB =AC ,进而求证△ABC 、△ACD 为等边三角形,得∠ACF =60°,AC =AB ,从而求证△ABE ≌△ACF ,即可求得BE =CF .(2)由△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S四边形AECF =S △AEC +S △ACF =S △AEC +S △AB E =S △ABC 即可得四边形AECF 的面积是定值.当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE的变更而变更,且当AE最短时,正三角形AEF的面积会最小,根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.10、如图,在△AOB中,∠AOB=90°,OA=OB=6,C为OB上一点,射线CD⊥OB交AB于点D,OC=2.点P从点A出发以每秒个单位长度的速度沿AB方向运动,点Q从点C出发以每秒2个单位长度的速度沿CD方向运动,P、Q两点同时出发,当点P到达到点B时停止运动,点Q也随之停止.过点P作PE⊥OA于点E,PF⊥OB于点F,得到矩形PEOF.以点Q为直角顶点向下作等腰直角三角形QMN,斜边MN∥OB,且MN=QC.设运动时间为t(单位:秒).(1)求t=1时FC的长度.(2)求MN=PF时t的值.(3)当△QMN和矩形PEOF有重叠部分时,求重叠(阴影)部分图形面积S与t的函数关系式.(4)直接写出△QMN的边与矩形PEOF的边有三个公共点时t的值.考点:相似形综合题.分析:(1)根据等腰直角三角形,可得,OF=EP=t,再将t=1代入求出FC的长度;(2)根据MN=PF,可得关于t的方程6﹣t=2t,解方程即可求解;(3)分三种情况:求出当1≤t≤2时;当2<t≤时;当<t≤3时;求出重叠(阴影)部分图形面积S与t的函数关系式;(4)分M在OE上;N在PF上两种情况讨论求得△QMN的边与矩形PEOF的边有三个公共点时t的值.解答:解:(1)根据题意,△AOB、△AEP都是等腰直角三角形.∵,OF=EP=t,∴当t=1时,;(2)∵AP=t,AE=t,PF=OE=6﹣t∴6﹣t=2t解得t=2.故当t=2时,MN=PF;(3)当1≤t≤2时,S=2t2﹣4t+2;当2<t≤时,S=﹣t2+30t﹣32;当<t≤3时,S=﹣2t2+6t;(4)△QMN的边与矩形PEOF的边有三个公共点时t=2或.点评:程思想,分类思想的运用,有一定的难度.。

初中八年级上册数学动点问题试卷附答案

初中八年级上册数学动点问题试卷附答案

初中八年级上册数学动点问题试卷附答案
一、选择题
1. 一辆汽车以每小时60千米的速度向东行驶,经过2小时后改变方向,以每小时40千米的速度向北行驶,求其位移。

A. 40千米
B. 80千米
C. 100千米
D. 120千米
答案:D. 120千米
2. 一辆自行车向前行驶30分钟后,记下此时的位置。

然后车辆停下来,待30分钟后,以相同的时间和速度往后倒退,到达原点。

求此自行车的位移。

A. 0千米
B. 5千米
C. 10千米
D. 15千米
答案:A. 0千米
二、填空题
1. 一个物体从A点出发,以每秒2米的速度向东行驶10秒,
然后改变方向,以每秒3米的速度向南行驶15秒,最后以每秒4
米的速度向西行驶20秒。

求物体的位移为______米。

答案:-20
2. 一架飞机以每秒200米的速度向东飞行30秒,然后改变方向,以每秒300米的速度向南飞行40秒,最后以每秒400米的速
度向西飞行50秒。

求飞机的位移为______米。

答案:-4000
三、解答题
1. 一个人从原点出发,以每小时5千米的速度向西行驶1小时,然后改变方向,以每小时8千米的速度向南行驶2小时,最后以每
小时10千米的速度向东行驶3小时。

求此人的位移和位移方向。

答案:位移为-23千米,位移方向为东南方向。

2. 一个物体以每秒10米的速度向北行驶30秒,然后改变方向,以每秒15米的速度向东行驶40秒,最后以每秒20米的速度向南
行驶50秒。

求物体的位移和位移方向。

答案:位移为20米,位移方向为南方。

初二数学动点问题练习题

初二数学动点问题练习题

初二数学动点问题练习题
阅读理解:
一、小明和小红在操场上正在进行100米短跑比赛。

小明以每秒8
米的速度跑,小红以每秒7米的速度跑。

问题1:如果小红比小明晚出发2秒,那么小红能否赢得比赛?为
什么?
问题2:如果小红比小明晚出发3秒,那么小红能否赢得比赛?为
什么?
问题3:如果小红比小明晚出发4秒,那么小红能否赢得比赛?为
什么?
问题4:如果小红比小明晚出发5秒,那么小红能否赢得比赛?为
什么?
问题5:假设小红以每秒7米的速度跑,在小明出发后多少秒出发,小红才能与小明同时到达终点?
解答:
问题1:小红不能赢得比赛。

因为小明比小红每秒跑得快1米,所
以无论小红比小明晚出发多久,小明总能比他先到达终点。

问题2:小红不能赢得比赛。

由于小明每秒比小红多跑1米,小红
比小明晚出发3秒后,小明已经比小红多跑了3米,所以小明会先到
达终点。

问题3:小红不能赢得比赛。

小明每秒比小红多跑1米,小红比小明晚出发4秒后,小明已经比小红多跑了4米,所以小明会先到达终点。

问题4:小红能赢得比赛。

当小红晚出发5秒后,小明已经比小红多跑了5米,但小明距离终点还有95米,而小红每秒可以追赶小明1米,所以小红能在小明到达终点之前追赶上他。

问题5:小红在小明出发后5秒出发,才能与小明同时到达终点。

此时小明已经跑了40米(5秒×8米/秒),小红出发后每秒可以追赶小明1米,所以小红需要跑60米(100米-40米)才能追上小明,所以小红需要跑60米÷7米/秒≈8.57秒,约等于8.6秒。

八上动点题及答案40道

八上动点题及答案40道

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4、刘军和张强付同样多的钱买了同一种铅笔,刘军要了13支,张强要了7支,刘军又给张强0.6元钱。

每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

人教版八年级上册数学期末动点问题训练题(含简单答案)

人教版八年级上册数学期末动点问题训练题(含简单答案)

人教版八年级上册数学期末动点问题训练题(1)若点在线段上,如图所示,且,则______(2)若点在边上运动,如图所示,则、、之间的关系为(3)如图,若点在斜边的延长线上运动,请写出(1)求证:;(2)探究与的数量关系,并证明你的结论.(3)若,直接写出的值为__________P AB ①50α∠=︒12∠+∠=P AB ②α∠1∠2∠③P BA ()CE CD <α∠AF EF =AD CF 2AD CD =CF(1)求的面积;(2)如图1,若,,作交于,平分,平分交求出(用表示);(3)如图2.若,轴于,点从点出发,在射线(1)如图1,若,则_______°ABO V 60ACB ∠=︒180NFC FCN FNC ∠+∠+∠=︒GF AB ∥AC F FP GFC ∠FN AFP ∠BAC ∠α()36P ,PC x ⊥C M P 15α=︒CBA ∠'=(2)如图2,点P 在延长线上,且.①连接,试探究,,之间是否存在一定数量关系,猜想并说明理由.②连接,若,C ,P 三点共线,,,求的长.6.如图1,,,,.(1)求C 点的坐标;(2)如图2,P 为y 轴负半轴上一个动点,当P 点在y 轴负半轴上向下运动时,始终保持,,过D 作轴于E 点,求的值;(3)如图3,已知点F 坐标为,当G 在y 轴的负半轴上沿负方向运动时,作,始终保持,与y 轴负轴交于点,与x 轴正半轴交于点,当G 点在y 轴的负半轴上沿负方向运动时,求的值.7.如图,中,,,,,若动点从点开始,按的路径运动,且速度为每秒.设运动的时间为秒.(1)当点在上时,______时,把的周长分成相等的两部分?(2)当点在上时,______时,把的面积分成相等的两部分?(3)当点在所有运动过程中,连接或,求当为何值时,的面积为12?BD DAP DBC α∠=∠=CP AP BP CP CA 'A '10BP =1CP =CA '2OA =4OB =90BAC ∠=︒AB AC =PA PD =90APD ∠=︒DE x ⊥OP DE -(44)--,Rt FGH V 90GFH ∠=︒FG (0)G m ,FH (0)H n ,m n +ABC V 90C ∠=︒8cm AC =6cm BC =10cm AB =P C C A B C →→→2cm t P AB t =CP ABC V P AB t =CP ABC V P PC PB t BCP V(1)请直接写出,两点的坐标;(2)如图,分别以,为直角边向右侧作等腰交轴于点,连接,求证:;(3)如图,点为y 轴上一动点,点在直线侧作等腰,若连接E ,,三点按逆时针顺序排列B C 1AB BC Rt x M BM BM DE ⊥2F (),33G m m -+Rt BCE V F G ((1)如图1,当点D 在边上时.①求证:;②直接判断结论,,的关系 (2)如图2,当点D 在边的延长线上时,其他条件不变,请写出(1)求的度数;(2)当点运动到使时,求(3)当点运动时,与BC ABD ACE ≌△△BC DC CE BC CBD ∠P ACB ABD =∠∠P APB ∠ADB ∠(1)如图①,动点在轴负半轴上,且交于点、交于点,求证:.(2)如图,在(1)的条件下,连接,求证:.(3)如图③,E 为的中点,动点G 在轴上,,,连接,作交轴于F ,猜想,、之间的数量关系,并说明理由.13.已知中.(1)如图1、2,若点是上一点,且,点是上的动点,将沿对折,点的对应点为(点和点在直线的异侧),与交于点.①当时,求的度数.②当是等腰三角形时,求的度数.(2)如图3,若点是上一点,且,是线段上的动点,以为直角构造等腰直角(三点顺时针方向排列),在点的运动过程中,直接写出的最小值.14.在平面直角坐标系中,点B 、C 的坐标分别为、,点A 在第一象限,且是等边三角形.点D 的坐标为,E 是边上一动点,连接,以为边在右侧作等边,连接.(1)求出A 点坐标;(2)当点F 落在边上时,与全等吗?若全等,请给予证明;若不全等,请说明理由;(3)当以为腰的是等腰三角形时,的长为_________.C x AH BC ⊥BC H OB P △≌△AOP BOC ②OH 2OHP AHB ∠=∠AB y (0,)G n 0n <GE EF GE ⊥x GB OB AF Rt ABC △90930∠︒∠︒C BC B =,且=,=D CB 2CD =E AB DBE V DE B B'B'C AB 'DB AB H 20∠=︒'B EA EDB ∠B HE 'V DEB ∠D CB 2CD =M AC MDN ∠DMN V D M N ,,M CN NB +(0,0)(12,0)ABC V (4,0)AB DE DE DE DEF V CF AC CDF V BED V DF CDF V BE(1)若,① ,②判断线段,之间有怎样的位置关系并说明理由;(2)设,,则x ,y 之间的数量关系为(3)如图2,当时,若线段,90BAC ∠=︒BCA ∠=BC CE BAC x ∠=︒BCE y ∠=︒CE AB ∥3BC =ABC V______.17.已知:如图,在平面直角坐标系中,点B是x轴上的动点,点,点,轴于点D.(1)当点B坐标为时,求证:;(2)在(1)的条件下,探究并证明和的位置关系;(3)当的周长最小时,求点B的坐标.()0,2A()5,3CCD x⊥()3,0OAB DBC≌△△AB BCABCV参考答案:(4)17. (2),(3)CEP DBP BPB +∠∠=∠AB BC ⊥()2,0B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CEDNM CDMCEM(1)当直线MN 绕点C 旋转到图1的位置时,求证①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证AE =EF .经过思考,小明展示了一种正确的解题思路取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究(1)小颖提出如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解(1)正确. 证明在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FG B 图1 A D FC G E B 图3A D FGB 图2A D F C G EB M A D FG B N7、在等腰梯形ABCD 中,AD ‖BC,E 为AB 的中点,过点E 作EF ‖BC 交CD 于点F.AB=4,BC=6, ∠ B=60° (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作MN ‖AB 交折线ADC 于点N ,连接PN ,设EP=x①当点N 在线段AD 上时,△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由②当点N 在线段DC 上时,是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的X 的值,若不存在,请说明理由① ②1°① ②1° 2°3°2° 3°8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.图1A D E BF CG 图2A D EBFCPNMG HA D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBF C PN M (第25题)在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG。

相关文档
最新文档