上海市2016年中考数学试卷(解析版)
山东省烟台市2016年中考数学试题(word版,含解析)

2016年山东省烟台市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a64.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数方差根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.310.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D 在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O 逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.2016年山东省烟台市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.【考点】实数.【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【解答】解:A、不能正好开方,即为无理数,故本选项错误;B、不能正好开方,即为无理数,故本选项错误;C、π为无理数,所以为无理数,故本选项错误;D、小数为有理数,符合.故选D.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选C.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的加减法可得出A选项结论不正确;根据单项式乘单项式的运算可得出B选项不正确;根据整式的除法可得出C选项正确;根据幂的乘方可得出D选项不正确.由此即可得出结论.【解答】解:A、3a2﹣6a2=﹣3a2,﹣3a2≠﹣3,∴A中算式计算不正确;B、(﹣2a)•(﹣a)=2a2,2a2=2a2,∴B中算式计算正确;C、10a10÷2a2=5a8,5a8≠5a5(特殊情况除外),∴C中算式计算不正确;D、﹣(a3)2=﹣a6,﹣a6≠a6(特殊情况除外),∴D中算式计算不正确.故选B.4.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数方差根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】位似变换;坐标与图形性质;正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.10.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D 在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为﹣4.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由|x﹣y+2|﹣=0,根据非负数的性质,可求得x﹣y与x+y的值,继而由x2﹣y2=(x﹣y)(x+y)求得答案.【解答】解:∵|x﹣y+2|﹣=0,∴x﹣y+2=0,x+y﹣2=0,∴x﹣y=﹣2,x+y=2,∴x2﹣y2=(x﹣y)(x+y)=﹣4.故答案为:﹣4.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.【考点】解一元一次不等式组;负整数指数幂;在数轴上表示不等式的解集.【分析】根据不等式组,和数轴可以得到a、b的值,从而可以得到b﹣a的值.【解答】解:,由①得,x≥﹣a﹣1,由②得,x≤b,由数轴可得,原不等式的解集是:﹣2≤x≤3,∴,解得,,∴,故答案为:.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为﹣6.【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO 面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k 的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm ,∴OB=1cm ,OC ′=,∴B ′C ′=,∴S 扇形B ′OB ==π, S 扇形C ′OC ==,∵ ∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣=π; 故答案为:π. 18.如图,在正方形纸片ABCD 中,EF ∥AD ,M ,N 是线段EF 的六等分点,若把该正方形纸片卷成一个圆柱,使点A 与点D 重合,此时,底面圆的直径为10cm ,则圆柱上M ,N 两点间的距离是 cm .【考点】圆柱的计算.【分析】根据题意得到EF=AD=BC ,MN=2EM ,由卷成圆柱后底面直径求出周长,除以6得到EM 的长,进而确定出MN 的长即可.【解答】解:根据题意得:EF=AD=BC ,MN=2EM=EF ,∵把该正方形纸片卷成一个圆柱,使点A 与点D 重合,底面圆的直径为10cm , ∴底面周长为10πcm ,即EF=10πcm , 则MN=cm , 故答案为:.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x ﹣1)÷,其中x=,y=.【考点】分式的化简求值. 【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x ﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据×100%可得;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.【解答】解:(1)①小明统计的评价一共有:=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【考点】一元二次方程的应用.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,解得:y≤15,当y=15时,W最大,最大值为91万元.【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.【考点】切线的性质;三角形的外接圆与外心.【分析】(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可解决问题.(2)利用面积法首先证明==,再证明△BEO∽△PEB,得=,即==,由此即可解决问题.【解答】(1)证明:连接OB.∵PB是⊙O切线,∴OB⊥PB,∴∠PBO=90°,∴∠PBD+∠OBD=90°,∵OB=OD,∴∠OBD=∠ODB,∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠PBD=∠EBD,∴BD平分∠PBC.(2)解:作DK⊥PB于K,∵==,∵BD平分∠PBE,DE⊥BE,DK⊥PB,∴DK=DE,∴==,∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,∴∠OBE=∠P,∵∠OEB=∠BEP=90°,∴△BEO∽△PEB,∴=,∴==,∵BO=1,∴OE=,∵OE⊥BC,∴BE=EC,∵AO=OC,∴AB=2OE=.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,在Rt△CSD中根据勾股定理可得x2+y2=25①,在Rt△ARD中根据勾股定理可得(5+x)2+(10﹣y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=,=,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,∴当m=时,MN==.最大2016年6月23日。
2016年陕西中考数学试卷(解析版)

2016年陕西省中考数学试卷(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,满分30分)1)×2=()1.计算:(-2A.-1 B.1 C.4 D.-4考点:有理数的乘法.专题:计算题;实数.分析:原式利用乘法法则计算即可得到结果.解答:解:原式=-1,故选A点评:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:根据已知几何体,确定出左视图即可.解答:解:根据题意得到几何体的左视图为,故选C点评:此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.下列计算正确的是()A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(-3x)2=9x2考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题;整式.分析:A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.解答:解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D点评:此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°考点:平行线的性质.分析:根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.解答:解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°-50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-65°=115°,故选B.点评:本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.5.设点A(a,b)是正比例函数y=-3x图象上的任意一点,则下列等式一定成立的是2()A.2a+3b=0 B.2a-3b=0 C.3a-2b=0 D.3a+2b=0考点:一次函数图象上点的坐标特征.分析:直接把点A(a,b)代入正比例函数y=-3x,求出a,b的关系即可.2解答:解:把点A(a,b)代入正比例函数y=-3x,2可得:-3a=2b,可得:3a+2b=0,故选D点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10考点:三角形中位线定理;等腰三角形的判定与性质;勾股定理.分析:根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=1AC,由此即可解2决问题.解答:解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22622+BCAB =10,8+∵DE是△ABC的中位线,∴DF∥BM,DE=1BC=3,2∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=1AC=5,2∴DF=DE+EF=3+5=8.故选B.点评:本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:两条直线相交或平行问题.分析:根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.解答:解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.点评:本题主要考查两直线相交问题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y 轴负半轴相交.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对考点:正方形的性质;全等三角形的判定.分析:可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.解答:解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,AB=BC∠A=∠CAD=CD∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,∠MDO=∠M′BO∠MOD=∠M′OBDM=BM′∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.点评:本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .33B .43C .53D .63考点:垂径定理;圆周角定理;解直角三角形.分析:首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案.解答:解:过点O 作OD ⊥BC 于D ,则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补,∴∠BOC=2∠A ,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC ,∴∠OBC=∠OCB=21(180°-∠BOC )=30°, ∵⊙O 的半径为4,∴BD=OB •cos ∠OBC=4×3223 , ∴BC=43. 故选:B .点评:此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A .21B .55C .552 D .2 考点:抛物线与x 轴的交点;锐角三角函数的定义.分析:先求出A 、B 、C 坐标,作CD ⊥AB 于D ,根据tan ∠ACD=ADCD 即可计算.解答:解:令y=0,则-x 2-2x+3=0,解得x=-3或1,不妨设A (-3,0),B (1,0), ∵y=-x 2-2x+3=-(x+1)2+4,∴顶点C (-1,4),如图所示,作CD ⊥AB 于D .在RT △ACD 中,tan ∠CAD=ADCD =2,故答案为D .点评:本题考查二次函数与x 轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x 轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)11.不等式-21x+3<0的解集是 _______.考点:解一元一次不等式.分析:移项、系数化成1即可求解.解答:解:移项,得-1x<-3,2系数化为1得x>6.故答案是:x>6.点评:本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是 _______.B.运用科学计算器计算:317sin73°52′≈ _______.(结果精确到0.1)考点:计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.分析:(1)根据多边形内角和为360°进行计算即可;(2)先分别求得317和sin73°52′的近似值,再相乘求得计算结果.解答:解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)317sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9点评:本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要需要运用四舍五入法求解.13.已知一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且AB=2BC ,则这个反比例函数的表达式为 _______.考点:反比例函数与一次函数的交点问题.分析:根据已知条件得到A (-2,0),B (0,4),过C 作CD ⊥x 轴于D ,根据相似三角形的性质得到32AC AB AD AO CD OB ===,求得C (1,6),即可得到结论.解答:解:∵一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,∴A (-2,0),B (0,4),过C 作CD ⊥x 轴于D ,∴OB ∥CD ,∴△ABO ∽△ACD , ∴32AC AB AD AO CD OB ===,∴CD=6,AD=3,∴OD=1,∴C (1,6),设反比例函数的解析式为y=xk , ∴k=6,∴反比例函数的解析式为y=x6. 故答案为:y=x6.点评:本题考查了反比例函数与一次函数的交点,相似三角形的判定和性质,求函数的解析式,正确的作出图形是解题的关键.14.如图,在菱形ABCD 中,∠ABC=60°,AB=2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 _______.考点:菱形的性质;等腰三角形的判定;等边三角形的性质.分析:如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P .此时△PBC 是等腰三角形,线段PD 最短,求出BD 即可解决问题.解答:解:如图菁优网连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P . 此时△PBC 是等腰三角形,线段PD 最短,∵四边形ABCD 是菱形,∠ABC=60°,∴AB=BC=CD=AD ,∠ABC=∠ADC=60°,∴△ABC ,△ADC 是等边三角形,∴BO=DO=3223=⨯,∴BD=2BO=23,∴PD 最小值=BD-BP=23-2.故答案为23-2.点评:本题考查菱形的性质、等边三角形的性质等知识,解题的关键是找到点P 的位置,属于中考常考题型.三、解答题(共11小题,满分78分)15.计算:12-|1-3|+(7+π)0 .考点:实数的运算;零指数幂.分析:直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案. 解答:解:原式=()23233211332+=+-=+--. 点评:此题主要考查了实数运算,正确利用绝对值的性质去掉绝对值是解题关键.16.化简:(x-5+3+x 16)÷9-x 3-x 2. 考点:分式的混合运算.分析:根据分式的除法,可得答案.解答:解:原式=1-x 3)-3)(x +(x 3)+(x 1)-(x 2∙=(x-1)(x-3)=x 2-4x+3.点评:本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.17.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)考点:作图—相似变换.专题:作图题.分析:过点A 作AD ⊥BC 于D ,利用等角的余角相等可得到∠BAD=∠C ,则可判断△ABD 与△CAD 相似.解答:解:如图,AD 为所作.点评:本题考查了作图-相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是 _______;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?考点:众数;用样本估计总体;扇形统计图;条形统计图.专题:统计与概率.分析:(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.解答:解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120-18-30-6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.点评:本题考查众数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,AD=BC∠1=∠2DF=BE∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.点评:本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH=2.5米,FG=1.65米.如图,已知AB ⊥BM ,ED ⊥BM ,GF ⊥BM ,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.考点:相似三角形的应用.分析:根据镜面反射原理结合相似三角形的判定方法得出△ABC ∽△EDC ,△ABF ∽△GFH ,进而利用相似三角形的性质得出AB 的长.解答:解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD ,∠AFB=∠GHF ,故△ABC ∽△EDC ,△ABF ∽△GFH , 则DC BC ED AB =,FHBF GF AB =, 即2BC 1.5AB =, 2.518+BC 1.65AB =,解得:AB=99,答:“望月阁”的高AB的长度为99m.点评:此题主要考查了相似三角形的判定与性质,正确利用已知得出相似三角形是解题关键.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?考点:一次函数的应用.分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.解答:解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有 b=1922k+b=0解得 k=−96b=192故线段AB所表示的函数关系式为:y=-96x+192(0≤x≤2);(2)12+3-(7+6.6)=15-13.6=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.点评:本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.考点:列表法与树状图法;概率公式.分析:(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.解答:解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;1;∴一次“有效随机转动”可获得“乐”字的概率为:5(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,2.∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:25点评:此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.考点:相似三角形的判定与性质;垂径定理;切线的性质.专题:证明题.分析:(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.解答:证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB ⊥AB ,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G ,∵∠DCB=∠GCF ,∴∠GCF=∠G,∴FC=FG ;(2)连接AC ,如图所示:∵AB ⊥BG ,∴AC 是⊙O 的直径,∵FD 是⊙O 的切线,切点为C ,∴∠DCB=∠CAB ,∵∠DCB=∠G ,∴∠CAB=∠G ,∵∠CBA=∠GBA=90°,∴△ABC ∽△GBA , ∴ABBC GB AB ,∴AB 2 =BC •BG .点评:本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(-2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.考点:二次函数综合题.分析:(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.解答:解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得:a+b+5=39a+3b+5=5解得: a =1b =−3∴抛物线解析式为y=x 2-3x+5,令y=0可得x 2-3x+5=0,该方程的判别式为△=(-3)2-4×1×5=9-20=-11<0,∴抛物线与x 轴没有交点;(2)∵△AOB 是等腰直角三角形,A (-2,0),点B 在y 轴上,∴B 点坐标为(0,2)或(0,-2),可设平移后的抛物线解析式为y=x 2+mx+n ,①当抛物线过点A (-2,0),B (0,2)时,代入可得n =24−2m+n =0解得: m =3n =2∴平移后的抛物线为y=x 2+3x+2, ∴该抛物线的顶点坐标为(23-,41-),而原抛物线顶点坐标为(23,411), ∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线; ②当抛物线过A (-2,0),B (0,-2)时,代入可得:n =−24−2m+n =0解得: m =1n =−2∴平移后的抛物线为y=x 2+x-2, ∴该抛物线的顶点坐标为(21-,49-),而原抛物线顶点坐标为(23,411),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.点评:本题为二次函数的综合应用,涉及知识点有待定系数法、函数与方程的关系、等腰三角形的性质、坐标平移和分类讨论等.在(1)中注意方程与函数的关系,在(2)中确定出B点的坐标是解题的关键,注意抛物线顶点坐标的求法.本题属于基础题,难度不大.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.考点:四边形综合题.分析:(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=25即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3-x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.解答:解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=25,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为25+10;(3)能裁得,理由:∵EF=FG=5,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,∠1=∠2∠A=∠BEF=FG∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以OE为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′、GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F ,O ,H ′,C 在一条直线上,菁优网∵EG=10,∴OF=EG=10, ∵CF=210, ∴OC=10,∵OH ′=OE=FG=5,∴OH ′<OC ,∴点H ′在矩形ABCD 的内部,∴可以在矩形ABCD 中,裁得符合条件的面积最大的四边形EFGH ′部件,这个部件的面积=21EG •FH ′=()22555101021+=+⨯⨯,∴当所裁得的四边形部件为四边形EFGH ′时,裁得了符合条件的最大部件,这个部件的面积为(5+225)m 2.点评:本题考查了全等三角形的判定和性质,矩形的性质,勾股定理,轴对称的性质,存在性问题,掌握的作出辅助线利用对称的性质解决问题是解题的关键.。
2016年内江市中考数学试题解析版

四川省内江市2016年中考数学试卷(解析版)A 卷(共100分)一、选择题(每小题3分,共36分)1.-2016的倒数是( )A .-2016B .-12016 C .12016 D .2016 [答案]B[考点]实数的运算。
[解析]非零整数n 的倒数是1n ,故-2016的倒数是12016 =-12016,故选B . 2.2016年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A .918×104B .9.18×105C .9.18×106D .9.18×107[答案]C[考点]科学记数法。
[解析] 把一个大于10的数表示成a ×10n (1≤a <10,n 是正整数)的形式,这种记数的方法叫科学记数法.科学记数法中,a 是由原数的各位数字组成且只有一位整数的数,n 比原数的整数位数少1.故选C .3.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A .75°B .65°C .45°D .30°[答案]A[考点]三角形的内角和、外角定理。
[解析]方法一:∠1的对顶角所在的三角形中另两个角的度数分别为60°,45°,∴∠1=180°-(60°+45°)=75°.方法二:∠1可看作是某个三角形的外角,根据三角形的外角等于与它不相邻的两个内角的和计算. 故选A .4.下列标志既是轴对称图形又是中心对称图形的是( )[答案]A[考点]中心对称与轴对称图形。
[解析]选项B 中的图形是轴对称图形,选项C 中的图形是中心对称图形,选项D 中的图形既不是轴对称图形也不是中心对称图形.只有选项A 中的图形符合题意.故选A .图1 30°45°1 A . B . C . D .5.下列几何体中,主视图和俯视图都为矩形的是( )[答案]B[考点]三视图。
宁夏2016年中考数学试卷(解析版)

2016年宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃【考点】有理数的减法.【专题】应用题;实数.【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下列计算正确的是()A.+=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)【考点】二次根式的混合运算;幂的乘方与积的乘方;完全平方公式.【分析】分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D、÷=(a≥0,b>0),正确.故选:D.【点评】此题主要考查了二次根式混合运算以及积的乘方运算以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【考点】众数;条形统计图;中位数.【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.8【考点】菱形的性质;三角形中位线定理.【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;故选B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的交点问题.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A 的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m=m(n+1)(n﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用平方差公式进行二次分解因式,也是难点所在.10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1.【考点】抛物线与x轴的交点.【分析】根据△>0⇔抛物线与x轴有两个交点,列出不等式即可解决问题.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点,属于中考常考题型.11.实数a在数轴上的位置如图,则|a﹣3|=3﹣a.【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a与3的关系是解题关键,注意差的绝对值是大数减小数.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【考点】圆锥的计算.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.【点评】本题考查圆锥的计算、扇形的弧长公式、圆的周长公式等知识,解题的关键是理解扇形的弧长等于这个圆锥的底面圆的周长,学会用方程的思想解决问题,属于中考常考题型.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD 的周长是16,则EC等于2.【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.【点评】本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.化简求值:(),其中a=2+.【考点】实数的运算.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【考点】利用频率估计概率;列表法与树状图法.【分析】(1)根据求概率的公式即可得到结论;(2)根据求概率的公式即可得到结论;(3)根据求概率的公式求得各项概率进行比较即可得到结论.【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【考点】等边三角形的性质.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【考点】分式方程的应用;一元一次不等式的应用.【专题】方程与不等式.【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE= BC=,由割线定理可证得结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;=S△AOB﹣S△ACD (2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO即可求得.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数y=(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;(2)∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D(2,),∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.四边形CDBO【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n 的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【考点】一次函数的应用;频数与频率;条形统计图.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.【点评】此题是一次函数的应用,主要考查了一次函数的性质,统计图,解本题的关键是统计图的分析.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B 移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.【考点】四边形综合题.【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,=AB•BC=3×4=12,又S矩形ABCD西藏历年中考真题 全国各省市历年中考真题 ∴S=S 矩形ABCD ﹣S △ADQ ﹣S △BPQ ﹣S △PCD =12﹣2x ﹣(x ﹣x 2)﹣(6﹣x )=x 2﹣2x+6=(x ﹣2)2+4,即S=(x ﹣2)2+4,∴S 为开口向上的二次函数,且对称轴为x=2,∴当0<x <2时,S 随x 的增大而减小,当2<x ≤3时,S 随x 的增大而增大,又当x=0时,S=5,当S=3时,S=,但x 的范围内取不到x=0,∴S 不存在最大值,当x=2时,S 有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x ,BP=x ,CP=4﹣x ,当QP ⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC ,∴∠BPQ=∠PDC ,且∠B=∠C ,∴△BPQ ∽△PCD ,∴=,即=,解得x=(舍去)或x=, ∴当x=时QP ⊥DP . 【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S 关于x 的关系式后,求S 的最值时需要注意x 的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
中考数学试题命题特点分析及展望 陈莉红

2016年中考数学试题命题特点分析及2017年命题趋势展望陈莉红江西省教研室梁靖江西省遂川县教研室2016年是全国使用2011版《数学课程标准》后的第二年中考,全国各地的中考数学试卷,在保持各自命题特点和优良传统的基础上,均在结合新课标的核心内容,特别是调整过的具体内容,总结贯彻新课标理念下的中考命题新经验的基础上,分别从考查内容和考查形式方面进行了局部调整,同时在创新试题方面呈现一些值得探讨和借鉴的可圈可点的新思路,以下选取部分2016年全国中考数学试题加以评析,并在此基础上尝试对2017年中考命题趋势谈点个人的看法.2016年全国中考数学试题新特点分析一、注重基础,突出“双基”的同时渗透数学“基本思想”的考查。
数学基础知识和基本技能是同学们必备的数学素养,所以突出“双基”的考查是每套试卷的重心之一.试题以基本概念、公式、定理法则等基础知识为载体,将考查同学们的数学基础知识与基本技能放在首位,命题点多面广,难度适宜,着眼于基本要求,考查全体学生的基础掌握与运用情况,意在考查同学们是否具备基本数学素养和学习能力,同时结合新情境,考查学生对基础知识和技能的理解和运用的灵活性.示例一1.(2016广州)中国人很早开始使用负数,中国古代数学着作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(2016?北京)神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为()A.×103B.28×103C.×104D.×1053.(2016?茂名)我国古代数学名着《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩4.(2016?漳州)一个矩形的面积为a2+2a,若一边长为a,则另一边长为.5.(2016?广州)已知A=22()4()a b abab a b+--(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣5x的图象上,求A的值.6.(2016?南京)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【试题点评】上述6个题目是对代数基础知识和基本技能和数学思想方法的考查和应用,第1题考查了有理数的概念的理解.这类题目一般比较容易,只要同学们看清题目,理解题意即可快速准确地选出答案;第2题科学记数法,背景新颖而有教育性,但数据简单,只要掌握科学记数法的表示一基本方法即可快而准确作答;第3题以我国古代数学问题为背景,考查二元一次方程组的实际运用,需要同学们找出文字中蕴含的数量关系,可较易列出方程组.第4题将矩形的性质与整式的运算结合在一起,根据矩形性质列出算式,利用因式分解和约分的法则即可。
2016年黑龙江省龙东地区中考数学试题(解析版)

2016年黑龙江省龙东地区中考数学试卷一、填空题(共10小题,每小题3分,满分30分)1.2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为人.2.在函数y=中,自变量x的取值范围是.3.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.4.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.5.不等式组有3个整数解,则m的取值范围是.6.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.7.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.8.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为cm.9.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是.10.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.二、选择题(共10小题,每小题3分,满分30分)11.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b212.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A. B. C. D.14.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是7015.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t 的大致图象为()A. B. C. D.16.关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B. C.2+或2﹣D.4+2或2﹣18.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.619.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.420.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1三、解答题(满分60分)21.先化简,再求值:(1+)÷,其中x=4﹣tan45°.22.如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC 沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.23.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.24.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.27.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.2016年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为8×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将800万用科学记数法表示为:8×106.故答案为:8×106.2.在函数y=中,自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3x﹣6≥0,解得x≥2,故答案为:x≥2.3.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【考点】矩形的判定;平行四边形的性质.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.4.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出绿球的概率是.【考点】概率公式.【分析】由在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,∴摸出绿球的概率是: =.故答案为:.5.不等式组有3个整数解,则m的取值范围是2<x≤3.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.【解答】解:不等式的整数解是0,1,2.则m的取值范围是2<x≤3.故答案是:2<x≤3.6.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180 元.【考点】一元一次方程的应用.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.7.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为2.【考点】轴对称-最短路线问题;圆周角定理.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:2.8.小丽在手工制作课上,想用扇形卡纸制作一个圣诞帽,卡纸的半径为30cm,面积为300πcm2,则这个圣诞帽的底面半径为10 cm.【考点】圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形卡纸制作一个圣诞帽,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设卡纸扇形的半径和弧长分别为R、l,圣诞帽底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.故答案是:10.9.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是或.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】分两种情况:①当点E在线段AD上时,由四边形ABCD是平行四边形,可证得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值;②当当点E在射线DA上时,同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值.【解答】解:∵AE=AD,∴分两种情况:①当点E在线段AD上时,如图1所示∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=2AE=AD=BC,∴DE:BC=2:3,∴EF:FC=2:3;②当点E在线段DA的延长线上时,如图2所示:同①得:△EFD∽△CFB,∴EF:FC=DE:BC,∵AE=AD,∴DE=4AE=AD=BC,∴DE:BC=4:3,∴EF:FC=4:3;综上所述:EF:FC的值是或;故答案为:或.10.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2, +1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2+2016×1=2018,所以,点A的对应点A′的坐标是,故答案为:.二、选择题(共10小题,每小题3分,满分30分)11.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=2a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.13.如图,由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为3,1,从而确定正确的选项.【解答】解:由分析得该组合体的主视图为:故选B.14.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是70【考点】极差;算术平均数;中位数;众数.【分析】根据表中数据,分别利用中位数、众数、极差、平均数的定义即可求出它们,然后就可以作出判断.【解答】解:依题意得众数为90;中位数为(80+90)=85;极差为100﹣70=30;平均数为(70×2+80×2+90×3+100)=83.75.故B正确.故选B.15.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t 的大致图象为()A. B. C. D.【考点】动点问题的函数图象.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.16.关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可.【解答】解:分式方程去分母得:2x﹣m=3x+3,解得:x=﹣m﹣3,由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,解得:m<﹣3,故选D17.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B. C.2+或2﹣D.4+2或2﹣【考点】三角形的外接圆与外心;等腰三角形的性质.【分析】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.【解答】解:由题意可得,如右图所示,存在两种情况,当△ABC为△A1BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴=2﹣,当△ABC为△A2BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴S△A2BC===2+,由上可得,△ABC的面积为或2+,故选C.18.已知反比例函数y=,当1<x<3时,y的最小整数值是()A.3 B.4 C.5 D.6【考点】反比例函数的性质.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y==2;当x=1时,y==6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.19.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.4【考点】二元一次方程的应用.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x 根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C.20.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1【考点】四边形综合题.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF 沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.三、解答题(满分60分)21.先化简,再求值:(1+)÷,其中x=4﹣tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,求出x的值代入进行计算即可.【解答】解:原式=•=,当x=4﹣tan45°=4﹣1=3时,原式==.22.如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC 沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)由B点坐标和B1的坐标得到△ABC向右平移5个单位,再向上平移1个单位得到△A1B1C1,则根据点平移的规律写出A1和C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==4,点A经过点A1到达A2的路径总长=+=+2π.23.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【考点】二次函数与不等式(组);待定系数法求一次函数解析式;待定系数法求二次函数解析式.【分析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出太阳还是解析式.(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,∴,解得,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x<﹣4或x>﹣1.24.某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.(2)用总数减去A、C、D中的人数,即可解决,画出条形图即可.(3)用样本估计总体的思想解决问题.【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.【考点】一次函数的应用.【分析】(1)根据图象即可得出结论.(2)先求出甲乙两人的速度,再列出方程即可解决问题.(3)根据y甲﹣y乙=20或y乙﹣y甲=20,列出方程即可解决.【解答】解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==75千米/小时.由题意(75﹣60)x=60解得x=4小时.(3)设y甲=kx+b,则解得,∴y甲=60x﹣300,设y乙=k′x+b′,则,解得,∴y乙=100x﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60x﹣300﹣=20或100x﹣600﹣(60x﹣300)=20或60x﹣300=20或60x﹣300=280解得x=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.27.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,根据“总费用=买A种足球费用+买B 种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出那种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.28.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).(1)求点A和点B的坐标.(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.(3)当m=3.5时,请直接写出点P的坐标.【考点】四边形综合题.【分析】(1)先利用因式分解法解方程x2﹣11x+30=0可得到OB=6,OC=5,则B点坐标为(6,0),作AM⊥x轴于M,如图,利用等腰直角三角形的性质得OM=BM=AM=OB=3,于是可写出B点坐标;(2)作CN⊥x轴于N,如图,先利用勾股定理计算出CN得到C点坐标为(4,﹣3),再利用待定系数法分别求出直线OC的解析式为y=﹣x,直线OA的解析式为y=x,则根据一次函数图象上点的坐标特征得到Q(t,t),R(t,﹣t),所以QR=t﹣(﹣t),从而得到m关于t的函数关系式.(3)利用待定系数法求出直线AB的解析式为y=﹣x+6,直线BC的解析式为y=x﹣9,然后分类讨论:当0<t<3时,利用t=3.5可求出t得到P点坐标;当3≤t<4时,则Q(t,﹣t+6),R(t,﹣t),于是得到﹣t+6﹣(﹣t)=3.5,解得t=10,不满足t的范围舍去;当4≤t<6时,则Q(t,﹣t+6),R(t, t﹣9),所以﹣t+6﹣(t﹣9)=3.5,然后解方程求出t得到P点坐标.【解答】解:(1)∵方程x2﹣11x+30=0的解为x1=5,x2=6,∴OB=6,OC=5,∴B点坐标为(6,0),作AM⊥x轴于M,如图,∵∠OAB=90°且OA=AB,∴△AOB为等腰直角三角形,。
2016年武汉市中考数学试卷及答案(解析版)
8.某车间 20 名工人日加工零件数如下表所示:
日加工零件数
4
5
6
78ຫໍສະໝຸດ 人数265
4
3
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5
B.5、5、6
C.6、5、6
D.5、6、6
【考点】众数;加权平均数;中位数.根据众数、平均数、中位数的定义分别进行解答.
2 / 13
【答案】D 【解析】5 出现了 6 次,出现的次数最多,则众数是 5;把这些数从小到大排列,中位数是 第 10,11 个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7 ×4+8×3)÷20=6;故选 D.
【解析】构造等腰三角形,①分别以 A,B 为圆心,以 AB 的长为半径作圆;②作 AB 的中 垂线.如图,一共有 5 个 C 点,注意,与 B 重合及与 AB 共线的点要排除。
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.计算 5+(-3)的结果为_______. 【考点】有理数的加法 【答案】2 【解析】原式=2 12 . 某 市 2016 年 初 中 毕 业 生 人 数 约 为 63 000 , 数 63 000 用 科 学 记 数 法 表 示 为 ___________. 【考点】科学记数法 【答案】6.3×104 【解析】科学计数法的表示形式为 N=a×10n 的形式,其中 a 为整数且 1≤│a│<10,n 为 N 的整数位数减 1. 13.一个质地均匀的小正方体,6 个面分别标有数字 1、1、2、4、5、5.若随机投掷一次 小正方体,则朝上一面的数字是 5 的概率为_______. 【考点】概率公式 【答案】 1
C.x2+6x+9
2016年山西省中考数学试题含答案解析(Word版)
2016年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61- 2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( ) A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”)13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是Oe的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是¼ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是¼ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于Oee,AB=2,D为O上一点, ︒ABD,AE⊥BD与点E,则△BDC的长是.=∠4520.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ∆是等腰三角形.2016年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( A ) A .61 B .-6 C .6 D .61- 考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5由②得x <3所以不等式组的解集是-5<x <33.(2016·山西)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A .5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.(2016·山西)下列运算正确的是 ( D )A .49232-=⎪⎭⎫ ⎝⎛- B .63293a a =)( C .251555-3-=÷ D .23-50-8=考点:实数的运算,幂的乘方,同底数幂的除法,分析:根据实数的运算可判断A . 根据幂的乘方可判断B .根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( C ) A .3π B .2πC .πD .π2 考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OFA 为等 边三角形∴︒=∠602,从而可以得出»FE所对的圆心角然后根据弧长公式即可求出解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6∴»FE=πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF 从而得出黄金矩形解答:CG =CF )15(-,GH =2CF∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南 门为坐标原点,从而求出太原火车站的点(正 好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标(3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大 ∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小解答:在反比函数x my =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个 解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94考点:树状图或列表求概率 分析:列表如图:解答:由表可知指针指向的数都是奇数的概率为9415.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠ 从而得出31∠=∠,所以HE =HA . 再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得 DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:112222+---x xx x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分) =112+-+x xx x ……………………………(3分) =1+x x……………………………(4分) 当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理 阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O e 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是¼ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是¼ABC 的中点, ∴MA =MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ . 考点:圆的证明分析:(1)已截取CG =AB ∴只需证明BD =DG 且MD ⊥BC ,所以需证明MB =MG 故证明△MBA ≌△MGC 即可 (2)AB =2,利用三角函数可得BE =2由阿基米德折弦定理可得BE =DE +DC则△BDC 周长=BC +CD +BD =BC +DC +DE +BE =BC +(DC +DE )+BE=BC +BE +BE =BC +2BE 然后代入计算可得答案 解答:(1)证明:又∵C A ∠=∠, …………………(1分) ∴ △MBA ≌△MGC . …………………(2分) ∴MB =MG . …………………(3分) 又∵MD ⊥BC ,∵BD =GD . …………………(4分) ∴CD =CG +GD =AB +BD . …………………(5分) (2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC的长是22+.220.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点:一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A应付款y与购买量x的函数关系为x=y8.5方案B应付款y与购买量x的函数关系为2000y=x5+然后分段求出哪种方案付款少即可(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.解答:(1)方案A:函数表达式为x=.………………………(1分)y8.5方案B:函数表达式为20005+y………………………(2分)=x(2)由题意,得2000x.………………………(3分)<x8.5+5解不等式,得x<2500 ………………………(4分)∴当购买量x的取值范围为25002000<≤x时,选用方案A比方案B付款少.………………………(5分)(3)他应选择方案B.………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为︒30,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,ABFE⊥于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)考点:三角函数的应用分析:过点A作CDAG⊥,垂足为G,利用三角函数求出CG,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出 CH ,由图得出EH ,再利用三角函数值求出EF 解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分)由题意,得203050=-=GD .…………(3分) 452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分) 由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CDCH .……………………(6分)290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分) 在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 菱形 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时. (4)开放型题目,答对即可解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.Θ四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '=Θ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE //Θ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分) (3)过点B 作AC BF ⊥,垂足为F ,BC BA =Θ,5102121=⨯===∴AC AF CF .在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠Θ, ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '=Θ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构 成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)Θ抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8), ⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分)Θ()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又Θ抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =.Θ点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=………………………………………………………(5分)Θ点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分) (3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.Θ点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,。
新疆2016中考试题数学卷(解析版)
一、选择题:本大题共9小题,每小题5分,共45分1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣【答案】A.【解析】试题分析:根据相反数的概念可得﹣3的相反数是3,故答案选A.考点:相反数.2.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24° B.34° C.56° D.124°【答案】B.【解析】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选B.考点:平行线的性质.3.不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【答案】C.【解析】试题分析:解不等式①得x≥1,解不等式②得x≤2,所以不等式组的解集为1≤x≤2.故答案选C.考点:一元一次不等式组的解法.4.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D.考点:全等三角形的判定.5.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°【答案】D.【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,可得旋转角是∠CAC′=180°﹣30°=150°.故答案选D.考点:旋转的性质.6.某小组同学在一周内参加家务劳动时间与人数情况如表所示:劳动时间(小2 3 4时)人数 3 2 1下列关于“劳动时间”这组数据叙述正确的是()A.中位数是2 B.众数是2 C.平均数是3 D.方差是0【答案】B.【解析】试题分析:根据众数的定义可知,这组数据的众数是2,故答案选B. 考点:众数;中位数;平均数;方差.7.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=BC B. = C.△ADE∽△ABC D.S△ADE:S△ABC=1:2【答案】D.考点:相似三角形的判定及性质.8.一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4 【答案】C.【解析】试题分析:x2﹣6x﹣5=0,把方程的常数项移到右边得,x2﹣6x=5,方程两边都加上32得,x2﹣6x+9=5+9,所以(x﹣3)2=14,故答案选C. 考点:解一元二次方程.9.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B.【解析】试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.二、填空题:本大题共6小题,每小题5分,共30分10.分解因式:x 3﹣4x= . 【答案】x (x+2)(x ﹣2).【解析】试题分析:先提取公因式x ,再对余下的多项式利用平方差公式继续分解即可,即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).考点:因式分解.11.计算:= .【答案】325a c . 【解析】试题分析:先约分,再根据分式的乘除法运算的计算法则计算即可,即原式=3225125a c a a c =⋅. 考点:分式的运算.12.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是 .【答案】53.【解析】试题分析:由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=53.考点:概率.13.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为.【答案】10(1+x)2=13.【解析】试题分析:设该厂加工干果重量的月平均增长率为x,根据“十一月份加工量=九月份加工量×(1+月平均增长率)2”,可列方程为:10(1+x)2=13.考点:一元二次方程的应用.14.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.【答案】x>49.【解析】试题分析:根据程序可得:第一次的结果为2x﹣10,没有输出,则2x﹣10>88,解得x>49.故x的取值范围是x>49.考点:一元一次不等式的应用.15.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为.【答案】370.考点:数字规律探究题.三、解答题16.计算:(﹣2)2+|1﹣|﹣2sin60°.【答案】3.【解析】试题分析:先根据乘方的运算法则、绝对值、特殊角的三角函数值依次计算后,在合并即可.试题解析:原式=4+﹣1﹣2×=.考点:实数的运算.17.某学校为绿化环境,计划种植600棵树,实际劳动中每小时植树的数量比原计划多20%,结果提前2小时完成任务,求原计划每小时种植多少棵树?【答案】原计划每小时种植50棵树.答:原计划每小时种植50棵树.考点:分式方程的应用.18.某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B 舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A 唱歌35%B 舞蹈 aC 朗诵25%D 器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共人,a= ,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.1. 【答案】(1)300,10%,统计图见解析;(2)700;(3)6(2)2000×35%=700(人),答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人;(3)列表如下:A B C DA AB AC ADB AB BC BDC AC BCCD D AD BD CD由表格可知,在A 、B 、C 、D 四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种, ∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为61122 . 考点:条形统计图;用样本估计总体;列表法与树状图法.19.如图,某校数学兴趣小组为测得校园里旗杆AB 的高度,在操场的平地上选择一点C ,测得旗杆顶端A 的仰角为30°,再向旗杆的方向前进16米,到达点D 处(C 、D 、B 三点在同一直线上),又测得旗杆顶端A 的仰角为45°,请计算旗杆AB 的高度(结果保留根号)【答案】旗杆AB 的高度是(83+8)米.【解析】试题分析:根据锐角三角函数可得AB=CB •tan30°,AB=BD •tan45°,所以CB •tan30°=BD •tan45°,即(CD+DB )×33=BD ×1,解得解得BD=83+8,由AB=BD •tan45°即可求得旗杆AB 的高度是(83+8)米.解得BD=83+8,∴AB=BD•tan45°=(83+8)米,即旗杆AB的高度是(83+8)米.考点:解直角三角形的应用.四、解答题20.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【答案】(1)4h;(2)y=120x﹣40(1≤x≤3);(3)小刚一家出发2.5小时时离目的地120km远.【解析】试题分析:(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一考点:一次函数的应用.21.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.【答案】(1)详见解析;(2)7.【解析】试题分析:(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D 与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论.∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,∴BG=,∴BD==,∴PD ′+PB 的最小值为.考点:四边形综合题.22.如图,在⊙O 中,半径OA⊥OB,过点OA 的中点C 作FD∥OB 交⊙O 于D 、F 两点,且CD=,以O 为圆心,OC 为半径作,交OB 于E 点.(1)求⊙O 的半径OA 的长;(2)计算阴影部分的面积.【答案】(1)2;(2)1223π+.【解析】试题分析:(1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S圆=S△CDO+S扇形OBD﹣S扇形OCE计算即可.试题解析:(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.考点:垂径定理;扇形面积的计算.23.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x 轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)详见解析;(3)符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).【解析】试题分析:(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,考点:二次函数的综合题.。
(完整word版)四川省内江市2016年中考数学试题及答案(Word解析版)
四川省内江市2016年中考数学试卷A卷(共100分)一、选择题(每小题3分,共36分)1.-2016的倒数是( )A.-2016 B.-12016C.12016D.20162.2016年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A.918×104B.9.18×105C.9.18×106D.9.18×1073.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75°B.65°C.45°D.30°4.下列标志既是轴对称图形又是中心对称图形的是( )5.下列几何体中,主视图和俯视图都为矩形的是( )6.在函数y=3x-中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠47.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A.最高分B.中位数C.方差D.平均数8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-9.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形10.如图2,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )A.π-4 B.23π-1 C.π-2 D.23π-2图130°45°1A.B.C.D.A.B.C.D.11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )ABC .32D .不能确定 12.一组正方形按如图3所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2016B 2016C 2016D 2016的边长是( )A .(12)2015 B .(12)2016 C .)2016 D .)2015 二、填空题(每小题5分,共20分)13.分解因式:ax 2-ay 2=______.14.化简:(23a a -+93a-)÷3a a +=______. 15.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE ⊥BC ,垂足为点E ,则OE =______.16.将一些半径相同的小圆按如图5所示的规律摆放,请仔细观察,第n 个图形有______个小圆.(用含n 的代数式表示)三、解答题(本大题共5小题,共44分)17.(7分)计算:|-3|tan 30°-(2016-π)0+(12)-1.图2 DOCEBA 图4 第1个图 第2个图 第3个图 第4个图图518.(9分)如图6所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.19.(9分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A .篮球、B .乒乓球、C .跳绳、D .踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图7(1),图7(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).20.(9分)如图8,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).图7(1)图7(2)DC EF B A图6图821.(10分)如图9,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG·HB的值.图9B卷一、填空题(每小题6分,共24分)22.任取不等式组30,250k k -⎧⎨+⎩≤>的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为______.23.如图10,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于______.24.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,则P ,Q 的大小关系是______.25.如图12所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______.二、解答题(每小题12分,共36分)26.(12分)问题引入:(1)如图13①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC =______(用α表示);如图13②,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC =______(用α表示). (2)如图13③,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,请猜想∠BOC =______(用α表示),并说明理由.类比研究:(3)BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n∠ECB ,∠A =α,请猜想∠BOC =______. 27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.OC B A 图13②ABCO 图13① O C B A E D 图13③图12图11 图1028.(12分)如图15,已知抛物线C :y =x 2-3x +m ,直线l :y =kx (k >0),当k =1时,抛物线C 与直线l 只有一个公共点.(1)求m 的值;(2)若直线l 与抛物线C 交于不同的两点A ,B ,直线l 与直线l 1:y =-3x +b 交于点P ,且1OA +1OB =2OP,求b 的值; (3)在(2)的条件下,设直线l 1与y 轴交于点Q ,问:是否存在实数k 使S △APQ =S △BPQ ,若存在,求k 的值;若不存在,说明理由.四川省内江市2016年中考数学试卷 解析一、选择题(每小题3分,共36分)1.-2016的倒数是( )A .-2016B .-12016 C .12016D .2016 [答案]B答案图图15图14[解析]非零整数n的倒数是1n,故-2016的倒数是12016-=-12016,故选B.2.2016年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A.918×104B.9.18×105C.9.18×106D.9.18×107[答案]C[解析] 把一个大于10的数表示成a×10n(1≤a<10,n是正整数)的形式,这种记数的方法叫科学记数法.科学记数法中,a是由原数的各位数字组成且只有一位整数的数,n比原数的整数位数少1.故选C.3.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75°B.65°C.45°D.30°[答案]A[解析]方法一:∠1的对顶角所在的三角形中另两个角的度数分别为60°,45°,∴∠1=180°-(60°+45°)=75°.方法二:∠1可看作是某个三角形的外角,根据三角形的外角等于与它不相邻的两个内角的和计算.故选A.4.下列标志既是轴对称图形又是中心对称图形的是( )[答案]A[解析]选项B中的图形是轴对称图形,选项C中的图形是中心对称图形,选项D中的图形既不是轴对称图形也不是中心对称图形.只有选项A中的图形符合题意.故选A.5.下列几何体中,主视图和俯视图都为矩形的是( )[答案]B选项A 选项B 选项C 选项D主视图三角形矩形矩形梯形俯视图圆(含圆心) 矩形圆矩形故选B.6.在函数y=3x-中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4[答案]D[解析]欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.图130°45°1A.B.C.D.A.B.C.D.∴x 的取值范围是30,40.x x -⎧⎨-⎩≥≠解得x ≥3且x ≠4.故选D . 7.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A .最高分B .中位数C .方差D .平均数[答案]B[解析]这里中位数是预赛成绩排序后第13名同学的成绩,成绩大于中位数则能进入决赛,否则不能. 故选B .8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地,已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( )A .1102x +=100xB .1100x =1002x +C .1102x -=100xD .1100x =1002x - [答案]A[解析]依题意可知甲骑自行车的平均速度为(x +2)千米/时.因为他们同时到达C 地,即甲行驶110千米所需的时间与乙行驶100千米所需时间相等,所以1102x +=100x. 故选A .9.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形[答案]C[解析]满足选项A 或选项B 中的条件时,不能推出四边形是平行四边形,因此它们都是假命题.由选项D 中的条件只能推出四边形是菱形,因此也是假例题.只有选项C 中的命题是真命题.故选C .10.如图2,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )A .π-4B .23π-1C .π-2D .23π-2[答案]C[解析]∵∠O =2∠A =2×45°=90°.∴S 阴影=S 扇形OBC -S △OBC =2902360πg -12×2×2=π-2. 故选C .11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )ABC .32D .不能确定 [答案]B[解析]如图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC, 图2CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于H .则BH =32,AH. 连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △ABC . ∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH . ∴PD +PE +PF =AH. 故选B .12.一组正方形按如图3所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2016B 2016C 2016D 2016的边长是( )A .(12)2015 B .(12)2016 C .)2016 D .)2015 [答案] D[解析]易知△B 2C 2E 2∽△C 1D 1E 1,∴2211B C C D =2211B E C E =1111D E C E =tan 30°. ∴B 2C 2=C 1D 1·tan 30°.∴C 2D 2. 同理,B 3C 3=C 2D 2·tan 30°=)2; 由此猜想B n C n =)n -1. 当n =2016时,B 2016C 2016=)2015. 故选D .二、填空题(每小题5分,共20分)13.分解因式:ax 2-ay 2=______.[答案]a (x -y )(x +y ).[解析]先提取公因式a ,再用平方差公式分解.原式=a (x 2-y 2)=a (x -y )(x +y ).故选答案为:a (x -y )(x +y ). P B ADEF 答案图 C H14.化简:(23a a -+93a-)÷3a a +=______. [答案]a .[解析]先算小括号,再算除法.原式=(23a a --93a -)÷3a a +=293a a --÷3a a +=(a +3)·3a a +=a . 故答案为:a .15.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE ⊥BC ,垂足为点E ,则OE =______.[答案]125[解析]∵菱形的对角线互相垂直平分,∴OB =3,OC =4,∠BOC =90°.∴BC5.∵S △OBC =12OB ·OC ,又S △OBC =12BC ·OE , ∴OB ·OC =BC ·OE ,即3×4=5OE .∴OE =125. 故答案为:125. 16.将一些半径相同的小圆按如图5所示的规律摆放,请仔细观察,第n 个图形有______个小圆.(用含n 的代数式表示)[答案] n 2+n +4 [解析]每个图由外围的4个小圆和中间的“矩形”组成,矩形的面积等于长成宽.由此可知第1个图中小圆的个数=1×2+4,第2个图中小圆的个数=2×3+4,第3个图中小圆的个数=3×4+4,……第n 个图中小圆的个数=n (n +1)+4=n 2+n +4.故答案为:n 2+n +4.三、解答题(本大题共5小题,共44分)17.(7分)计算:|-3|tan 30°-(2016-π)0+(12)-1. 第1个图 第2个图 第3个图 第4个图图5DOC EBA 图4解:原式=3-2-1+2 ································································· 5分 =3+1-2-1+2 ························································································· 6分=3. ········································································································ 7分18.(9分)如图6所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.(1)证明:∵点E 是AD 的中点,∴AE =DE .∵AF ∥BC ,∴∠AFE =∠DCE ,∠F AE =∠CDE .∴△EAF ≌△EDC . ····················································································· 3分∴AF =DC .∵AF =BD ,∴BD =DC ,即D 是BC 的中点. ··································································· 5分(2)四边形AFBD 是矩形.证明如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形. ····································································· 7分∵AB =AC ,又由(1)可知D 是BC 的中点,∴AD ⊥BC .∴□AFBD 是矩形. ····················································································· 9分19.(9分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A .篮球、B .乒乓球、C .跳绳、D .踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图7(1),图7(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).解:(1)由扇形统计图可知:扇形A 的圆心角是36°,所以喜欢A 项目的人数占被调查人数的百分比=36360×100%=10%. ···················· 1分 由条形图可知:喜欢A 类项目的人数有20人,所以被调查的学生共有20÷10%=200(人). ······················································ 2分(2)喜欢C 项目的人数=200-(20+80+40)=60(人), ·········································· 3分图7(1)图7(2)DC EF B A图6因此在条形图中补画高度为60的长方条,如图所示.·········································································· 4分(3)画树状图如下:分 (7)从树状图或表格中可知,从四名同学中任选两名共有12种结果,每种结果出现的可能性相等,其中选中甲乙两位同学(记为事件A )有2种结果,所以P (A )=212=16. ·························································································· 9分20.(9分)如图8,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).解:如图,过点C 作CH ⊥AB 于H ,则△BCH 是等腰直角三角形.设CH =x ,则BH =x ,AH =CH ÷tan 30°. ·····························································2分∵AB =200,∴x =200.∴x 1). ········································································· 4分 ∴BC x =). ······································································ 6分∵两船行驶4小时相遇,∴可疑船只航行的平均速度=)÷4=). ························ 8分答:可疑船只航行的平均速度是每小时)海里. ································· 9分答案图 甲 乙 丙 丁 乙 甲 丙 丁 丙 甲 乙 丁 丁甲 乙 丙图8答案图21.(10分)如图9,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F .⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接BD ,FH .(1)试判断BD 与⊙O 的位置关系,并说明理由;(2)当AB =BE =1时,求⊙O 的面积;(3)在(2)的条件下,求HG ·HB 的值.(1)直线BD 与⊙O 相切.理由如下:如图,连接OB ,∵BD 是Rt △ABC 斜边上的中线,∴DB =DC .∴∠DBC =∠C .∵OB =OE ,∴∠OBE =∠OEB =∠CED .∵∠C +∠CED =90°,∴∠DBC +∠OBE =90°.∴BD 与⊙O 相切; ······················································································ 3分(2)连接AE .∵AB =BE =1,∴AE.∵DF 垂直平分AC ,∴CE =AE.∴BC =1. ····································· 4分∵∠C +∠CAB =90°,∠DF A +∠CAB =90°,∴∠CAB =∠DF A .又∠CBA =∠FBE =90°,AB =BE ,∴△CAB ≌△FEB .∴BF =BC =1. ························································ 5分∴EF 2=BE 2+BF 2=12+(1)2=4+. ·················································· 6分∴S ⊙O =14π·EF 2. ······································································· 7分 (3)∵AB =BE ,∠ABE =90°,∴∠AEB =45°.∵EA =EC ,∴∠C =22.5°. ··········································································· 8分∴∠H =∠BEG =∠CED =90°-22.5°=67.5°.∵BH 平分∠CBF ,∴∠EBG =∠HBF =45°.∴∠BGE =∠BFH =67.5°. ∴BG =BE =1,BH =BF =1. ································································ 9分∴GH =BH -BG.∴HB ·HG×(1)=2. ························································· 10分B 卷一、填空题(每小题6分,共24分)图9答案图22.任取不等式组30,250k k -⎧⎨+⎩≤>的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为______.[答案]13[解析]不等式组30,250k k -⎧⎨+⎩≤>的解集为-52<k ≤3,其整数解为k =-2,-1,0,1,2,3. 其中,当k =-2,-1时,方程2x +k =-1的解为非负数.所以所求概率P =26=13. 故答案为:13. 23.如图10,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于______. [答案]32[解析]设点A 的坐标为(a ,5a). ∵AB ∥x 轴,∴点B 的纵坐标为5a . 将y =5a 代入y =8x ,求得x =85a .∴AB =85a -a =35a . ∴S △OAB =12·35a ·5a =32.故答案为:32.24.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,则P ,Q 的大小关系是______.[答案]P >Q[解析]∵抛物线的开口向下,∴a <0.∵-2b a=1,∴b >0且a =-2b . ∴|2a +b |=0,|2a -b |=b -2a .∵抛物线与y 轴的正半轴相交,∴c >0.∴|3b +2c |=3b +2c .由图象可知当x =-1时,y <0,即a -b +c <0. ∴-2b -b +c <0,即3b -2c >0.∴|3b -2c |=3b -2c . ∴P =0+3b -2c =3b -2c >0,Q =b -2a -(3b +2c )=-(b +2c )<0.∴P >Q .故答案为:P >Q .25.如图12所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______.图10图11 图12[答案]10[解析]作点C 关于y 轴的对称点C 1(-1,0),点C 关于x 轴的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=10.即△CDE 周长的最小值是10.故答案为:10.二、解答题(每小题12分,共36分)26.(12分)问题引入:(1)如图13①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC =______(用α表示);如图13②,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC =______(用α表示). (2)如图13③,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,请猜想∠BOC =______(用α表示),并说明理由.类比研究:(3)BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n∠ECB ,∠A =α,请猜想∠BOC =______. 解:(1)第一个空填:90°+2α; ······································································ 2分 第一个空填:90°+3α. ················································································ 4分 第一空的过程如下:∠BOC =180°-(∠OBC +∠OCB )=180°-12(∠ABC +∠ACB )=180°-12(180°-∠A )=90°+2α. 第二空的过程如下:∠BOC =180°-(∠OBC +∠OCB )=180°-13(∠ABC +∠ACB )=180°-13(180°-∠OC B A 图13②ABCO 图13① O C B A E D 图13③A )=120°+3α. (2)答案:120°-3α.过程如下: ∠BOC =180°-(∠OBC +∠OCB )=180°-13(∠DBC +∠ECB )=180°-13(180°+∠A )=120°-3α. 8分(3)答案:120°-3α.过程如下: ∠BOC =180°-(∠OBC +∠OCB )=180°-1n (∠DBC +∠ECB )=180°-1n (180°+∠A )=1n n -·180°-nα. ······································································································· 12分 27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.解:(1)苗圃园与墙平行的一边长为(30-2x )米.依题意可列方程x (30-2x )=72,即x 2-15x +36=0. ······························································· 2分解得x 1=3,x 2=12. ···················································································· 4分(2)依题意,得8≤30-2x ≤18.解得6≤x ≤11.面积S =x (30-2x )=-2(x -152)2+2252(6≤x ≤11). ①当x =152时,S 有最大值,S 最大=2252; ······················································· 6分 ②当x =11时,S 有最小值,S 最小=11×(30-22)=88. ······································· 8分(3)令x (30-2x )=100,得x 2-15x +50=0.解得x 1=5,x 2=10. ·················································································· 10分∴x 的取值范围是5≤x ≤10. ······································································· 12分28.(12分)如图15,已知抛物线C :y =x 2-3x +m ,直线l :y =kx (k >0),当k =1时,抛物线C 与直线l 只有一个公共点.(1)求m 的值;(2)若直线l 与抛物线C 交于不同的两点A ,B ,直线l 与直线l 1:y =-3x +b 交于点P ,且1OA +1OB =2OP,求b 的值; (3)在(2)的条件下,设直线l 1与y 轴交于点Q ,问:是否存在实数k 使S △APQ =S △BPQ ,若存在,求k 的值;若不存在,说明理由.图14解:(1)∵当k =1时,抛物线C 与直线l 只有一个公共点,∴方程组23,y x x m y x⎧=-+⎨=⎩有且只有一组解. ····················································· 2分 消去y ,得x 2-4x +m =0,所以此一元二次方程有两个相等的实数根.∴△=0,即(-4)2-4m =0.∴m =4. ··································································································· 4分(2)如图,分别过点A ,P ,B 作y 轴的垂线,垂足依次为C ,D ,E ,则△OAC ∽△OPD ,∴OP OA =PD AC . 同理,OP OB =PD BE . ∵1OA +1OB =2OP ,∴OP OA +OP OB =2. ∴PD AC +PD BE =2. ∴1AC +1BE =2PD ,即AC BE AC BE +g =2PD. ······················································ 5分 解方程组,3y kx y x b =⎧⎨=-+⎩得x =3b k +,即PD =3b k +. ··········································· 6分 由方程组2,34y kx y x x =⎧⎨=-+⎩消去y ,得x 2-(k +3)x +4=0.∵AC ,BE 是以上一元二次方程的两根,∴AC +BE =k +3,AC ·BE =4. ···································································· 7分 ∴34k +=23bk +. 解得b =8. ································································································ 8分(3)不存在.理由如下: ················································································· 9分 假设存在,则当S △APQ =S △BPQ 时有AP =PB ,于是PD -AC =PE -PD ,即AC +BE =2PD .由(2)可知AC +BE =k +3,PD =83k +, ∴k +3=2×83k +,即(k +3)2=16. 解得k =1(舍去k =-7). ············································································ 11分 当k =1时,A ,B 两点重合,△QAB 不存在.图15答案图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年上海市中考数学试卷
一、选择题:本大题共6小题,每小题4分,共24分 1.如果a与3互为倒数,那么a是( ) A.﹣3 B.3 C.﹣ D. 2.下列单项式中,与a2b是同类项的是( ) A.2a2b B.a2b2C.ab2D.3ab 3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( ) A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3 4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮
球运动次数的平均数是( ) 次数 2 3 4 5 人数 2 2 10 6 A.3次 B.3.5次 C.4次 D.4.5次 5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向
量、表示为( ) A. +B. ﹣C.﹣ +D.﹣ ﹣ 6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )
A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8 二、填空题:本大题共12小题,每小题4分,共48分 7.计算:a3÷a= . 8.函数y=的定义域是 . 9.方程=2的解是 . 10.如果a=,b=﹣3,那么代数式2a+b的值为 .
11.不等式组的解集是 . 12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是 . 13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而
减小,那么k的取值范围是 . 14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的
一面出现的点数是3的倍数的概率是 . 15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比
是 . 16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数
据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是 .
17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°
,此时航拍
无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为 米.(精确到1米,参考数据:≈1.73)
18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′
处.如
果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为 . 三、解答题:本大题共7小题,共78分 19.计算:|﹣1|﹣﹣+.
20.解方程:﹣=1. 21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为
点E,联结CE,求: (1)线段BE的长; (2)∠ECB的余切值.
22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,
A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人
的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题: (1)求yB关于x的函数解析式; (2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?
23.已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD. (1)求证:AD=CE; (2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形. 24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,
且OC=5OB,抛物线的顶点为点D. (1)求这条抛物线的表达式; (2)联结AB、BC、CD、DA,求四边形ABCD的面积; (3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.
25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,
点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB. (1)求线段CD的长; (2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长; (3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围. 2016年上海市中考数学试卷
参考答案与试题解析
一、选择题:本大题共6小题,每小题4分,共24分 1.如果a与3互为倒数,那么a是( ) A.﹣3 B.3 C.﹣ D. 【考点】倒数. 【分析】根据乘积为1的两个数互为倒数,可得答案. 【解答】解:由a与3互为倒数,得 a是, 故选:D. 【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
2.下列单项式中,与a2b是同类项的是( ) A.2a2b B.a2b2C.ab2D.3ab 【考点】同类项. 【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可. 【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确; B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误; C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误; D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误. 故选A. 【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.
3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( ) A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3 【考点】二次函数图象与几何变换. 【分析】根据向下平移,纵坐标相减,即可得到答案. 【解答】解:∵抛物线y=x2+2向下平移1个单位, ∴抛物线的解析式为y=x2+2﹣1,即y=x2+1. 故选C. 【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.
4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮
球运动次数的平均数是( ) 次数 2 3 4 5 人数 2 2 10 6 A.3次 B.3.5次 C.4次 D.4.5次 【考点】加权平均数. 【分析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解. 【解答】解:(2×2+3×2+4×10+5×6)÷20 =(4+6+40+30)÷20 80÷20 =4(次). 答:这20名男生该周参加篮球运动次数的平均数是4次. 【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.
5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=, =,那么向量用向
量、表示为( ) A. +B. ﹣C.﹣ +D.﹣ ﹣ 【考点】*平面向量. 【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案. 【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线, ∴BD=DC, ∵=, ∴=, ∵=, ∴=+=+. 故选:A.
【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键. 6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )
A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8 【考点】圆与圆的位置关系;点与圆的位置关系. 【分析】连接AD, 根据勾股定理得到AD=5, 根据圆与圆的位置关系得到r>5﹣3=2, 由点B在⊙D外, 于是得到r<4, 即可得到结论. 【解答】解:连接AD, ∵AC=4,CD=3,∠C=90°,
∴AD=5, ∵⊙A的半径长为3,⊙D与⊙A相交, ∴r>5﹣3=2, ∵BC=7, ∴BD=4, ∵点B在⊙D外, ∴r<4, ∴⊙D的半径长r的取值范围是2<r<4, 故选B.
【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.
二、填空题:本大题共12小题,每小题4分,共48分 7.计算:a3÷a= a2 . 【考点】同底数幂的除法. 【专题】计算题. 【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解. 【解答】解:a3÷a=a3﹣1=a2. 故答案为:a2. 【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.
8.函数y=的定义域是 x≠2 . 【考点】函数自变量的取值范围. 【分析】直接利用分式有意义的条件得出答案. 【解答】解:函数y=的定义域是:x≠2. 故答案为:x≠2. 【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.
9.方程=2的解是 x=5 .