2016上海中考数学模拟试卷(2016.4)

合集下载

2016年上海市闸北区中考数学一模试卷含答案解析

2016年上海市闸北区中考数学一模试卷含答案解析

2016年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( ) A.B.C.D.2.抛物线y=﹣2x2+3的顶点在( )A.x轴上B.y轴上C.第一象限 D.第四象限3.如图,已知点D、E分别在△ABC的边BA、CA的延长上,下列给出的条件中,不能判定DE∥BC的是( )A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC4.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是( )A. B.C. D.5.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,则cot∠BCD的值为( )A.B.C.D.6.已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是( )A.根据图象可得该函数y有最小值B.当x=﹣2时,函数y的值小于0C.根据图象可得a>0,b<0D.当x<﹣1时,函数值y随着x的增大而减小二、填空题(本大题共12题,每题4分,满分48分)7.已知,则的值是__________.8.如图,在△ABC中,DE∥BC,当△ADE与△ABC的周长比为1:3时,那么DE:BC=__________.9.如图,已知在梯形ABCD中,AB∥CD,点E和点F分别在AD和BC上,EF是梯形ABCD的中位线,若,,则用表示=__________.10.求值:sin60°﹣tan30°=__________.11.汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了__________米.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是__________.13.周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=__________.(不需要写出定义域)14.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O 的连线与x轴的正半轴的夹角为60°,则点P的坐标是__________.15.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是__________.16.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=__________.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=__________.18.如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D 重合,此时折痕交DC于点G,则CG:GD的值为__________.三、解答题(本大题共7题,满分78分)19.解方程:.20.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN=,求:MN的长以及平移后抛物线的解析式.21.如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE交AC于点G.设=,=,(1)试用、表示向量;(2)试用、表示向量.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)23.如图,在△ABC中,AC=BC,∠BCA=90°,点E是斜边AB上的一个动点(不与A、B重合),作EF⊥AB交边BC于点F,联结AF、EC交于点G.(1)求证:△BEC∽△BFA;(2)若BE:EA=1:2,求∠ECF的余弦值.24.如图,在平面直角坐标系中,已知抛物线与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),对称轴为直线x=1,对称轴交x轴于点E.(1)求该抛物线的表达式,并写出顶点D的坐标;(2)设点F在抛物线上,如果四边形AEFD是梯形,求点F的坐标;(3)联结BD,设点P在线段BD上,若△EBP与△ABD相似,求点P的坐标.25.(14分)如图,梯形ABCD中,AD∥BC,∠A=90°,AD=4,AB=8,BC=10,M在边CD上,且.(1)如图①,联结BM,求证:BM⊥DC;(2)如图②,作∠EMF=90°,ME交射线AB于点E,MF交射线BC于点F,若AE=x,BF=y.当点F在线段BC上时,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.2016年上海市闸北区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( ) A.B.C.D.【考点】平行投影.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选D.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.2.抛物线y=﹣2x2+3的顶点在( )A.x轴上B.y轴上C.第一象限 D.第四象限【考点】二次函数的性质.【分析】因为y=﹣2x2+3可看作抛物线的顶点式,根据顶点式的坐标特点,得出顶点坐标为(0,3),即可知顶点在y轴上.【解答】解:抛物线y=﹣2x2+3是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,3),即顶点在y轴上.故选B.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h.也考查了y轴上点的坐标特征.3.如图,已知点D、E分别在△ABC的边BA、CA的延长上,下列给出的条件中,不能判定DE∥BC的是( )A.BD:AB=CE:AC B.DE:BC=AB:AD C.AB:AC=AD:AE D.AD:DB=AE:EC 【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理的逆定理得出A、C、D正确,B不正确,即可得出结论.【解答】解:∵BD:AB=CE:AC,∴DE∥BC,选项A正确;∵DE:BC=AB:AD不能判定DE∥BC,∴选项B不正确;∵AB:AC=AD:AE,∴DE∥BC,选项C正确;∵AD:DB=AE:EC,∴DE∥BC,选项D正确.故选:B.【点评】本题考查了平行线分线段成比例定理的逆定理;熟记平行线分线段成比例定理的逆定理是解决问题的关键.4.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是( )A. B.C. D.【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=2﹣2.故选A.【点评】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的是解题的关键.5.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,则cot∠BCD的值为( )A.B.C.D.【考点】解直角三角形.【分析】根据在Rt△ABC中,∠C=90°,AC=12,BC=5,CD⊥AB于点D,可以得到∠A 和∠BCD的关系,由∠A的三角函数值可以得到∠BCD的三角函数值,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠C=90°,∴∠B+∠A=90°,∵CD⊥AB于点D,∴∠CDB=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∵在Rt△ABC中,∠C=90°,AC=12,BC=5,∴cot∠A=,∴cot∠BCD=.故选C.【点评】本题考查解直角三角形,解题的关键是找出各个角之间的关系,根据等角的三角函数值相等,运用数学转化的思想进行解答问题.6.已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是( )A.根据图象可得该函数y有最小值B.当x=﹣2时,函数y的值小于0C.根据图象可得a>0,b<0D.当x<﹣1时,函数值y随着x的增大而减小【考点】二次函数的性质.【分析】由抛物线开口向上得a>0,由当x=﹣2时,图象在x轴的下方,得出函数值小于0,对称轴x=﹣1在y轴的左侧得b>0,根据二次函数的性质可得当x<﹣1时,y随x的增大而减小;由此判定得出答案即可.【解答】解:由图象可知:A、抛物线开口向上,该函数y有最小值,此选项正确;B、当x=﹣2时,图象在x轴的下方,函数值小于0,此选项正确;C、对称轴x=﹣1,a>0,则b>0,此选项错误;D、当x<﹣1时,y随x的增大而减小正确,此选项.故选:C.【点评】此题考查二次函数的性质,根据图象判定开口方向,得出对称轴,利用二次函数的增减性解决问题.二、填空题(本大题共12题,每题4分,满分48分)7.已知,则的值是.【考点】比例的性质.【分析】根据等比性质:⇒=,可得答案.【解答】解:由等比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用等比性质是解题关键.8.如图,在△ABC中,DE∥BC,当△ADE与△ABC的周长比为1:3时,那么DE:BC=1:3.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,如何根据相似三角形的性质即可解题.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=△ADE的周长:△ABC的周长比=1:3.故答案为:.【点评】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ADE∽△ABC是解题的关键.9.如图,已知在梯形ABCD中,AB∥CD,点E和点F分别在AD和BC上,EF是梯形ABCD的中位线,若,,则用表示=2﹣.【考点】*平面向量.【分析】由在梯形ABCD中,AB∥CD,EF是梯形ABCD的中位线,可得EF∥AB∥CD,EF=(AB+CD),则可得=2﹣,继而求得答案.【解答】解:∵在梯形ABCD中,AB∥CD,EF是梯形ABCD的中位线,∴EF∥AB∥CD,EF=(AB+CD),∴=2﹣=2﹣.故答案为:2﹣.【点评】此题考查了平面向量的知识以及梯形的中位线的性质.注意能灵活应用梯形中位线的性质是解此题的关键.10.求值:sin60°﹣tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】根据sin60°=,tan30°=得到原式=﹣,然后通分合并即可.【解答】解:原式=﹣=﹣=.故答案为.【点评】本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.11.汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了5米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解.【解答】解:∵坡度为1:7,∴设坡角是α,则sinα==∴上升的高度是:50×=5(米).故答案是:5.【点评】本题主要考查了坡度的定义,正确求得坡角的正弦值是解题的关键.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是m<1.【考点】二次函数的最值.【分析】根据二次函数y=(m+1)x2+2的顶点是此抛物线的最高点,得出抛物线开口向下,即m+1<0,即可得出答案.【解答】解:∵抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,∴抛物线开口向下,∴m﹣1<0,∴m<1,故答案为m<1.【点评】此题主要考查了利用二次函数顶点坐标位置确定图象开口方向,此题型是中考中考查重点,同学们应熟练掌握.13.周长为16的矩形的面积y与它的一条边长x之间的函数关系式为y=8x﹣x2.(不需要写出定义域)【考点】根据实际问题列二次函数关系式.【分析】首先根据矩形周长为16,一条边长x可表示出另一边长为8﹣x,再根据矩形面积=长×宽列出函数解析式即可.【解答】解:∵矩形周长为16,一条边长x,∴另一边长为8﹣x,∴面积:y=(8﹣x)x=8x﹣x2.故答案为:8x﹣x2.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是掌握矩形的面积公式=长×宽.14.在直角坐标系中,已知点P在第一象限内,点P与原点O的距离OP=2,点P与原点O 的连线与x轴的正半轴的夹角为60°,则点P的坐标是(1,).【考点】解直角三角形;坐标与图形性质.【分析】作PM⊥x轴于点M,构造直角三角形,根据三角函数的定义求解.【解答】解:作PM⊥x轴于点M,如图所示:∵OP=2,∴sin60°==,cos60°==,∴PM=,OM=1.故P点坐标为:(1,).故答案为:(1,).【点评】本题考查了解直角三角形和坐标与图形性质的知识,难度不大,注意掌握一个角的余弦和正弦的计算方法.15.如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是6.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形的性质得到DE∥BC,由平行线的性质得到∠AED=∠B,∠ADE=∠EFB=90°,推出△ADE∽△BEF,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:∵四边形CDEF是正方形,∴DE∥BC,∴∠AED=∠B,∠ADE=∠EFB=90°,∴△ADE∽△BEF,∴,即,∴DE•EF=2×3=6,∴正方形CDEF的面积是6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,正方形的性质,熟练掌握相似三角形的性质定理是解题的关键.16.如图,在梯形ABCD中,AD∥BC,AC平分∠BCD,∠BAC=∠D,若AD=4,BC=10,则AC=2.【考点】相似三角形的判定与性质.【分析】根据平行线的性质得出∠DAC=∠ACB,根据相似三角形的判定得出△ADC∽△CAB,得出比例式,代入求出即可.【解答】解:∵AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠D,∴△ADC∽△CAB,∴=,∴=,解得:AC=2.故答案为:2.【点评】本题考查了相似三角形的性质和判定,平行线的性质的应用,能求出△ADC∽△CAB是解此题的关键.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=.【考点】平行线分线段成比例;三角形的重心.【分析】由三角形的重心定理得出=,=,由平行线分线段成比例定理得出=,即可得出结果.【解答】解:∵线段AD、BE是△ABC的中线,∴=,=,∵EF∥BC,=,∴=.故答案为:.【点评】本题考查了平行线分线段成比例定理、三角形的重心定理;熟练掌握三角形的重心定理,由平行线分线段成比例定理得出FG:DG=1:2是解决问题的关键18.如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG:GD的值为.【考点】翻折变换(折叠问题).【分析】连接GE,由矩形的性质得出∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,由折叠的性质得出∠DAG=∠EAG=22.5°,AG⊥DE,由线段垂直平分线的性质得出GD=GE,得出∠GDE=∠GED=∠DAG=22.5°,由三角形的外角性质得出∠CGE=45°,证出△CEG是等腰直角三角形,得出GD=GE=CG,即可得出结果.【解答】解:如图所示:连接GE,∵四边形ABCD是矩形,∴∠BAD=∠C=ADC=∠B=90°,AB=CD,AD=BC,由折叠的性质得:∠DAE=∠BAE=45°,∠DAG=∠EAG=22.5°,AG⊥DE,∴GD=GE,∴∠GDE=∠GED=∠DAG=22.5°,∴∠CGE=∠GDE+∠GED=45°,∴△CEG是等腰直角三角形,∴GD=GE=CG,∴CG:GD=.故答案为:.【点评】本题考查了矩形的性质、翻折变换的性质、线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质、等腰直角三角形的判定与性质;熟练掌握翻折变换和矩形的性质,证明△CEG是等腰直角三角形是解决问题的关键.三、解答题(本大题共7题,满分78分)19.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知二次函数的图象的顶点在原点O,且经过点A(1,).(1)求此函数的解析式;(2)将该抛物线沿着y轴向上平移后顶点落在点P处,直线x=2分别交原抛物和新抛物线于点M和N,且S△PMN=,求:MN的长以及平移后抛物线的解析式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)根据题意可直接设y=ax2把点(1,﹣3)代入得a=﹣3,所以y=﹣3x2;(2)设平移后y=x2+d(d>0),则MN=d,根据题意得出S=×2×d=3,即可求得d的值,从而求得平移后的解析式.【解答】解:(1)∵抛物线顶点是原点,可设y=ax2,把点A(1,)代入,得a=,,所以这个二次函数的关系式为y=x2;(2)设平移后y=x2+d(d>0),∴MN=d,S=×2×d=3,∴d=3,∴y=x2+3.【点评】主要考查了用待定系数法求函数解析式以及二次函数的图象与几何变换,熟练掌握待定系数法和平移的规律是解题的关键.21.如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE 交AC于点G.设=,=,(1)试用、表示向量;(2)试用、表示向量.【考点】*平面向量.【分析】(1)由=,=,利用三角形法则,可求得,又由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得答案;(2)易得△ADG∽△CEG,然后由相似三角形的对应边成比例,证得AG:CG=AD:CE=2:1,继而求得,则可求得答案.【解答】解:(1)∵=,=,∴=+=+,∵四边形ABCD是平行四边形,∴==(+)=+;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADG∽△CEG,∴AG:CG=AD:CE,∵点E是边BC的中点,∴AD:CE=2:1,∴AG:CG=2:1,∴AG:AC=2:3,∴==+,∴=﹣=+﹣=﹣.【点评】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)【考点】解直角三角形的应用.【分析】由题意得出AB∥DE,证出△ABF∽△DEF,由相似三角形的性质得出,求出AB,再由三角函数求出AC,即可得出结果.【解答】解:根据题意得:AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△ABF∽△DEF,∴,即,解得:AB=3.6米,∵cos∠BAC=,∴AC=≈=6(米),∴AB+AC=3.6+6=9.6米.答:这棵大树没有折断前的高度为9.6米.【点评】本题考查了解直角三角形的应用、相似三角形的应用;熟练掌握解直角三角形,由相似三角形的性质求出AB是解决问题的关键.23.如图,在△ABC中,AC=BC,∠BCA=90°,点E是斜边AB上的一个动点(不与A、B重合),作EF⊥AB交边BC于点F,联结AF、EC交于点G.(1)求证:△BEC∽△BFA;(2)若BE:EA=1:2,求∠ECF的余弦值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据已知条件得到△BEF∽△ABC,根据相似三角形的性质得到,根据相似三角形判定定理即可得到结论;(2)由已知条件的,根据三角函数的定义得到tan∠EAF=,根据相似三角形的性质得到∠BAF=∠BCE,即可得到结论.【解答】解:(1)∵在△ABC中,AC=BC,∠BCA=90°,∵EF⊥AB,∴∠BEF=90°,∵∠B=∠B,∴△BEF∽△ABC,∴,∴△△BEC∽△BFA;(2)∵BE=EF,BE:EA=1:2,∴,∴tan∠EAF=,设EF=k,AE=2k,∴AF=,∵△BEC∽△BFA,∴∠BAF=∠BCE,∴cos∠ECF=cos∠EAF==.【点评】本题考查了相似三角形的判定和性质,锐角三角函数的定义,等腰直角三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在平面直角坐标系中,已知抛物线与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),对称轴为直线x=1,对称轴交x轴于点E.(1)求该抛物线的表达式,并写出顶点D的坐标;(2)设点F在抛物线上,如果四边形AEFD是梯形,求点F的坐标;(3)联结BD,设点P在线段BD上,若△EBP与△ABD相似,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据函数值相等的亮点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据平行线的一次项的系数相等,可得EF的解析式,根据解方程组,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得PB的长,根据勾股定理,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标.【解答】解:(1)由A、B关于x=1对称,得B(3,0),设抛物线的解析式为y=ax2+bx+c (a≠0),将A、B、C点坐标代入,得,解得.抛物线的解析式为y=﹣x2+x+2,顶点坐标为D(1,);(2)①当AE∥DF时,不存在,舍去;②当AD∥EF时,AD的解析式为y=x+,EF的解析式为y=x﹣,联立得,解得,F点坐标为(,),(3)∠PBE=∠DBA,如图:BD的解析式为y=﹣x+4,P在BD上,设P(m,﹣m+4)DB===,BA=3﹣(﹣1)=4,BE=3﹣1=2.①当△PBE∽△DBA时,=,即=,解得BP=,(3﹣m)2+(m﹣4)2=,解得m=2,m=4(不符合题意,舍),当m=2时,﹣m+4=,P1(2,);②当△EBP∽△DBA时,=,即=,解得BP=,(3﹣m)2+(m﹣4)2=,解得m=,m=(不符合题意,舍),当m=时,﹣m+4=,P2(,),综上所述:P点坐标为P1(2,),P2(,).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用平行线的一次项的系数相等得出EF的解析式是解题关键;利用两组对边对应成比例且夹角相等的两个三角形相似得出PB的长是解题关键,要分类讨论,以防遗漏.25.(14分)如图,梯形ABCD中,AD∥BC,∠A=90°,AD=4,AB=8,BC=10,M在边CD上,且.(1)如图①,联结BM,求证:BM⊥DC;(2)如图②,作∠EMF=90°,ME交射线AB于点E,MF交射线BC于点F,若AE=x,BF=y.当点F在线段BC上时,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.【考点】相似形综合题.(1)连接BD,作DN⊥BC于N,则四边形ABND是矩形,得出DN=AB=8,BN=AD=4,【分析】求出CN=BC﹣BN=6,由勾股定理求出CD,得出CD=BC=10,由等腰三角形的性质和平行线的性质得出∠ADB=∠DBC=∠BDC,求出DM=4=AD,由SAS证明△ADB≌△MDB,得出对应角相等即可;(2)由角的互余关系得出∠C=∠MBA,∠CMF=∠BME,证出△CMF∽△BME,得出对应边成比例,即可得出结果;(3)分两种情况:①当点E在线段AB上时,△CMF∽△BME,△CMF为等腰三角形,得出△BME为等腰三角形,当BE=BM=8时,AE=0;当BM=ME时,由三角函数求出BE=>AE,舍去;当BE=ME时,由三角函数求出BE=,得出AE=AB﹣BE=;②当点E在BC延长线上时,同(2)可证△CMF∽△BME,△BME为等腰三角形,由∠MBE >90°,得出BE=BM=8,因此AE=16;即可得出结果.【解答】(1)证明:连接BD,如图1所示:作DN⊥BC于N,则∠DNC=90°,四边形ABND是矩形,∴DN=AB=8,BN=AD=4,∴CN=BC﹣BN=10﹣4=6,CD==10,∴CD=BC=10,∴∠DBC=∠BDC,∵AD∥BC,∴∠ADB=∠DBC=∠BDC,∵,∴DM=4=AD,在△ADB和△MDB中,,∴△ADB≌△MDB(SAS),∴∠DMB=∠A=90°,BM=AB=8,∴BM⊥DC;(2)解:∵∠C=∠MBA=90°﹣∠MBC,∠CMF=∠BME=90°﹣∠FMB,∴△CMF∽△BME,∴,即,解得:y=x+4(0≤x≤8);(3)解:分两种情况:①当点E在线段AB上时,△CMF∽△BME,△CMF为等腰三角形,∴△BME为等腰三角形,当BE=BM=8时,AE=0;当BM=ME时,BE=2×BM×cos∠MBA=2×8×=>AE,舍去当BE=ME时,BE===,∴AE=AB﹣BE=8﹣=;②当点E在BC延长线上时,如图2所示:同(2)可证△CMF∽△BME,△BME为等腰三角形,又∵∠MBE>90°,∴BE=BM=8,∴AE=16.综上所述:若△MCF是等腰三角形,AE的值为0或或16.【点评】本题是四边形综合题目,考查了梯形的性质、相似三角形的判定与性质、全等三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、三角函数等知识;本题综合性强,难度较大,特别是(3)中,需要进行分类讨论才能得出结果.。

2016年中考数学模拟试题及答案(4)(沪教版使用地区专用)

2016年中考数学模拟试题及答案(4)(沪教版使用地区专用)

2016年中考数学模拟试题(4)时间120分钟满分150分2015.8.24一、选择题:(每小题 4分,共24分)1.下列各式中与(﹣a2)3相等的是()A.a5 B.a6 C.﹣a5 D.﹣a62.下列方程中,有实数解的是()A.=﹣1 B.=﹣x C.=0 D.=03.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2 B.y=(x﹣3)2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣24.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例5.在四边形ABCD中,AB=AD,AC平分∠DAB,AC与BD相交于点O,要使四边形ABCD是菱形,那么还需满足下列条件中的()A.CD=CB B.OB=OD C.OA=OC D.AC⊥BD6.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二、填空题:(每小题4分,共48分)7.计算:+40= .8.使代数式有意义的实数x的取值范围为.9.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.10.布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.11.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.12.已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.13.如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.14.已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.已知在△ABC中,AD是边BC上的中线.设=,=.那么= .(用向量、的式子表示).16.在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD=2,那么cos∠DCB= .17.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH= 米.18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边乊比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC迚行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三、解答题:(本大题共78分)19.化简:+,并求当x=时的值.20.解方程组:.21.已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.22.如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.参考答案一、选择题:1.故选D.2.故选C.3.故选A.4.故选:B.5.故选:C.6.故选B.二、填空题:7。

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2016年上海市静安区中考数学一模试卷及参考答案

2016年上海市静安区中考数学一模试卷及参考答案

2016年上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1 3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=.8.(4分)函数的定义域是.9.(4分)方程=x﹣1的根为.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是.12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.2016年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)的相反数是()A.B.﹣C.D.﹣【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.2.(4分)下列方程中,有实数解的是()A.x2﹣x+1=0B.=1﹣x C.=0D.=1【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选:D.3.(4分)化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1D.1﹣x【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.4.(4分)如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1)B.(2,7)C.(5,4)D.(﹣1,4)【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A (2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选:C.5.(4分)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,BC=.故选:C.6.(4分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选:C.二、填空题:(本大题共12题,每题4分,满分44分)7.(4分)化简:(﹣2a2)3=﹣8a6.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.8.(4分)函数的定义域是x≠﹣2.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.9.(4分)方程=x﹣1的根为4.【解答】解:由二次根式性质得:x+5≥0且x﹣1≥0,∴x≥1.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥1,∴x=4.故答案为:4.10.(4分)如果函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,那么常数m的取值范围为1<m<3.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.11.(4分)二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).12.(4分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).13.(4分)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.14.(4分)在Rt△ABC中,∠C=90°,点G是重心,如果sin A=,BC=2,那么GC的长等于2.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sin A=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CG=CD=×3=2.故答案为:2.15.(4分)已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=﹣﹣.(用向量,的式子表示)【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.16.(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sin B =,那么tan∠CDE=.【解答】解:在△ABE中,AE⊥BC,AB=5,sin B=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.17.(4分)将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C在一直线上.如果AB=13,AD=3,那么∠A 的余弦值为.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.三、解答题:(本大题7题,满分78分)18.(10分)化简:÷,并求当x=时的值.【解答】解:原式=•=,当x=时,原式==7.19.(10分)用配方法解方程:2x2﹣3x﹣3=0.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.20.(10分)如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.21.(10分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P 的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠P AE=26.6°在直角△APE中,AE=PE•cot∠P AE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.22.(12分)已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EF A=∠BAC,∠EAF=∠B,∴△F AE∽△ABC,∴,∴F A•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.23.(12分)如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.24.(14分)已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),=×(10﹣x)×=,∴y=S△AEF∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,=y==;∴S△AEF②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=x,在Rt△EMC中,EM=x,MC=x,∴BM=BC﹣MC=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文。

2016上海市中考数学试卷

2016上海市中考数学试卷

2016年上海中考数学试卷一. 选择题1. (2016,1,4分)如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13- D. 13【答案】D2. (2016,2,4分)下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a bC. 2ab D. 3ab【答案】A3. (2016,3,4分)如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 【答案】C4. (2016,4,4分)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次 【答案】C5. (2016,5,4分)已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a = ,AD b = ,那么向量AC 用向量a 、b表示为( )A. 12a b +B. 12a b -C. 12a b -+D. 12a b --【答案】A6. (2016,6,4分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r << 【答案】B二. 填空题7. (2016,7,4分)计算:3a a ÷= 【答案】2a8. (2016,8,4分)函数32y x =-的定义域是 【答案】2x ≠9. (2016,9,42=的解是 【答案】5x =10. (2016,10,4分)如果12a =,3b =-,那么代数式2a b +的值为 【答案】2-11.(2016,11,4分) 不等式组2510x x <⎧⎨-<⎩的解集是【答案】1x <12. (2016,12,4分)如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k的值是 【答案】9413.(2016,13,4分) 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是【答案】0k >14. (2016,14,4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是 【答案】 1315. (2016,15,4分)在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是 【答案】1416. (2016,16,4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是【答案】600017. (2016,17,4分)如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为 米(精确到1 1.73≈)【答案】 20818. (2016,18,4分)如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. (2016,19,10分)计算:1221|1|4()3---。

2016年上海市杨浦区中考数学一模试卷含答案解析

2016年上海市杨浦区中考数学一模试卷含答案解析

2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣22.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( ) A.B.C.D.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=__________.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=__________.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=__________.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是__________cm.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=__________.12.计算:sin60°﹣cot30°=__________13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=__________.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为__________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线__________.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1__________y2(填“<”或者“>”)17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为__________.18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是__________.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2【考点】二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为(0,2),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+2.故选A.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.2.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形【考点】相似图形.【分析】根据相似图形的概念进行判断即可.【解答】解:斜边长分别是10和5的两直角三角形,直角边不一定成比例,所以不一定属于互相放缩关系,A不正确;腰长分别是10和5的两等腰三角形不一定属于互相放缩关系,B不正确;边长分别是10和5的两个菱形不一定属于互相放缩关系,C不正确;边长分别是10和5的两个正方形属于互相放缩关系,D正确,故选:D.【点评】本题考查的是相似图形的概念,形状相同的图形称为相似形.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.【考点】*平面向量.【分析】首先由在△ABC中,D是边BC的中点,可求得,然后由三角形法则求得.【解答】解:∵在△ABC中,D是边BC的中点,∴==,∴=﹣=﹣.故选B.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是关键.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度就是坡角的正切值即可求解.【解答】解:坡角α,则tanα=1:,则α=30°.故选A.【点评】本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【考点】相似三角形的判定.【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( )A.B.C.D.【考点】二次函数的图象.【专题】探究型.【分析】根据函数y=ax2+bx+a+b(a≠0),对a、b的正负进行分类讨论,只要把选项中一定错误的说出原因即可解答本题.【解答】解:在函数y=ax2+bx+a+b(a≠0)中,当a<0,b<0时,则该函数开口向下,顶点在y轴左侧,一定经过点(0,a+b),点(0,a+b)一定在y轴的负半轴,故选项A、B错误;当a>0,b<0时,若函数过点(1,0),则a+b+a+b=0,得a与b互为相反数,则y=ax2﹣ax=ax(x﹣1),则该函数与x轴的两个交点是(0,0)或(1,0),故选项D错误;当a>0,b<0时,若函数过点(0,1),则a+b=1,只要a、b满足和为1即可,故选项C 正确;故选C.【点评】本题考查二次函数的图象,解题的关键是运用分类讨论的数学思想解答问题.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=.【考点】比例的性质.【分析】先由已知条件可得2y=3(x﹣y),整理后再根据比例的性质即可求得的值.【解答】解:∵,∴2y=3(x﹣y),整理,得3x=5y,∴=.故答案为.【点评】本题是基础题,考查了比例的基本性质,比较简单.比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=1:2.【考点】三角形的重心.【分析】连接AG并延长,交BC于H.先根据重心的性质,得出AG=2GH.再由平行线分线段成比例定理,得出CF:BF=CE:AE=GH:AG=1:2.【解答】解:如图,连接AG并延长,交BC于H.∵点G为△ABC的重心,∴AG=2GH.∵DE∥BC,∴CE:AE=GH:AG=1:2,∵EF∥AB,∴CF:BF=CE:AE=1:2.故答案为1:2.【点评】此题主要考查了重心的概念和性质以及平行线分线段成比例定理,难度中等.三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=2.【考点】平行线分线段成比例;相似多边形的性质;相似三角形的性质.【分析】求出=,根据相似三角形的判定得出△BED∽△BCA,推出∠BED=∠C,根据平行线的判定得出即可.【解答】解:BE=2,理由是:如图:∵AD=2,DB=1,∴AB=2+1=3,∵BC=6,BE=2,∴=,∵∠B=∠B,∴△BED∽△BCA,∴∠BED=∠C,∴DE∥AC.故答案为:2.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定,平行线的判定的应用,能推出△BED∽△BCA是解此题的关键.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是5cm.【考点】相似三角形的性质.【专题】计算题.【分析】设△DEF的最短边为x,由△ABC的三边之比为3:4:6,则可设△ABC的三边分别为3a,4a,6a,由于△ABC与△DEF相似,根据相似三角形的性质得到3a:x=6a:10,即可求出x=5.【解答】解:设△DEF的最短边为x,△ABC的三边分别为3a,4a,6a,∵△ABC与△DEF相似,∴3a:x=6a:10,∴x=5,即△DEF的最短边是5cm.故答案为5.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=﹣.【考点】*平面向量.【分析】由AB∥CD,2AB=3CD,与的方向相反,可得2=﹣3,继而求得答案.【解答】解:∵AB∥CD,2AB=3CD,与的方向相反,∴2=﹣3,∴=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意根据题意得到2=﹣3是解此题的关键.12.计算:sin60°﹣cot30°=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:原式=﹣=﹣.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=2.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:sinA==,得BC=AB×=6×=2,故答案为:2.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为5.【考点】二次函数的三种形式.【分析】把配方后的函数解析式转化为一般形式,然后根据对应项系数相等解答.【解答】解:∵y=(x﹣2)2+1=x2﹣4x+4+1=x2﹣4x+5,∴c的值为5.故答案是:5.【点评】本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.抛物线y=﹣2x2+4x﹣1的对称轴是直线x=1.【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴是x=﹣进行计算.【解答】解:抛物线y=﹣2x2+4x﹣1的对称轴是直线x=﹣=1.故答案为x=1.【点评】此题考查了抛物线的对称轴的求法,能够熟练运用公式法求解,也能够运用配方法求解.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1<y2(填“<”或者“>”)【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点,其对称轴为x=0,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1<y2.【解答】解:∵二次函数y=x2+m中a=1>0,∴抛物线开口向上.∵x=﹣=0,﹣1<﹣2,∴A(﹣1,y1),B(﹣2,y2)在对称轴的左侧,且y随x的增大而减小,∴y1<y2.故答案为:<.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【考点】二次函数的性质.【专题】开放型.【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=﹣1;∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;∴函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.【点评】本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a <0时,抛物线开口向下;二次函数与y轴交于点(0,c).18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是.【考点】翻折变换(折叠问题).【分析】设AM与BE交点为D,过M作MF∥BE交AC于F,证出MF为△BCE的中位线,由三角形中位线定理得出MF=BE,由翻折变换的性质得出:AM⊥BE,AD=MD,同理由三角形中位线定理得出DE=MF,设DE=a,则MF=2a,AM=BE=4a,得出BD=3a,MD=AM=2a,即可得出结果.【解答】解:设AM与BE交点为D,过M作MF∥BE交AC于F,如图所示:∵M为BC的中点,∴F为CE的中点,∴MF为△BCE的中位线,∴MF=BE,由翻折变换的性质得:AM⊥BE,AD=MD,同理:DE是△AMF的中位线,∴DE=MF,设DE=a,则MF=2a,AM=BE=4a,∴BD=3a,MD=AM=2a,∵∠BDM=90°,∴tan∠EBC===.故答案为:.【点评】本题考查了翻折变换的性质、三角形中位线定理、平行线的性质、三角函数;熟练掌握翻折变换的性质,通过作辅助线由三角形中位线定理得出MF=BE,DE=MF是解决问题的关键.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】首先利用平面向量的加减运算法则化简原式,再利用三角形法则画出图形.【解答】解:=+3﹣﹣=﹣+2.如图:=2,=﹣,则=﹣+2,即即为所求.【点评】此题考查了平面向量的运算法则以及作法.注意作图时准确利用三角形法则是关键.20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)用待定系数法求出二次函数的解析式;(2)把x=4,y=m代入解析式即可求得m的值,用配方法或公式法求二次函数的顶点坐标.【解答】解:(1)依题意,得,解得;∴二次函数的解析式为:y=﹣2x2+4x+1.(2)当x=4时,m=﹣2×16+16+1=﹣15,由y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故其顶点坐标为(1,3).【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.【考点】相似三角形的判定与性质.【专题】计算题.(1)延长BE交直线AD于H,如图,先由AD∥BC得到△DEH∽△CEB,则有=,【分析】易得DH=BC,加上BC=2AD,所以AH=3AD,然后证明△AHF∽△CFB,再利用相似比可计算出AF:FC的值;(2)由△DEH∽△CEB得到EH:BE=DE:CE=1:1,则BE=EH=BH,由△AHF∽△CFB得到FH:BF=AF:FC=3:2;于是可设BF=2a,则FH=3a,BH=BF+FH=5a,EH=a,接着可计算出EF=FH﹣EH=a,然后计算EF:BF的值.【解答】解:(1)延长BE交直线AD于H,如图,∵AD∥BC,∴△DEH∽△CEB,∴=,∵点E为边DC的中点,∴DE=CE,∴DH=BC,而BC=2AD,∴AH=3AD,∵AH∥BC,∴△AHF∽△CFB,∴AF:FC=AH:BC=3:2;(2)∵△DEH∽△CEB,∴EH:BE=DE:CE=1:1,∴BE=EH=BH,∵△AHF∽△CFB,∴FH:BF=AF:FC=3:2;设BF=2a,则FH=3a,BH=BF+FH=5a,∴EH=a,∴EF=FH﹣EH=3a﹣a=a,∴EF:BF=a:2a=1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长即可.(2)根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:(1)设CG=xm,由图可知:EF=(x+20)•tanα,FG=x•tanβ,则(x+20)tanα+33=xtanβ,解得x=;(2)x===55,则FG=x•tanβ=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.【点评】本题考查了仰角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)由BC2=BF•BA,∠ABC=∠CBF可判断△BAC∽△BCF,再由DE∥BC可判断△BCF∽△DGF,所以△DGF∽△BAC,然后利用相似三角形的性质即可得到结论;(2)作AH∥BC交CF的延长线于H,如图,易得AH∥DE,由点E为AC的中点得AH=2EG,再利用AH∥DG可判定△AHF∽△DGF,则根据相似三角形的性质得=,然后利用等线段代换即可得到.【解答】证明:(1)∵BC2=BF•BA,∴BC:BF=BA:BC,而∠ABC=∠CBF,∴△BAC∽△BCF,∵DE∥BC,∴△BCF∽△DGF,∴△DGF∽△BAC,∴DF:BC=DG:BA,∴DF•AB=BC•DG;(2)作AH∥BC交CF的延长线于H,如图,∵DE∥BC,∴AH∥DE,∵点E为AC的中点,∴AH=2EG,∵AH∥DG,∴△AHF∽△DGF,∴=,∴.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴的直线与抛物线的交点关于对称轴对称得出P、Q关于直线x=﹣1对称是解题关键;利用两组对边对应成比例且夹角相等的两个三角形得出CM的长是解题关键.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.【考点】相似形综合题.【分析】(1)连接BD、AC交于点O,作AH⊥BC于H,由菱形的性质得出AO=OC=3,BO=4,由△ABC的面积求出AH=,由勾股定理得出BH,即可得出结果;(2)由菱形的性质得出∠FAC=∠ACB,证出△ABC∽△ECF,得出对应边成比例=,求出EF,由平行线得出△MBC∽△MAF,得出==,即可得出结果;(3)作EM⊥BC于M,作EG∥BC交CF于G,由(1)知cos∠B=,BE=x,得出BM=x,由勾股定理得出EM=x,CE==,由平行线得出∠GEC=∠ECB,,证出△BCE∽△CEG,得出对应边成比例,得出EG==,代入比例式即可得出y关于x的函数解析式为y=(<x≤5).【解答】解:(1)连接BD、AC交于点O,作AH⊥BC于H,如图1所示:则AO=OC=3,BO=4,∵S△ABC=BC×AH=AC×BO=×6×4=12,∴×5×AH=12,解得:AH=,由勾股定理得:BH===,∴cos∠B===;(2)当点E与点A重合时,符合题意的图形,如图2所示:∵四边形ABCD为菱形,∴∠FAC=∠ACB,∵∠ECF=∠B,∴△ABC∽△ECF,∴=,即=,解得:EF=,∵BC∥AF,∴△MBC∽△MAF,∴===,∴=,解得:BM=;(3)作EH⊥BC于H,作EG∥BC交CF于G,如图3所示:由(1)知cos∠B=,BE=x,∴BH=x,EH===x,∴CE===,∵EG∥BC,∴∠GEC=∠ECB,,∴△BCE∽△CEG,∴,则EG==,∴,整理得:y=,即y关于x的函数解析式为y=(<x≤5).【点评】本题是相似形综合题目,考查了菱形的性质、相似三角形的判定与性质、平行线的性质、勾股定理、三角函数等知识;本题综合性强,难度较大,特别是(3)中,需要运用勾股定理和证明三角形相似得出比例式才能得出结果.。

2016年上海市徐汇区中考数学一模试卷

2016年上海市徐汇区中考数学一模试卷

米.
12.(4 分)已知点 M(1,4)在抛物线 y=ax2﹣4ax+1 上,如果点 N 和点 M 关于
该抛物线的对称轴对称,那么点 N 的坐标是

13.(4 分)点 D 在△ABC 的边 AB 上,AC=3,AB=4,∠ACD=∠B,那么 AD 的长


14.(4 分)如图,在▱ ABCD 中,AB=6,AD=4,∠BAD 的平分线 AE 分别交 BD、
2.(4 分)如图,如果 AB∥CD∥EF,那么下列结论正确的是( )
ii
i it
i
i
A. t=t B. = C.it=i D. =it
【分析】由 AB∥CD∥EF,根据平行线分线段成比例定理求解即可求得答案.注
意排除法在解选择题中的应用.
【解答】解:A、∵AB∥CD∥EF,
i ∴
t
,故错误;
B、∵AB∥CD∥EF,
第 6页(共 28页)
i it

,故正确;
C、∵AB∥CD∥EF,
i ∴
it
,故错误;
D、∵AB∥CD∥EF,
i it


∴AC•DF=BD•CE,故错误. 故选:B.
3.(4 分)将抛物线 y=2(x+1)2﹣2 向右平移 2 个单位,再向上平移 2 个单位所 得新抛物线的表达式是( ) A.y=2(x+3)2 B.y=(x+3)2 C.y=(x﹣1)2 D.y=2(x﹣1)2 【分析】先根据二次函数的性质得到抛物线 y=2(x+1)2﹣2 的顶点坐标为(﹣1, ﹣2),再利用点平移的规律,点(﹣1,﹣2)平移后的对应点的坐标为(1,0), 然后根据顶点式写出平移后的抛物线解析式. 【解答】解:抛物线 y=2(x+1)2﹣2 的顶点坐标为(﹣1,﹣2),把点(﹣1, ﹣2)向右平移 2 个单位,向上平移 2 个单位得到对应点的坐标为(1,0),所以 平移后的抛物线解析式为 y=2(x﹣1)2. 故选:D.

2016上海中考数学二模试卷含闵行,普陀,杨浦,虹口,黄浦,松江,浦东,长宁8个区包括答案

2016上海中考数学二模试卷含闵行,普陀,杨浦,虹口,黄浦,松江,浦东,长宁8个区包括答案

闵行区2015-2016学年第二学期九年级质量调研考试2016.4数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式22n a b c是六次单项式,那么n的值取(A)6;(B)5;(C)4;(D)3.2(A;(B(C1;(D1.3.下列函数中,y随着x的增大而减小的是(A)3y x=;(B)3y x=-;(C)3yx=;(D)3yx=-.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是(A)平均数;(B)中位数;(C)众数;(D)方差.5.下列图形中,既是轴对称又是中心对称图形的是(A)正五边形;(B)等腰梯形;(C)平行四边形;(D)圆.6.下列四个命题,其中真命题有(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为sin20a⋅o.(A)1个;(B)2个;(C)3个;(D)4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.在实数范围内分解因式:32a a -= ▲ . 92=的解是 ▲ . 10.不等式组30,43x x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知关于x 的方程20x x m --=没有实数根,那么m 的取值范围是 ▲ .12.将直线213y x =-+向下平移3个单位,那么所得到的直线在y 轴上的截距为 ▲ .13.如果一个四边形的两条对角线相等,那么称这个四边 形为“等对角线四边形”.写出一个你所学过的特殊 的等对角线四边形的名称 ▲ .14.如图,已知在梯形ABCD 中,AD // BC ,且BC = 3AD ,点E 是边DC 的中点.设AB a =uu u r r ,AD b =uuu r r ,那么 AE =uu u r ▲ (用a r 、b r的式子表示).15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 ▲ .16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ .17.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP的长等于 ▲ cm .18.如图,已知在△ABC 中,AB = AC ,1tan 3B ∠=,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为 ▲ . ABD C(第14题图)EABC(第18题图)(第16题图) 乘公车 y % 步行 x %骑车 25%私家车 15%学生出行方式扇形统计图师生出行方式条形统计图三、解答题:(本大题共7题,满分78分)19.(本题满分10分)110212(cos60)32--++-o.20.(本题满分10分)解方程:222421242xx x x x x-+=+--.21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,∠ABC = 30º,BC = 8,sin A∠=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.22.(本题满分10分,其中每小题各5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i =1∶512,且AB = 26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53º时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin530.8≈o,cos530.6≈o,tan53 1.33≈o,cot530.75≈o).BCD(第21题图)BDC(第22题图)F23.(本题满分12分,其中每小题各6分)如图,已知在矩形ABCD 中,过对角线AC 的中点O 作 AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于 点G ,交边AB 于点H .联结AF ,CE . (1)求证:四边形AFCE 是菱形; (2)如果OF = 2GO ,求证:2GO DG GC =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =++与x 轴交于 点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线l . (1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直 线l 的对称点为N ,试证明四边形CDAN(3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 求点P 的坐标.(第24题图)(第23题图)AB CDE FGOH25.(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在△ABC中,AB = AC = 6,AH⊥BC,垂足为点H.点D在边AB上,且AD = 2,联结CD交AH于点E.(1)如图1,如果AE = AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC的长;(3)如图3,联结DF.设DF = x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围.(第25题图3)普陀区2015-2016学年度第二学期初三质量调研数学试卷 2016年4月13日(时间:100分钟,满分析150分)一、选择题:(本大题共6题,每题4分,满分24分)1、据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是( )(A )8.0016⨯610; (B )8.0016710⨯; (C )8100016.8⨯; (D )9100016.8⨯2、下列计算结果正确的是( )(A )824a a a =⋅; (B )()624a a =; (C )()222b a ab =; (D )()222b a b a -=-.3、下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )(A )折线图; (B )扇形图; (C )统形图; (D )频数分布直方图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015学年第二学期初三数学质量调研试卷(2016.4)(满分150分,考试时间120分钟)考生注意:1.本试卷含三个大题,共25题,考试过程中可以使用不带存储记忆功能的计算工具; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 5的负倒数为(A) 25; (B) 5-; (C) 51; (D) 51-. 2. 下面四个命题中,为真命题的是(A) 若b a >,则22b a >; (B) 若b a >,则ba 11<; (C) 若b a >,则22bc ac >; (D) 若b a >、d c >,则d b c a ->-. 3. “双十一”购物节后,小明同学对班上同学中的12位进行抽样调查并用数字1—12对每位被调查者进行编号,统计每位同学在购物节中消费金额,结果如下表所示:根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为 (A) 400、300; (B) 300、400; (C) 400、400; (D) 300、300.4. 二次函数3522+-=x x y 的对称轴和顶点分别为(A) 对称轴:直线25=x 、最高点:⎪⎭⎫ ⎝⎛-219,25; (B) 对称轴:直线25=x 、最低点:⎪⎭⎫ ⎝⎛-219,25; (C) 对称轴:直线45=x 、最高点:⎪⎭⎫ ⎝⎛-81,45; (D) 对称轴:直线45=x 、最低点:⎪⎭⎫ ⎝⎛-81,45. 5. 下面关于四边形的说法中,错误的是(A) 菱形的四条边都相等; (B) 一组邻边垂直的平行四边形是矩形; (C) 对角线相等且互相垂直的四边形是正方形;(D) 矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形.6. 如图1,在矩形ABCD 中,点E 在BC 上,将ABE ∆沿AE 翻折,点B 恰好落在对角线AC 上的'B 处;点F 在CD 上,将ECF ∆沿EF 翻折,点C 恰好落在AD 上的'C 处.若E 、'B 、'C 三点共线,则=ABCF (A) 33; (B) 32;(C)22; (D) 43.二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7. 计算:()=++05212▲ ;8. 因式分解:=+-211632x x ▲ ; 9. 正十边形每个内角的度数为 ▲ ;10. 从一副除去大小怪的扑克牌中抽取3张,每次抽完后均将扑克牌放回后再抽取.那么抽取的3张扑克牌恰巧都是红桃花色的概率是 ▲ ;11. 在ABC ∆中,D 为边BC 上的三等分点.设a AB =、b AC =,那么=AD ▲ (用含a 、b 的代数式表示);12. 如图2,在梯形ABCD 中,BC AD //,2=AD ,3=CD ,7=BC ,CD AD AB 2=+,则=C sin ▲ ;13. 如图3,已知CD AB //,AC 、BD 相交于点O ,过点D 作BC DE //,交AB 于点E ,E 为AB 中点,交AC 于点F ,则=FOAF▲ ; 14. 我们把相似比为215-的两相似三角形叫作“黄金相似三角形”.如图4,在ABC ∆中,︒=∠90BAC ,54=BC ,552cos =C .若DEF ∆与ABC ∆为“黄金相似三角形”,则DEF ∆的面积=∆DEF S ▲ ;A B CD(图2)ABCDEFO(图3)ACB(图4)A BCD EFB ’C ’ (图1)15. 已知ABC ∆的三边AB 、BC 、AC 之间满足如下关系:① 142==+AC BC AB ;② 2=-AB BC .P 为BA 延长线上一点,BAC ∠和BCP ∠互补,则=AP ▲ ; 16. 对于函数()x f y =,若其定义域内任意的x 都有()()x f x f =成立,则我们称函数()x f y =为“对等函数”.以下给出的5个函数中,不是“对等函数”的序号是 ▲ .①2-=y ; ② 3=y ; ③ 12+=x y ; ④32+=x y ; ⑤ x x y 532+=. 17. 如图5,BN AM //,︒=∠90BAM ,4=AB ,C 为射线AM 上任意一点.连接BC ,作BC 的中垂线DE ,交射线BN 于点E ,连接CE .连接AD 并延长,交射线BN 于点F .过点E 作AM EG ⊥,交AM 于点G .若ECG EDF ∠=∠,则=AC ▲ ;18. 如图6,四边形ABCD 的对角线AC 、BD 相交于点E ,BAC ∠是直角,︒=∠30CAD ,︒=∠75ADC ,ED BE 2=,若32=AE ,则=BC ▲ ;三、解答题(本大题共7题,满分78分) 19.(本题满分10分)高速动车组列车的建成使人们的出行更加方便、快捷,其平均运行速度能比普通列车的平均运行速度快100千米/小时.已知从上海火车站出发到南京站的路程为300千米,且乘坐高速动车组列车所花费的时间比普通列车少5.1小时(假设两种列车行驶中均不停靠其它车站),求高速动车组列车的平均运行速度.20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)(1) 计算:()()=︒+︒2230cos 30sin ▲ ; ()()=︒+︒2245cos 45sin ▲ ;()()=︒+︒2260cos 60sin ▲ ;根据以上结果,我们可以大胆猜测:对任意锐角α,()()=+22cos sin αα ▲ ;(2) 我们都知道,对于任意的锐角α都有ααcot 1tan =;那么相类似地,我们定义:ααcos 1sec =、ααsin 1csc =. 请你根据(1)中所得结果以及上述定义,并依据锐角的各个三角比之间的关系将()2tan 1α+和()()22cot csc αα-化到最简.(反面还有试题)ABMNCDFEG(图5)D(图6)21.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分5分)我们定义如下两种运算:①bc ad dc ba -=;② ibd hfa gec chd bfg aei ifch e bgd a---++=. (1) 若2183452x x <,请直接写出x 的取值范围(不用写出计算过程);(2) 解方程:xx x 5122093710104=;(3) 在平面直角坐标系xOy 中,第一象限内ABC ∆三点的坐标为()11,y x A 、()22,y x B 、()13,y x C ,其中321x x x <<、21y y <.求证:ABC ∆的面积11121132211y x y x y x S ABC-=∆.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)(1) 如图7,四边形ABCD 是正方形,E 为BC 中点,AE 、BD 相交于点F .过点F 作BC FG ⊥,G 为垂足,求CEEG的值; (2) 若将(1)中“四边形ABCD 是正方形,E 为BC 中点”改为“四边形ABCD 是矩形(如图8所示),E 为BC 上任意一点”,其余条件均不变,设k CEBE=,请用含k 的代数式表示BCEG的值.ABCDE FG ABCD(图7)(图8)23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图9,四边形ABCD 为正方形,E 为对角线AC 上的点,连接BE 并作EF BE ⊥,交边CD 于点F ,过 点F 作AC FG ⊥交对角线AC 于点G .(1) 请在图中找出与BE 长度相等的边并加以证明;(2) 求ABEG 的值.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)在平面直角坐标系xOy 中,函数y 由如下两段二次函数的一部分组成:① 当0≤x 时,c x y +=2163;② 当0>x 时,c x y +=2271.函数y 交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于()12,0-C ,设D 为函数y 上异于A 、B 、C 的任意一点. (1) 请直接写出函数y 的解析式(不要求写出计算过程),并在答题纸的相应位置画出其大致图像;(2) 若OBC DAO ∠=∠,求点D 的坐标;(3) 过点D 分别作直线AC 、直线BC 的垂线,垂足分别为P 、Q .在点D 运动的过程中,当CP BQ 32=时,求直线BD 的解析式.25.(本题满分14分,第(1)、(2)小题满分各4分,第(3)小题满分6分)如图10,以AB 为直径作半圆O ,AB OC ⊥,交半圆O 于点D ,6=OC .线段AC 交半圆O 于点E (E 与C 不重合),连接DE 、BE ,线段BE 与线段OC 相交于点F .(1) 若OF EF =,求EF 的长;(2) 设x AO =、y DE =,求y 关于x 的函数 关系式并写出x 的定义域;(3) 若DEF ∆为等腰三角形,求直径AB 的长.AO BCDFE(图10)ABCDF(图9)2015学年第二学期初三数学质量调研试卷参考答案 (2016.4)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数;3.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半.................. 一、选择题(每题4分,满分24分,答对得4分,否则一律得零分)1.D 2.A 3.A 4.D 5.C 6.B 二、填空题(每题4分,满分48分,各小题如无特别说明的答对得4分,否则一律得零分) 7.122-; 8.()()733--x x ; 9.︒144; 10.641; 11.b a 3132+或b a 3231+; 12.54; 13.3; 14.5824±;15.598; 16.①、③、⑤; 17.424±; 18.26.【注】(1) 第9小题若度或°未写出一律得零分;(2) 第11、14、16、17小题均涉及到多解,考生若错写、漏写其中任意一个答案或者多写答案的一律得零分。

相关文档
最新文档