上海市中考数学模拟试卷

合集下载

2024年上海市徐汇区中考三模数学试卷含详解

2024年上海市徐汇区中考三模数学试卷含详解

初三数学摸拟试卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.42.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a m B.()1%-a m C.1%+a m D.1%-a m 3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A .0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A. B.C. D.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.10.在实数范围内分解因式,2231-+=x y xy ________.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.20.已知点()2,3A m +在双曲线my x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G .求:(1)AB 的长;(2)AG 的长.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由初三数学摸拟试卷(满分150分,100分钟完成)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]1.下列各数中,与112282-相等的是()A.122B.126C.2D.4【答案】A【分析】本题考查了幂的乘方逆运算和同底数幂乘法的逆运算,正确运用公式是解题关键.先利用幂的乘方的逆运算将128的底变为2,再通过同底数幂乘法的逆运算变出122,即可计算.【详解】解:()111311111111322222222222822222222222+-=-=-=-=⨯-=,故选:A .2.某公司三月份的产值为a 万元,比二月份增长了%m ,那么二月份的产值(单位:万元)为()A.()1%+a mB.()1%-a m C.1%+a m D.1%-a m 【答案】C【分析】本题考查了列代数式,根据“三月份的产值为a 万元,比二月份增长了%m ”,得出答案即可,理解题意、正确列出代数式是解题的关键.【详解】解:∵三月份的产值为a 万元,比二月份增长了%m ,∴二月份的产值()1%1%aa m m =¸+=+,故选:C .3.下列二次根式里,被开方数中各因式的指数都为1的是()A.B.C.D.【答案】B【分析】根据二次根式的定义判断即可.【详解】解:A .x ,y 的指数分别为2,2,此选项错误;B .22xy +的指数为1,此选项正确;C .x +y 的指数为2,此选项错误;D .x ,y 的指数分别为1,2.此选项错误;故选:B .【点睛】本题主要考查了二次根式的定义,分清因数和指数是解答此题的关键.4.如果点C 是线段AB 的中点,那么下列结论正确的是()A.0AC BC +=uuu r uu u r B.0AC BC -=uuu r uu u r C.0AC BC += D.0AC BC -= 【答案】C【分析】根据点C 是线段AB 的中点,可以判断AC BC =,但它们的方向相反,继而即可得出答案.【详解】解:由题意,∵点C 是线段AB 的中点,∴AC BC= ∵AC 与BC为相反向量,∴0AC BC +=;故选:C .【点睛】本题考查了平面向量的知识,注意向量包括长度及方向,及0与0的不同.5.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h 和注水时间t 之间关系的是()A.B.C. D.【答案】C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,每一段h 随t 的增大而增大,增大的速度是先快后慢.故选C .【点睛】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD BC ∥,下列判断中错误..的是()A.如果AB CD =,AC BD =,那么四边形ABCD 是矩形B.如果AB CD ∥,OA OB =,那么四边形ABCD 是矩形C.如果AD BC =,AC BD ⊥,那么四边形ABCD 是菱形D.如果OA OC =,AC BD ⊥,那么四边形ABCD 是菱形【答案】A【分析】本题考查了平行四边形、矩形、菱形、正方形的判定,根据平行四边形、矩形、菱形、正方形的判定方法逐项进行分析判定即可得答案.【详解】解:A 、如果AD BC ≠,AD BC ∥,那么四边形ABCD 是梯形,不是平行四边形也就不是矩形,故A 选项错误,符合题意;B 、如果AB CD ∥,AD BC ∥,则四边形ABCD 是平行四边形,则12OA AC =,12OB BD =,因为OA OB =所以AC BD =,那么平行四边形ABCD 是矩形,故B 选项正确,不符合题意;C 、如果AD BC =,AD BC ∥,则四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故C 选项正确,不符合题意;D 、如果AD BC ∥,OA OC =,则可以证得四边形ABCD 是平行四边形,又AC BD ⊥,那么平行四边形ABCD 是菱形,故D 选项正确,不符合题意,故选A .二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.当<2x -=________.【答案】12--x【分析】本题考查了二次根式的性质与化简,熟练掌握a =是解题的关键.a =的进行计算即可.12x ==+,∵<2x -,∴11<2022x -++<∴1122x x =+=--.故答案为:12--x .8.不等式组10260x x -->⎧⎨--≤⎩的整数解是________.【答案】3-,2-【分析】本题考查了解一元一次不等式组,整数解的问题,熟练掌握知识点是解题的关键.写解每一个不等式,再取解集的公共部分,然后即可求解.【详解】解:10260x x -->⎧⎨--≤⎩①②,由①得:1x <-,由②得:3x ≥-,∴原不等式的解集为:31x -≤<-,∴整数解为:3-,2-,故答案为:3-,2-.9.如果关于x 的方程210ax x -+=有实数根,那么a 的取值范围是________.【答案】14a ≤【分析】本题考查了一元二次方程的判别式,根据关于x 的方程210ax x -+=有实数根,得出240b ac ∆=-≥,代入数值进行计算,即可作答.【详解】解:∵关于x 的方程210ax x -+=有实数根,∴()2Δ1410a =--⨯≥,解得14a ≤,故答案为:14a ≤.10.在实数范围内分解因式,2231-+=x y xy ________.【答案】3322⎛⎫⎛⎫+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭xy xy 【分析】本题考查因式分解,二次根式的乘法,熟练掌握公式法进行因式分解是解决本题的关键.根据题意,利用十字相乘因式分解.【详解】解:2231x y xy -+()233322xy xy ⎛⎫⎛⎫+-=-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3322xy xy ⎛⎫⎛⎫+-=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.11.如果实数x 满足2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,那么1x x +的值是________.【答案】3【分析】本题主要考查了用换元法解一元二次方程、解分式方程,利用完全平方公式把方程变形是解题的关键.利用完全平方公式把方程变形为211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭,利用换元法,设1x m x +=,则2230m m --=,转化为解一元二次方程,求出1x x+可能的值,分别得出分式方程,计算检验是否有解,即可得出答案.【详解】解:∵2211210x x x x ⎛⎫+-+-= ⎪⎝⎭,∴22112230x x xx 骣÷ç++-+-=÷ç÷ç桫,211230x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎝⎭⎝⎭,设1x m x+=,则2230m m --=,因式分解得:()()310m m -+=,∴30m -=或10m +=,解得:3m =或1m =-,当3m =时,则13x x+=,整理得:2310x x -+=,∴439435222b x a -===,解得:1352x +=,2352x -=,经检验,1352x +=,2352x =都是方程13x x +=的解,∴1x x+的值为3;当1m =-时,则11x x+=-,整理得:210x x ++=,241430b ac ∆=-=-=-<,∴11x x+=-时,方程无解.综上所述,1x x+的值为3,故答案为:3.12.如果一次函数()211y m x m =-+-的图像一定经过第二、三象限,那么常数m 的取值范围为________.【答案】1m >-且1m ≠【分析】本题考查一次函数的图像与性质,运用数形结合思想解题是解题的关键,根据“一次函数()211y m x m =-+-的图像一定经过第二、三象限”可知,此图像与x 轴的交点在原点的左边,即与x 轴交点的横坐标小于0,从而得解.【详解】解:∵一次函数()211y m x m =-+-的图像一定经过第二、三象限,∴此图像与x 轴的交点在原点的左边,且10m -≠,即1m ≠,∴此图像与与x 轴交点的横坐标小于0,令()2110y m x m =-+-=,解得:21101m x m m -=-=--<-,解得:1m >-,∴常数m 的取值范围为1m >-且1m ≠,故答案为:1m >-且1m ≠.13.某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是一男一女的概率是________.【答案】35##0.6【分析】本题考查的是画树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.先画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得到答案.【详解】解:根据题意画图如下:共有20种等可能的情况数,选出的2位同学恰好为一男一女的有12种,则主持人是一男一女的概率为123205=.故答案为:35.14.一斜坡的坡角为α,坡长比坡高多100米,那么斜坡的高为________(用α的锐角三角比表示).【答案】100sin 1sin -αα【分析】本题考查了正弦函数的应用.利用所给角的正弦函数求解.【详解】解:如图所示.由题意得100AB BC =+,∵90C ∠=︒,sin sin A A BC B α==,∴0s n 10i BC BC α+=,整理得100sin 1sin BC αα=-,∴斜坡的高为100sin 1sin -αα米.故答案为:100sin 1sin -αα.15.在Rt ABC △中,90ACB ∠=︒,点G 是重心,如果3AG =,4BG =,那么CG =________.【答案】【分析】本题考查了重心的定义与性质,结合勾股定理,直角三角形斜边中线的性质,关键是掌握重心性质并运用勾股定理列式求解是解题关键.本题先利用重心求出AD 和BE ,再利用勾股定理列式整体法求出AB ,最后利用直角三角形斜边中线性质和重心性质求出CG .【详解】解:如图,设AG 延长线交BC 于点D ,BG 延长线交AC 于点E ,CG 延长线交AB 于点F ,∵点G 是重心,3AG =,4BG =,∴3922AD AG ==,362BE BG ==,∵90ACB ∠=︒,∴222AD AC CD =+,222BE CE BC =+,∴22222292262BC AC AC BC ⎧⎛⎫⎛⎫=+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩①②,①+②得:22815536444AC BC +=+,化简得:2245AC BC +=,∴22245AB AC BC =+=,∴AB =,∵点G 是重心,90ACB ∠=︒,∴12CF AB ==∴23CG CF ==,.16.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是________.【答案】32或92.【分析】根据两圆内切时圆心距=两圆半径之差的绝对值,分两种情况求解即可.【详解】当点O 在点A 左侧时,⊙O 半径r=101922-=,当点O 在点B 右侧时,⊙O 半径r=107322-=.故填92或32.【点睛】此题考查圆与圆之间的位置关系,解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量之间的联系.17.如图,在ABC 中,4AB AC ==,1cos 4B =,BD 是中线,将ABC 沿直线BD 翻折后,点A 落在点E ,那么CE 的长为________.【答案】6【分析】本题考查三角形的翻折综合计算,涉及三角函数,等腰三角形,平行四边形及勾股定理,能正确进行线段的转换及作辅助线解非直角三角形是解题关键.本题先过点A 作AM BC ⊥于点M ,计算得出AD CD DE BC ===,再证明四边形BCED 是平行四边形,得CE BD =,再在BCD △中求解BD 即可.【详解】解:如图,过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,∵4AB AC ==,∴BM CM =,∵1cos 44BM BM B AB ===,∴1BM CM ==,∴2BC =,∵BD 是中线,∴122CD AD AC ===,由翻折知2AD DE ==,∴AD CD DE BC ===,∴CBD CDB ∠=∠,设DCB α∠=,∴1802CDB α︒-∠=,∴1801809022ADB αα︒-∠=︒-=︒+,由翻折知902EDB ADB α∠=∠=︒+,∴1809022EDC EDB CDB ααα︒-∠=∠-∠=︒+-=,∴EDC DCB ∠=∠,∴DE BC ∥,∴四边形BCED 是平行四边形,∴CE BD =,∵DN BC ⊥,∴1cos cos 24CN CN C B CD ====,∴12CN =,∴13222BN BC CN =-=-=,152DN ==,∴BD ==∴CE BD ==,.18.在一个三角形中,如果一个内角是另一内角的n 倍(n 为整数),那么我们称这个三角形为n 倍三角形.如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为________.【答案】30︒或20︒或18︒或360(11°【分析】根据n 倍三角形的定义结合三角形内角和定理,进行分类讨论计算即可.【详解】设最小的内角为x ︒.分类讨论:①当2倍角为2x ︒,3倍角为3x ︒时,可得:23180x x x ︒+︒+︒=︒,解得30x =.②当2倍角为2x ︒,3倍角为6x ︒时,可得:26180x x x ︒+︒+︒=︒,解得20x =.③当3倍角为3x ︒,2倍角为6x ︒时,可得:36180x x x ︒+︒+︒=︒,解得18x =.④当3x ︒即是2倍角又是三倍角时,即另一个内角为32x ︒,可得:331802x x x ︒+︒+︒=︒,解得36011x =.综上可知,最小的内角为30︒或20︒或18︒或360()11°.【点睛】本题考查三角形内角和定理.理解题干中n 倍三角形的定义以及利用分类讨论的思想是解答本题的关键.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答应纸上]19.已知:1-==x y ,求:21122⎛⎫- ⎪⎝⎭x y 值.【答案】2【分析】本题考查了负整数指数幂、分母有理化以及完全平方公式的运算,先整理得出2x =+,2y =-1xy =,再运用完全平方公式展开代入数值,进行计算即可作答.【详解】解:∵1-==x y∴2x =+,2y =1xy=.∴21111122222222212x y x y x y ⎛⎫-=+-=+⨯= ⎪⎝⎭20.已知点()2,3A m +在双曲线m y x=上.(1)求此双曲线的表达式与点A 的坐标;(2)如果点(),5B a a -在此双曲线上,图像经过点A 、B 的一次函数的函数值y 随x 的增大而增大,求此一次函数的解析式.【答案】(1)6y x =-,()2,3A -;(2)1y x 42=-.【分析】(1)把点A (2,m +3)代入m y x =求得m ,即可求出结果;(2)把点B (a ,5-a )代入m y x =求得a 得到B 点的坐标,根据A 点坐标和函数的增减性排除掉不符合题意的点,再由待定系数法求出一次函数解析式.【详解】解:(1)∵点A (2,m +3)在双曲线m y x=上,∴.32m m +=,解得:m =-6,∴m +3=-3,∴此双曲线的表达式为6y x -=,点A 的坐标为(2,-3);(2)∵点B (a ,5-a )在此双曲线6y x -=上,∴6.5a a--=,解得:a =-1或a =6,经检验:1,6a a =-=都是原方程的根,且符合题意,∴点B 的坐标为(-1,6)或(6,-1),∵一次函数的函数值y 随x 的增大而增大,由(1)知A (2,-3),∴点B 的坐标只能为(6,-1),设一次函数的解析式为y =kx +b ,∴3216k b k b -=+⎧⎨-=+⎩,解得:124k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为1y x 42=-.【点睛】本题主要考查了待定系数法求反比例函数解析式和一次函数解析式以及一次函数的性质,熟练掌握待定系数法求解析式是解题的关键.21.已知:如图,在ABC 中,AB AC =,DC BC ⊥,2DC BC ==,90ADB ∠=︒,BD 与AC 相交于点G.求:(1)AB 的长;(2)AG 的长.【答案】(1)AB =(2)AG =【分析】(1)过点A 作AE BC ⊥于E ,交BD 于F .则45CDB CBD ∠=∠=︒,由勾股定理得,BD =.由AB AC =,AE BC ⊥,可得112BE BC ==,45EFB EBF ∠=︒=∠,则1EF BE ==,45AFD EFB ∠=∠=︒,AD DF =,由勾股定理得,BF =,则AD DF BD BF ==-=,由勾股定理得,AB =,计算求解即可;(2)由题意知,2cos 45DF CD AF ===︒,证明()AAS AGF CGD ≌,则AG CG =,由AG CG +=可求AG .【小问1详解】解:过点A 作AE BC ⊥于E ,交BD 于F .∵90BCD ∠=︒,2BC CD ==,∴45CDB CBD ∠=∠=︒,由勾股定理得,BD ==.∵AB AC =,AE BC ⊥,∴112BE BC ==,45EFB EBF ∠=︒=∠,∴1EF BE ==,45AFD EFB ∠=∠=︒,∴45DAF AFD ∠=︒=∠,∴AD DF =,由勾股定理得,BF ==∴AD DF BD BF ==-=由勾股定理得,AB ==∴AB =;【小问2详解】解:由题意知,2cos 45DF CD AF ===︒,又∵45AFG CDG ∠=︒=∠,AGF CGD ∠=∠,∴()AAS AGF CGD ≌,∴AG CG =,∵AG CG +=∴102AG GC ==,∴102AG =.【点睛】本题考查了等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质等知识.熟练掌握等腰三角形的判定与性质,勾股定理,余弦,全等三角形的判定与性质是解题的关键.22.20个集装箱装满了甲、乙、丙三种商品共120吨,每个集装箱都只装载一种商品,根据下表提供的信息,解答以下问题:商品类型甲乙丙每个集装箱装载量(吨)865每吨价值(万元)121520(1)如果甲种商品装x 个集装箱,乙种商品装y 个集装箱,求y 与x 之间的关系式;(2)如果其中5个集装箱装了甲种商品,求每个集装箱装载商品总价值的中位数.【答案】(1)320y x =-+(2)每个集装箱装载商品总价值的中位数是98万元【分析】本题考查了根据实际问题列函数关系式及中位数,正确认识题中图表及理解题意是解题关键.(1)先列出三种商品装集装箱的个数的式子,再利用三种商品共120吨列式即可;(2)先得出三种商品装载集装箱的个数,再得出20个集装箱装载商品总价值分别是多少,利用中位数定义即可求解.【小问1详解】解:∵甲种商品装x 个集装箱,乙种商品装y 个集装箱,一共20个集装箱,∴丙种商品装()20x y --个集装箱,∴由题意得:()86520120x y x y ++--=,化简得:320y x =-+;【小问2详解】当5x =时,35205y =-⨯+=,20205510x y --=--=,∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,由表可知每个甲集装箱装载商品总价值为81296⨯=(万元),每个乙集装箱装载商品总价值为61590⨯=(万元),每个丙集装箱装载商品总价值为520100⨯=(万元),∴20个集装箱装载商品总价值有5个90万元,5个96万元,10个100万元,∴这20个数据从小到大排列后第10、11个数据分别是96、100万元,∴每个集装箱装载商品总价值的中位数是96100982+=(万元).23.已知:如图,在梯形ABCD 中,AD BC ∥,AB CD AD ==,点E 在BA 的延长线上,AE BC =.(1)求证:2BCD AED ∠=∠;(2)当ED 平分BEC ∠时,求证:EBC 是等腰直角三角形.【答案】(1)见解析(2)见解析【分析】(1)连接AC ,由梯形ABCD ,AD BC ∥,可得EAD B ∠=∠,DAC BCA ∠=∠.证明()SAS DEA ACB ≌.则AED BCA ∠=∠.由AD CD =,可得DCA DAC BCA ∠=∠=∠.进而可得22BCD DCA BCA BCA AED ∠=∠+∠==∠.(2)由ED 平分BEC ∠,可得2AEC AED ∠=∠.即AEC BCD ∠=∠,由梯形ABCD ,AD BC ∥,AB CD =,可得EAD B BCD AEC ∠=∠=∠=∠.则CE BC AE ==.证明()SSS AED CED ≌,则ECD EAD B ∠=∠=∠,由180AEC ECD BCD B ∠+∠+∠+∠=︒,可求45AEC ECD BCD B ∠=∠=∠=∠=︒,进而可得90ECB ECD BCD ∠=∠+∠=︒,进而结论得证.【小问1详解】证明:连接AC ,∵梯形ABCD ,AD BC ∥,∴EAD B ∠=∠,DAC BCA ∠=∠.又∵AE BC =,AD AB =,∴()SAS DEA ACB ≌.∴AED BCA ∠=∠.∵AD CD =,∴DCA DAC BCA ∠=∠=∠.∴22BCD DCA BCA BCA AED ∠=∠+∠==∠,∴2BCD AED ∠=∠.【小问2详解】证明:∵ED 平分BEC ∠,∴2AEC AED ∠=∠.∵2BCD AED ∠=∠,∴AEC BCD ∠=∠,∵梯形ABCD ,AD BC ∥,AB CD =,∴EAD B BCD AEC ∠=∠=∠=∠.∴CE BC AE ==.∵AE CE DE DE AD CD ===,,,∴()SSS AED CED ≌,∴ECD EAD B ∠=∠=∠,∵180AEC ECD BCD B ∠+∠+∠+∠=︒,∴45AEC ECD BCD B ∠=∠=∠=∠=︒,∴90ECB ECD BCD ∠=∠+∠=︒,∴EBC 是等腰直角三角形.【点睛】本题考查了等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定等知识.熟练掌握等腰梯形的性质,平行线的性质,角平分线,全等三角形的判定与性质,三角形内角和定理,等腰三角形的判定是解题的关键.24.如图,抛物线2y ax bx c =++顶点为坐标原点O 、且经过点()3,3A ,直线经过点A 和点()0,6B .(1)求抛物线与直线的表达式;(2)如果将此抛物线平移,平移后新抛物线的顶点C 在原抛物线上,新抛物线的对称轴与直线AB 在原抛物线的内部相交于点D ,且45COD ∠=︒,求新抛物线的表达式.【答案】(1)抛物线表达式为213y x =,直线的表达式为6y x =-+(2)新抛物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭或21335935322y x ⎛--=-+ ⎝⎭【分析】(1)利用待定系数法求解即可;(2)设直线6y x =-+与x 轴交于点E ,求出()6,0E ,设点D 的坐标为(),6m m -+,则点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,分①当点D 在线段AB 上时,②当点D 在AB 延长线上时两种情况讨论即可;本题考查二次函数的图象与性质,相似三角形的判定与性质,熟练掌握知识点的应用是解题的关键.【小问1详解】∵抛物线2y ax bx c =++顶点为坐标原点O ,∴0b =,0c =,∵点()3,3A 在二次函数图象上,∴39a =,∴13a =,∴抛物线表达式为213y x =,设直线的表达式为1y kx b =+,∵直线经过点A 和点()0,6B ,∴113306k b k b =+⎧⎨=+⎩,∴116k b =-⎧⎨=⎩,∴直线的表达式为6y x =-+;【小问2详解】设直线6y x =-+与x 轴交于点E ,∴当0y =时,6x =,∴()6,0E ,∴6OE OB ==,∴45EBO ∠=︒,设点D 的坐标为(),6m m -+,∴点C 的坐标为21,3m m ⎛⎫ ⎪⎝⎭,∵CD y ∥轴,∴∠=∠BOD ODC ,当点D 在线段AB 上时,如图,∵45=︒=∠∠DBO COD ,∴∽△△CDO DOB ,∴=CD DO DO OB,∴2=⋅C D D O OB ,∴()2222621236OD m m m m =+-=-+,2163=-+-CD m m ,∴22121236663m m m m ⎛⎫-+=-+-⎪⎝⎭,∴2460m m -=,∵0m ≠,∴32m =,∴点C 的坐标为33,24⎛⎫ ⎪⎝⎭,∴新拋物线的表达式2133324y x ⎛⎫=-+ ⎪⎝⎭,当点D 在AB 延长线上时,延长DC 交x 轴于点H ,在DH 的延长线上截取HF HO =,连接FO ,如图,则45==∠∠∠︒=HFO HOF COD ,662=--=-DF m m m ,∵∠=∠ODF CDO ,∴△∽△CDO ODF ,∴=CD DO DO DF,∴2=⋅C D D O DF ,∴()221212366263m m m m m ⎛⎫-+=--+- ⎪⎝⎭,∴32390--=m m m ,∵0m ≠,∴32±=m (正值不符合题意,舍去),∴点C 的坐标为335935,22⎛-- ⎝⎭.∴新抛物线的表达式2139322y x ⎛--=-+ ⎝⎭.25.已知:O 的直径8AB B = ,与O 相交于点C 、D ,O 的直径CF 与B 相交于点E ,设B 的半径为x ,OE 的长为y .(1)如图,当点E 在线段OC 上时,求y 关于x 的函数解析式,并写出定义域;(2)当点E 在直径CF 上时,如果OE 的长为3,求公共弦CD 的长;(3)设B 与AB 相交于G ,试问OEG 能否为等腰三角形?如果能够,请直接写出BC 弧的长度(不必写过程);如果不能,请简要说明理由【答案】(1)()214044y x x =-<≤(21537(3)OEG 能为等腰三角形, BC 的长度为45π或127π【分析】本题主要考查了垂径定理、相似三角形的性质与判定,解直角三角形,圆的基本知识,做题时一定要分析各种情况,不要遗漏.(1)欲求y 关于x 的函数解析式,连接BE ,证明BCE OCB ∽即可;(2)求公共弦CD 的长,作BM CE ⊥,垂足为M .通过圆的知识得出12BM CD =,转化为求BM 的长;分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,求出BM 的长;(3)OEG 为等腰三角形,分为两种情况:点E 在线段OC 上时;点E 在线段OF 上时,根据角的关系先求出角的度数,从而求出 BC的长度.【小问1详解】解:连接BE ,∵O 的直径8AB =,∴142OC OB AB ===.∵BC BE OC OB ==,,∴BEC C CBO ∠=∠=∠.∴BCE OCB ∽.∴CE BC CB OC=.∵–4CE OC OE y ==-,∴44y x x -=.∴y 关于x 的函数解析式为()214044y x x =-<≤;【小问2详解】解:如图所所示,当点E 在线段OC 上时,作BM CE ⊥,垂足为M ,∵43OC OE ==,,∴1CE =,∴1122EM CE ==,∴72OM =,∴152B M ===;设两圆的公共弦CD 与AB 相交于H ,则AB 垂直平分CD .∴sin sin OC COB OB COB B C M H ⋅∠=⋅∠==.∴22CD CH BM ===.当点E 在线段OF 上时,作BM CE ⊥,垂足为M ,∵7OE OC OE =+=,∴1722EM CE ==∴–71322OM EM OE ==-=,∴372B M ==.同理可得2237CD CH BM ===综上所述,CD 1537【小问3详解】解:如图所示,当点E 在线段OC 上时,∵BG BE =,∴BEG BGE ∠=∠,∵180180BEG OEG BGE OGE +≠︒+=︒∠∠,∠∠,∴OEG OGE ≠∠∠,即OE OG ≠;∵180EOB OEB EBG ++=︒∠∠∠,∴180EOB OEG BEG EBG +++=︒∠∠∠∠,又∵180EGO BGE +=︒∠∠,∴EGO EOB OEG EBO =++∠∠∠∠,∴EOG EGO ≠∠∠,即OE GE ≠;当OG EG =时,设2OEG EOG x ==∠∠,∴4BEG BGE OEG EOG x ==+=∠∠∠∠,∴1801808OBE OEB EOB x =︒--=︒-∠∠∠,由(1)得180902BOC BEC OCB CBO x ︒-∠=∠=∠==︒-∠,∴1802CBE BEC BCE x =︒--=∠∠∠,∴1808290x x x ︒-+=︒-,解得18x =︒,∴36BOC ∠=︒,∴ BC 的长为36441805ππ⨯⨯=;如图所示,当点E 在线段OF 上时,同理可证明OG OE OG GE ≠≠,,当OE GE =时,设EOG EGO x ==∠∠,则1802GEO x =︒-∠,∵BG BE =,∴BEG BGE x ==∠∠,∴1801802GBE BGE BEG x =︒--=︒-∠∠∠;∵BC BE =,∴3180BCE BEC BEG GEO x ==-=-︒∠∠∠∠,∴1805406CBE BEC BEC x =︒--=︒-∠∠∠,∵OC OB =,∴3180OBC OCB x ==-︒∠∠,∴318018025406x x x -︒+︒-=︒-,解得5407x ⎛⎫=︒ ⎪⎝⎭,∴ BC 的长为54041271807ππ⨯⨯=;45π或127π.综上所述,OEG能为等腰三角形, BC的长度为。

上海市中考数学模拟试题及答案八套

上海市中考数学模拟试题及答案八套

第15题图 第18题图上海市中考数学模题(一)一、选择题:(本大题共6题,每题4分,满分24分) 1、计算3)2(-的结果是( )A 、6;B 、6-;C 、8;D 、8-; 2、下列根式中,与3是同类二次根式的是( )A 、6;B 、12;C 、23; D 、18; 3、不等式042≤+x 的解集在数轴上表示正确的是( )A 、 ;B 、 ;C 、 ;D 、 ;4、李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是( )A 、12;B 、3.0;C 、4.0;D 、40;5、如图所示的尺规作图的痕迹表示的是( )A 、尺规作线段的垂直平分线;B 、尺规作一条线段等于已知线段;C 、尺规作一个角等于已知角;D 、尺规作角的平分线; 6、下列命题中,真命题是( )A 、四条边相等的四边形是正方形;B 、四个角相等的四边形是正方形;C 、对角线相等的平行四边形是正方形;D 、对角线相等的菱形是正方形;二、填空题:(本大题共12题,每题4分,满分48分) 7、当1=a 时,3-a 的值为 ; 8、方程x x =+32的根是 ;9、若关于x 的方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是 ;10、试写出一个二元二次方程,使该方程有一个解是⎩⎨⎧=-=21y x ,你写的这个方程是 (写出一个符合条件的即可);11、函数121-=x y 的定义域是 ; 12、若),23(1y A -、),52(2y B 是二次函数3)1(2+--=x y 图像上的两点,则1y 2y (填“>”或“<”或“=”);13、一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是 ; 14、已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是分;15、如图,在梯形ABCD ∆中,E 、F 分别为腰AD 、BC 的中点,若3=DC m ,5=EF m ,则向量=AB(结果用m 表示);16、若两圆的半径分别为cm 1和cm 5,圆心距为cm 4,则这两圆的位置关系是 ; 17、设正n 边形的半径为R ,边心距为r ,如果我们将rR的值称为正n 边形的“接近度”,那么正六边形的“接近度”是 (结果保留根号);18、已知ABC ∆中,5==AC AB ,6=BC (如图所示),将ABC ∆沿射线BC 方向平移m 个单位得到DEF ∆,顶点A 、B 、C 分别与D 、E 、F 对应,若以点A 、D 、E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是 ;三、解答题:(本大题共7题,满分78分)19、(10分)先化简,再求值:4216442+÷-+-x x x x ,其中8=x ;第23题图第21题图第24题图图1第25题图图220、(10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过)10(-,A 、)51(,B 、)31(--,C 三点.(1)求这个二次函数的解析式;(2)用配方法...把这个函数的解析式化为k m x a y ++=2)(的形式;21、(10分)如图,在∆ABC 中,CD 是边AB 上的中线,B ∠是锐角,且22sin =B ,21tan =A ,22=BC ,求边AB 的长和CDB ∠cos 的值;22、(10分)社区敬老院需要600个环保包装盒,原计划由初三(1)班全体同学制作完成。

2024年上海中考数学模拟练习卷四及参考答案

2024年上海中考数学模拟练习卷四及参考答案

上海市2024年中考数学模拟练习卷3(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A .甲的射靶成绩的平均数大于乙的射靶成绩的平均数B .甲的射靶成绩比乙的射靶成绩稳定C .甲的射靶成绩比乙的射靶成绩好些D .在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:211x x x x +=--.9.(本题40的解是.10.(本题4分)函数y =的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b = ,则AO = .(用含a 、b的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.三、解答题(共78分)19.(本题6分)计算:(1)|2|123--(2))103120231|32|85-⎛⎫-++- ⎪⎝⎭20.(本题8分)解不等式组:213132514x x x x+-⎧≥⎪⎨⎪-<+⎩.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.25.(本题16分)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)在旋转过程中,①连接BE 与DG ,结合图1,探究线段BE 与DG 的数量关系______,线段BE 与DG 的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.参考答案第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)当使用换元法解方程2()2(3011x x x x --=++时,若设1x y x =+,则原方程可变形为()A .2230y y ++=B .2230y y -+=C .2230y y +-=D .2230y y --=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得.4.(本题4分)甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.根据统计图,下列结论正确的是()A.甲的射靶成绩的平均数大于乙的射靶成绩的平均数B.甲的射靶成绩比乙的射靶成绩稳定C.甲的射靶成绩比乙的射靶成绩好些D.在射靶上,甲比乙更有潜力5.(本题4分)如图,依次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,添加的条件不正确的是()A .90FEH ∠=︒B .AC BD =C .EG FH =D .AC BD⊥依题意,,FG DB EH ∥∥∴,EH FG EF GH ∥∥,EH∴四边形EFGH 是平行四边形,A.添加90FEH ∠=︒,则四边形EFGH 为矩形,故该选不符合题意;B.添加AC BD =,可得四边形EFGH 为菱形,符合题意;C.添加EG FH =,可得四边形EFGH 为矩形,故该选不符合题意;D.添加AC BD ⊥,则EF FG ⊥,可得四边形EFGH 为矩形,故该选不符合题意;故选:B .【点评】本题考查了三角形中位线的性质,平行四边形的性质与判定,菱形的判定,矩形的判定,掌握矩形的判定定理是解题的关键.6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个【答案】A 【分析】根据等腰梯形的性质结合全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线等知识进行逐个判断解答即可.【解析】解:∵四边形ABCD 是等腰梯形,∴AC =BD ,又AD =BC 、AB =AB ,∴△ABC ≌△BAD (SSS ),∴∠BAC =∠ABD ,∠ADB =∠BCA ,又AC ⊥BC ,∴OA =OB ,OC =OD ,∠ADB =∠BCA =90°即BD ⊥AD ,∵EF ⊥AD ,∴BD ∥EF ,故①正确;∴∠AEF =∠AOD =∠BAC +∠ABD ,∴∠AEF =2∠BAC ,故②正确;∵BE ⊥AB ,∴∠BAC +∠AEB =∠ABD +∠OBE =90°,∴∠AEB =∠OBE ,∴OB =OE ,∴AO =OE ,又OD ∥EF ,∴AD =DF ,故③正确;∴EF =2OD =2OC ,∵OA =OE =OC +CE ,∴AC =OA +OC =OC +CE +OC =2OC +CE =EF +CE ,故④正确,综上,正确的结论有4个,即错误的结论有0个,故选:A .【点评】本题考查等腰梯形的性质、全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线性质等知识,熟练掌握相关知识的联系与运用是解答的关键.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2116x -=.8.(本题4分)计算:11x x x x +=.9.(本题40的解是.【答案】无解【分析】先把无理方程转化成有理方程,求出方程的解,再进行检验即可.【解析】解:两边平方得:()()540x x --=,解得:15=x ,24x =,2x 的定义域是.11.(本题4分)若关于x 的一元二次方程()25220k x x --+=无实数根,则整数k 的最小值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与22y x =的相同;乙:顶点在x 轴上;丙:对称轴是=1x -请写出这个二次函数解析式的一般式:.【答案】2242y x x =++【分析】根据已知条件知,此二次函数解析式为()2y a x h =-,且2a =,1h =-,据此可得;【解析】解:设函数解析式为()2y a x h =-,根据题意得,2,1a h ==-,二次函数解析式是:()221y x =+()2221x x =++2242x x =++,故答案为:2242y x x =++.【点评】本题主要考查待定系数法求二次函数解析式,解题的关键是掌握二次函数的图象和性质及其解析式的形式.15.(本题4分)如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 交于点O ,14AOD BOC S S =△△.设AD a = ,AB b =,则AO = .(用含a 、b 的式子表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)【答案】①②④【分析】利用骑车的人数除以其所占的百分比求出调查的总人数,再求出步行所占的百分比,利用总人数乘以步行所占的百分比求得步行的人数,然后利用乘车所占的百分比乘以总人数求得乘车的人数,再与骑车的人数相比即可,最后利用乘车所占的百分比乘以360︒即可求得乘车所对应的圆心角.【解析】解:由题意可得,参与调查的总人数为:2135%60÷=(人),故①正确;∵步行所占的百分比为:135%15%5%=45%---,∴步行的人数为:6045%=27⨯(人),故②正确;∵乘车的人数为:15%60=9⨯(人),21912-=(人),∴骑车上学的学生比乘车上学的学生多12人,故③错误,乘车部分所对应的圆心角为:15%36054⨯︒=︒,故④正确,故答案为:①②④.【点评】本题考查扇形统计图,熟练掌握频数除以总人数等于其所占的百分比,求圆心角的方法是解题的关键.17.(本题4分)如图,在Rt ABC △中,90C ∠=︒,35A ∠=︒,点O 在边AC 上,且2OA OC =,将OA 绕着点O 逆时针旋转,点A 落在ABC 的一条边上的点D 处,那么旋转角AOD ∠的度数是.【答案】110︒或120︒【分析】分类讨论:当点D 在AB 上,根据等边对等角和三角形内角和即可求得;当点D 在BC 上,根据30度所对的直角边是斜边的一半和三角形的外角性质即可求得.【解析】当点D 在AB 上,如图:∵AO OD =,∴35A ADO ∠=∠=︒,∴1803535110AOD ∠=︒-︒-︒︒=,当点D 在BC 上,如图:∵2AO OD OC ==,∴30ODC ∠=︒,∴9030120AOD ∠=︒+︒=︒,故答案为:110︒或120︒【点评】本题考查旋转的性质,等边对等角,三角形内角和,30度角的直角三角形性质,三角形的外角性质,解题的关键是分类讨论思想的运用.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.∵右边6个小圆关于点P中心对称,直线y经过点∴直线y平分右边6个小圆的面积,∵直线y经过左边小圆的圆心,∴直线y平分⊙N的面积,∴直线y平分7个小圆的面积,NF⊥x轴,GO⊥x轴,则NF∥GO,【点评】本题考查了中心对称图形的特征,直线和圆的位置关系,圆和圆的位置关系,一次函数解析式;掌握中心对称图形的特征是解题关键.三、解答题(共78分)19.(本题6分)计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20.(本题8分)解不等式组:32514x x+-⎧≥⎪⎨⎪-<+.解不等式②得:2x >-,∴不等式组的解集为21x -<≤.【点评】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若5,sin 2AF ABD =∠=O 的半径.22.(本题12分)在一次实验中,小李把一根弹簧的上端固定,在其下端悬挂质量为x kg 的物体,如图所示,弹簧的长度y (cm )与所挂物体的质量x (kg )的几组对应值如下表:(1)当所挂物体的质量为4kg 时,弹簧长______cm ;不挂重物时弹簧长_____cm ;(2)写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)当弹簧长度为36cm 时,求所挂物体的质量.【答案】(1)24;18(2)182y x=+(3)9【分析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,即可直接得出答案;(2)由表格可知,所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,据此即可写出弹簧长度y (cm )与所挂物体质量x (kg )之间的函数关系式;(3)把36y =代入(2)中函数关系式即可解答.【解析】(1)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知:当所挂物体的质量为4kg 时,弹簧长24cm ;不挂重物时弹簧长18cm ;故答案是24;18;(2)根据弹簧的长度y (cm )与所挂物体的质量x (kg )的对应值表格,可知所挂物体的质量每增加1kg ,弹簧的长度就会增加2cm ,∴182y x =+.故答案是182y x =+;(3)当36y =时,18236x +=,∴9x =.即当弹簧长度为36cm 时,求所挂物体的质量为9kg .【点评】本题主要考查了一次函数的应用,解答本题的关键在于熟读题意,分析表格中的数据之间的数量关系,求出弹簧长度与所挂物体质量之间的函数关系式.23.(本题12分)如左图,为探究一类矩形ABCD 的性质,小明在BC 边上取一点E ,连接DE ,经探究发现:当DE 平分ADC ∠时,将ABE 沿AE 折叠至AFE △,点F 恰好落在DE 上,据此解决下列问题:(1)求证:AFD DCE ≌△△;(2)如图,延长CF 交AE 于点G ,交AB 于点H .①求证:··EF DF GF CF =;②求:GE GC 的值24.(本题14分)已知在平面直角坐标系xOy 中,拋物线22y x bxc =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度.设213(,2)22P t t t -++,则1(,2)2H t t -+,2122PH t t ∴=-+,设直线AP 的解析式为11y k x b =+,∴11211013222k b k t b t t -+=⎧⎪⎨+=-++⎪⎩,25.(本题16分)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)在旋转过程中,①连接BE与DG,结合图1,探究线段BE与DG的数量关系______,线段BE与DG的位置关系______;②连接BE 与CF ,结合图2,试探究线段BE 与CF 的数量关系,并说明理由.(2)在旋转过程中,连接CF ,取CF 中点M ,①连接BM GM 、,结合图3,试探究BM 与GM 的关系,并说明理由;②将正方形AEFG 绕点A 旋转一周,若3,2AB AE ==,请直接写出点M 在这个过程中的运动路径长______.∵点M为CF的中点,试卷31。

2023年上海市中考数学模拟试题(一)含答案

2023年上海市中考数学模拟试题(一)含答案

2023年上海市中考数学模拟试题(一)含答案第一部分选择题1. 一项研究表明,四年级的学生睡眠不足30分钟会影响他们的研究。

如果260个四年级学生中有16个学生睡眠不足30分钟,那么这份研究的结论是:A. 经不起考验B. 足够可靠C. 没有明确结果D. 需要更多数据才能结论明确答案:B2. 一个正方形的周长是16,这个正方形面积是多少?A. 4B. 8C. 16D. 32答案:B3. 若$x=2 $,$y=3$,$z=4$,那么$5x-2y+3z=$A. $13$B. $23$C. $18$D. $20$答案:C第二部分解答题1. (10分)请计算并简化:$2x+5(x-3)-3(2x+1)$。

解答:首先将$x$的系数(或者没有系数的)项加在一起,得到$2x+5x-15-6x-3$,接着将有$x$(或者没有$x$但带有别的字母)的项加在一起,得到$x-18$。

2. (15分)证明:$ab+bc\leq\frac{a^2}{4}+\frac{4b^2}{4}+\frac{9c^2}{4}$。

(其中$a,b,c$为任意实数)解答:首先将右边的项合并:$\frac{a^2+4b^2+9c^2}{4}$。

接着利用均值不等式,得到:$(\frac{a}{2})^2+2(\frac{2b}{2})^2+3(\frac{3c}{2})^2\geq2\sqrt{(\frac{a}{2})^2\cdot2(\frac{2b}{2})^2}+2\sqrt{(\frac{a}{2})^2\cdot3(\frac{3c}{2})^2}+2\sqrt{2(\frac{2b}{2})^2\cdot3(\frac{3c}{2})^2}}$,简化得到:$a^2+4b^2+9c^2\geq 4ab+6ac$。

进一步简化为两边同时减去$4ab+6ac$,得到$ab+bc\leq\frac{a^2}{4}+\frac{4b^2}{4}+\frac{9c^2}{4}$。

上海市中考数学模拟训练试卷(1)

上海市中考数学模拟训练试卷(1)

上海市中考数学模拟训练试卷(1)一.选择题(共6小题,满分24分,每小题4分)1.(4分)﹣的相反数是()A.﹣2B.C.﹣5D.﹣0.22.(4分)下列运算正确的是()A.2x2+3x3=5x5B.(﹣2x)3=﹣6x3C.(x+y)2=x2+y2D.(3x+2)(2﹣3x)=4﹣9x23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)根据某市统计局发布的该市近5年的年度GDP增长率的有关数据,经济学家评论说,该市近5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的()比较小.A.中位数B.平均数C.众数D.方差5.(4分)下列命题的逆命题成立的是()A.如果两个实数是负数,它们的积是正数B.对顶角相等C.顶角是100°的等腰三角形是钝角三角形D.两直线平行,同旁内角互补6.(4分)下列类似雪花的图案都是由字母“m”形状的图形经过变形,旋转组合这计而成的,其中旋转72°就能与其自身重合的是()A.B.C.D.二.填空题(共12小题,满分48分,每小题4分)7.(4分)若单项式与的差仍是单项式,则m﹣2n=.8.(4分)已知函数f(x)=,那么f(3)=.9.(4分)已知,则x2+9y2=.10.(4分)若关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,则m的最大整数值为.11.(4分)在﹣1,2,3三个数中任取两个数相乘,积为正数的概率为.12.(4分)每个季节都有专属于这个季节的美食,青团无疑是专属于春天的美食.某甜品店销售三种口味青团:芝麻馅,豆沙馅,肉松馅.且芝麻馅和豆沙馅的成本相同,豆沙馅和肉松馅每盒的成本之比为4:5.店长发现当芝麻馅,豆沙馅,肉松馅的销量之比为3:2:1时,总利润率为40%;过节促销时每个产品每盒都降价一元销售,当三者销量之比仍然为3:2:1时,总利润率为32%,已知销售一盒豆沙馅所得利润为50%,销售一盒肉松馅所得利润不低于50%且不高于70%.已知青团的价格均为整数,则三种口味青团各销售一盒可获得利润元.13.(4分)超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如图的频数分布直方图(图中等待时间1﹣2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为.14.(4分)已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1 y2(填>、<或=).15.(4分)如图,在平行四边形ABCD中,点E是边CD的中点,如果,,用含、的式子表示向量=.16.(4分)如图,水管横截面⊙O半径为13cm,水面宽AB=24cm,则水的最大深度cm.17.(4分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG 的交点.若AC=6,则DH=.18.(4分)已知⊙O的直径是10,经过⊙O上一点的直线L与⊙O相切,点O到直线L的距离是.三.解答题(共7小题,满分78分)19.(10分)利用幂的性质计算:×÷.20.(10分)解不等式组.21.(10分)在平面直角坐标系xOy中,已知点A(3,4),B(2,m).(1)若点A,B在同一个反比例函数y1=的图象上,求m的值;(2)若点A,B在同一个一次函数y2=ax+b的图象上,①若m=2,求这个一次函数的解析式;②若当x>2时,不等式mx+1<ax+b始终成立,结合函数图象,直接写出m的取值范围.22.(10分)如图.某大街水平地画有两路灯灯杆AB=CD=10米,小明晚上站在两灯杆的正中位置观察眼睛处影子的俯角∠MEG=∠NEH=11.31°,已知底面到小明眼睛处的高度EF=1.5米;(1)求两灯杆的距离DB;(2)其县在一条长760m的大街P﹣K﹣Q上安装12根灯杆(含两端),其中PK为休闲街,按(1)中的灯杆距离安装灯杆,KQ为购物街,灯杆距离比(1)中的少35m,求休闲街和购物街分别长多少米.(参考数据:tan78.69°≈5.00,tan11.31≈0.20,cos78.69≈0.20,cos11.31≈0.98,可使用科学计算器)23.(12分)如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在边BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.(1)当CD=时,求点E的坐标;(2)设CD=t,四边形COEB的面积为S,求S的最大值及此时t的值.24.(12分)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.(1)在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有;(2)如图1,“完美四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的解析式为y =x,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.。

2024年上海中考数学模拟练习卷十及参考答案

2024年上海中考数学模拟练习卷十及参考答案

上海市2024年中考数学模拟练习卷10(本试卷共25题,150分)一、选择题:(本大题共6题,每题4分,共24分)1.(2022中,有理数是()A B C .D2.(2023•成都)近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数():33AQI ,27,34,40,26,则这组数据的中位数是()A .26B .27C .33D .343.(2023•泰安)为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.64.(2021•桂林)下列根式中,是最简二次根式的是()AB C D 5.(2023•常德)下列命题正确的是()A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形6.(2023•宿迁)在同一平面内,已知O 的半径为2,圆心O 到直线l 的距离为3,点P 为圆上的一个动点,则点P 到直线l 的最大距离是()A .2B .5C .6D .8二、填空题:(本大题共12题,每题4分,共48分)7.(2023•青岛)计算:328(2)x y x ÷=.8.(2023•齐齐哈尔)在函数12y x =+-中,自变量x 的取值范围是.9.(2023•内江)分解因式:32x xy -=.10.(2023•贵州)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(20233=的解是.12.(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为.13.(2023•山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.14.(2023•新疆)如图,在平面直角坐标系中,OAB ∆为直角三角形,90A ∠=︒,30AOB ∠=︒,4OB =.若反比例函数(0)k y k x =≠的图象经过OA 的中点C ,交AB 于点D ,则k =.15.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架()EF 放在离树()AB 适当距离的水平地面上的点F 处,再把镜子水平放在支架()EF 上的点E 处,然后沿着直线BF 后退至点D 处,这时恰好在镜子里看到树的顶端A ,再用皮尺分别测量BF ,DF ,EF ,观测者目高()CD 的长,利用测得的数据可以求出这棵树的高度.已知CD BD ⊥于点D ,EF BD ⊥于点F ,AB BD ⊥于点B ,6BF =米,2DF =米,0.5EF =米, 1.7CD =米,则这棵树的高度(AB 的长)是米.16.(2020•荆州)我们约定:(a ,b ,)c 为函数2y ax bx c =++的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m ,2m --,2)的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为.17.(2023•浦东新区校级模拟)如图,已知在ABC ∆中,点D 在边AC 上,2AD DC =,AB a = ,AC b = ,那么BD = .(用含向量a ,b的式子表示)18.(2023•内蒙古)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,1BC =,将ABC ∆绕点A 逆时针方向旋转90︒,得到△AB C ''.连接BB ',交AC 于点D ,则AD DC 的值为.三、解答题:(本大题共7题,10+10+10+10+12+12+14,共78分)19.(2023•恩施州)先化简,再求值:22(1)42x x x ÷---,其中52x =-.20.(2023•常德)解方程组:213423x y x y -=⋯⎧⎨+=⋯⎩①②.21.(2023•宁波)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程()t h的函数关系如图2所示.s km与所用时间()(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.22.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为)H,在B,C处与篮板连接(BC所在直线垂直于)MN,EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD BC=,∠=︒时,点C离地面的高度为288cm.调节伸缩臂EF,将GAE∠由60︒调节为GAEDH cm=,测得60208︒≈,54︒,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8︒≈cos540.6)23.(2023•杨浦区二模)已知:在直角梯形ABCD 中,//AD BC ,90A ∠=︒,ABD ∆沿直线BD 翻折,点A 恰好落在腰CD 上的点E 处.(1)如图,当点E 是腰CD 的中点时,求证:BCD ∆是等边三角形;(2)延长BE 交线段AD 的延长线于点F ,联结CF ,如果2CE DE DC =⋅,求证:四边形ABCF 是矩形.24.(2023•鞍山)如图1,抛物线253y ax x c =++经过点(3,1),与y 轴交于点(0,5)B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =-与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE ,当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M ,若OE BN =,3tan 4BME ∠=,求点E 的坐标.25.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:ABE ADE∆≅∆;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF BE⊥.判断FBG∆的形状并说明理由;(3)在第(2)题的条件下,2BE BF==.求AEAB的值.参考答案一、选择题:(本大题共6题,每题4分,共24分)123456C C BD A B二、填空题:(本大题共12题,每题4分,共48分)7.2xy .8.1x >且2x ≠.9.()()x x y x y +-.10.94.11.5y =12.2.13.1614.4.15. 4.116.23a b -+ .17.(1,0)、(2,0)和(0,2)18.5三、解答题:(本大题共7题,共78分)解答应写出文字说明、证明过程或演算步骤.19.(10分)解:22(1)42x x x ÷---22(2)(2)2x x x x x --=÷+--22(2)(2)2x x x -=⋅+--12x =-+,当2x =-时,原式5===.20.(10分)解:①2⨯+②得:525x =,解得:5x =,将5x =代入①得:521y -=,解得:2y =,所以原方程组的解是52x y =⎧⎨=⎩.21.(10分)解:(1)由函数图象可得,大巴速度为602040(/)1km h -=,2040s t ∴=+;当100s =时,1002040t =+,解得2t =,2a ∴=;∴大巴离营地的路程s 与所用时间t 的函数表达式为2040s t =+,a 的值为2;(2)由函数图象可得,军车速度为60160(/)km h ÷=,设部队官兵在仓库领取物资所用的时间为x h ,根据题意得:60(2)100x -=,解得:13x =,答:部队官兵在仓库领取物资所用的时间为13h .22.(10分)解:点C 离地面的高度升高了,理由:如图,当60GAE ∠=︒时,过点C 作CK HA ⊥,交HA 的延长线于点K ,BC MN ⊥ ,AH MN ⊥,//BC AH ∴,AD BC = ,∴四边形ABCD 是平行四边形,//AB CD ∴,60ADC GAE ∴∠=∠=︒,点C 离地面的高度为288cm ,208DH cm =,28820880()DK cm ∴=-=,在Rt CDK ∆中,80160()1cos602DKCD cm ===︒,如图,当54GAE ∠=︒,过点C 作CQ HA ⊥,交HA 的延长线于点Q,在Rt CDQ ∆中,160CD cm =,cos541600.696()DQ CD cm ∴=⋅︒≈⨯=,968016()cm ∴-=,∴点C 离地面的高度升高约16cm .23.(12分)证明:(1)由折叠得:ADB BDE ∠=∠,90A DEB ∠=∠=︒,点E 是腰CD 的中点,BE ∴是DC 的垂直平分线,DB BC ∴=,BDE C ∴∠=∠,BDE C ADB ∴∠=∠=∠,//AD BC ,180ADC C ∴∠+∠=︒,180BDE C ADB ∴∠+∠+∠=︒,60BDE C ADB ∴∠=∠=∠=︒,BCD ∴∆是等边三角形;(2)过点D 作DH BC ⊥,垂足为H ,90DHB DHC∴∠=∠=︒,//AD BC,90A∠=︒,18090ABC A∴∠=︒-∠=︒,∴四边形ABHD是矩形,AD BH∴=,AB DH=,由折叠得:90A DEB∠=∠=︒,AB BE=,18090BEC DEB∴∠=︒-∠=︒,DH BE=,90BEC DHC∠=∠=︒,BCE DCH∠=∠,()BCE DCH AAS∴∆≅∆,DC BC∴=,CE CH=,//AD BC,DFE EBC∴∠=∠,FDE ECB∠=∠,FDE BCE∴∆∆∽,∴CE BC DE DF=,2CE DE DC=⋅,∴CE DC DE CE=,∴BC DC DF CE=,DF CE∴=,CH DF∴=,AD DF BH CH∴+=+,AF BC∴=,∴四边形ABCF是平行四边形,90A∠=︒,∴四边形ABCF 是矩形.24.(12分)解:(1)2223(1)4y x x x =--=-- ,∴抛物线1L 的顶点坐标(1,4)P -,1m = ,点P 和点D 关于直线1y =对称,∴点D 的坐标为(1,6);(2) 抛物线1L 的顶点(1,4)P -与2L 的顶点D 关于直线y m =对称,(1,24)D m ∴+,抛物线222:(1)(24)223L y x m x x m =--++=-+++,∴当0x =时,(0,23)C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴于N ,(1,24)D m + ,(0,24)N m ∴+,(0,23)C m + ,1DN NC ∴==,45DCN ∴∠=︒,90BCD ∠=︒ ,45BCO ∴∠=︒,直线//l x 轴,90BOC ∴∠=︒,45CBO BCO ∴∠=∠=︒,BO CO =,3m - ,(23)3BO CO m m m ∴==+-=+,(3,)B m m ∴+,点B 在223y x x =--的图象上,2(3)2(3)3m m m ∴=+-+-,0m ∴=或3m =-,当3m =-时,得(0,3)B -,(0,3)C -,此时,点B 和点C 重合,舍去,当0m =时,符合题意;将0m =代入22:223L y x x m =-+++得22:23L y x x =-++,②当90BDC ∠=︒,如图2,过B 作BT ND ⊥交ND 的延长线于T ,同理,BT DT =,(1,24)D m ∴+,(24)4DT BT m m m ∴==+-=+,1DN = ,1(4)5NT DN DT m m ∴=+=++=+,(5,)B m m ∴+,当B 在223y x x =--的图象上,2(5)2(5)3m m m ∴=+-+-,解得3m =-或4m =-,3m - ,3m ∴=-,此时,(2,3)B -,(0,3)C -符合题意;将3m =-代入22:223L y x x m =-+++得,22:23L y x x =-+-,③易知,当90DBC ∠=︒,此种情况不存在;综上所述,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-;(3)由(2)知,当90BDC ∠=︒时,3m =-,此时,BCD ∆的面积为1,不合题意舍去,当90BCD ∠=︒时,0m =,此时,BCD ∆的面积为3,符合题意,由题意得,EF FG CD ===EF 的中点Q ,在Rt CEF ∆中可求得122CQ EF ==,在Rt FGQ ∆中可求得2GQ =,当Q ,C ,G 三点共线时,CG.25.(14分)(1)证明: 四边形ABCD 是正方形,AB AD CB CD ∴===,90ABC ADC ∠=∠=︒,45BAC BCA DAC DCA ∴∠=∠=∠=∠=︒,在ABE ∆和ADE ∆中,AB ADBAE DAE AE AE=⎧⎪∠=∠⎨⎪=⎩,()ABE ADE SAS ∴∆≅∆.(2)解:FBG ∆是等腰三角形,理由如下:ABE ADE ∆≅∆ ,ABE ADE ∴∠=∠,ABC ABE ADC ADE ∴∠-∠=∠-∠,EBC EDC ∴∠=∠,//AB CD ,FGB EDC ∴∠=∠,FGB EBC ∴∠=∠,BF BE ⊥ ,90FBE ∴∠=︒,90FBG EBC ABE ∴∠=∠=︒-∠,FGB FBG ∴∠=∠,BF GF ∴=,FBG ∴∆是等腰三角形.(3)解:2BE BF == ,90FBE ∠=︒,45F BEF ∴∠=∠=︒,BAC F ∴∠=∠,AEG AGF BAC AGF F FBG ∴∠=∠-∠=∠-∠=∠,AGE FGB ∠=∠ ,且FGB FBG ∠=∠,AGE AEG ∴∠=∠,AE AG ∴=,EF == 2BF GF ==,2GE EF GF ∴=-=-,ABE ADE ∆≅∆ ,2BE DE ∴==,//AG CD ,AGE CDE ∴∆∆∽,∴1AG GECD DE ==,∴1AEAB =-,∴AEAB 1-.。

2024年上海中考数学模拟练习卷六及参考答案

2024年上海中考数学模拟练习卷六及参考答案

上海市2024年中考数学模拟练习卷5一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A .50= B.155-=- C.624555÷= D.()24655=2.下列函数中,y 随x 的增大而减小的是()A.3y x= B.3y x=- C.23y x = D.23y x =-3.如果实数a 、b 在数轴上的对应点如图所示,那么下列等式中正确的是()A.a a =B.b b =-C.a b a b+=+ D.a b b a-=-4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A .0.1B.0.17C.0.33D.0.45.如果斜坡的坡度为,那么这条斜坡的坡角为()A.75度B.60度C.45度D.30度6.已知正多边形的边数是素数,那么下列命题中,真命题是()A.这个正多边形是轴对称图形,但不是中心对称图形B.这个正多边形不是轴对称图形,但是中心对称图形C.这个正多边形既是轴对称图形,也是中心对称图形D.这个正多边形既不是轴对称图形,也不是中心对称图形二、填空题:(本大题共12题,每题4分,满分48分)7._______8.计算:()232m m n +-=___________.9.方程24022x x x+=--的解是___________.10.已知()62f x x =+,那么(4)f -=___________.11.已知正比例函数图像与反比例函数图像都经过点()3,5-,那么这两个函数图象必都经过另一个点的坐标为___________.12.如果直线l 与直线21y x =+平行,且直线l 在y 轴上的截距为5-,那么直线l 的表达式是___________.13.口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是___________.14.一双皮鞋原价是m 元,如果以9折降价出售,那么这双皮鞋的售价是___________元.15.如图,直线EF 分别交直线、AB CD 于点P 和点Q ,点R 在直线CD 上,且RQ PQ =,如果,40AB CD APQ ∠=︒∥,那么BPR ∠=___________度.16.已知1O 与2O 内切,1O 的半径为4,12O O 的长等于6,那么2O 的半径等于___________.17.已知ABC 的三条中线AD BE CF 、、相交于点G ,9,12,15AD BE CF ===,那么ABC 的面积等于___________.18.已知在平行四边形ABCD 中,5760AB BC B ==∠=︒,,,P 是边CD 上一点,将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是___________.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:22213431121x x x x x x x +++-÷+--+,其中.20.解方程组:224321x y x y ⎧-=⎨+=⎩21.已知:如图,M 是AB 的中点,过点M 的弦MN 交弦AB 于点C ,设O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离;(2)求ACN ∠的度数.22.已知货船B 在观测站A 的北偏西30︒的方向上,灯塔C 在观测站A 的北偏西60︒方向上,且与观测站A 的距离为20海里,在货船B 上测得灯塔C 在它的南偏西15︒方向上,求观测站A 与货船B 之间的距离(精确到0.1 1.41= 1.73=).23.已知:如图,在等腰梯形ABCD 中,AD BC ∥,E 是下底BC 延长线上一点,且CE AD =.(1)求证:BDE △是等腰三角形;(2)如果P 是线段DE 上的点,连接CP ,AD DE BC PE ⋅=⋅,求证:CP AB ∥.24.将抛物线1C :2=23y x x --沿x 轴翻折,得到抛物线2C .(1)求抛物线2C 的表达式;(2)将抛物线1C 向左平移m 个单位,与x 轴相交于点A 和点B (点A 在点B 的左边),顶点为M ;将抛物线2C 向右平移2m 个单位,与x 轴相交于点D 和点E (点D 在点E 的左边),顶点为N .①当AB BE =时,求m 的值;②当AM AN ⊥时,求m 的值.25.已知:在ABC 中,AB AC =,将ABC 绕点C 旋转使点B 落在直线AB 上的点D 处,点A 落在点E 处,直线DE 与直线BC 相交于点F ,射线AC 与射线DE 相交于点P ,6BC =.(1)如图,连接AE ,当6AB >时,求证:①四边形ADCE 是等腰梯形;②PE 是PD 与PF 的比例中项.(2)当点D 与点A 的距离为5时,求CP 的长.参考答案:一、选择题:(本大题共6题,每题4分,满分24分)1.下列计算正确的是()A.050= B.155-=- C.624555÷= D.()24655=【答案】C 【解析】【分析】本题考查了零指数幂、负整数指数幂、同底数幂的除法等知识.结合选项分别依据零指数幂、负整数指数幂、同底数幂的除法运算法则以及幂的乘方法则进行计算,然后选择正确选项.【详解】解:A 、0510=≠,本选项不符合题意;B 、11555-=≠-,本选项不符合题意;C 、624555÷=,本选项符合题意;D 、()2468555=≠,本选项不符合题意;故选:C .2.下列函数中,y 随x 的增大而减小的是()A.3y x =B.3y x=- C.23y x = D.23y x =-【答案】B 【解析】【分析】本题考查了二次函数,正比例函数的图象与性质,根据正比例函数y kx =,0k <时,y 随x 的增大而减小,0k >时,y 随x 的增大而增大,二次函数()20y axa =¹,0a >时,开口向上,在0x <上,y 随x 的增大而减小,在0x >上,y 随x 的增大而增大,a<0时,开口向下,在0x <上,y 随x 的增大而增大,在0x >上,y 随x 的增大而减小,解答即可.【详解】解:A 、正比例函数3y x =的y 随x 的增大而增大,故A 错误;B 、正比例函数3y x =-的y 随x 的增大而减小,故B 正确;C 、二次函数23y x =的对称轴为0x =,且开口向上,0x <时,y 随x 的增大而减小,0x >时,y 随x 的增大而增大,故C 错误;D 、二次函数23y x =-的对称轴为0x =,且开口向下,0x <时,y 随x 的增大而增大,0x >时,y 随x 的增大而减小,故D 错误;故选:B .3.如果实数a 、b 在数轴上的对应点如图所示,那么下列等式中正确的是()A.a a =B.b b =-C.a b a b +=+D.a b b a-=-【答案】B 【解析】【分析】此题考查实数与数轴,解决此题的关键是掌握数轴的特征,再结合加减运算,绝对值的概念判断即可,先根据数轴判断出a 、b 的正负情况,然后根据有理数的加、减运算法则及绝对值的意义对各选项分析判断求解.【详解】解:根据题意得:0b a <<,b a ∴>,A 、a a a =-≠,故错误,不符合题意;B 、b b =-,故正确,符合题意;C 、()a b a b a b +=-+≠+,故错误,不符合题意;D 、a b a b -=-,故错误,不符合题意;故选:B .4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1B.0.17C.0.33D.0.4【答案】A 【解析】【分析】先计算出仰卧起座次数在15~20次之间的人数,根据频率=频数总数计算即可【详解】解:仰卧起座次数在15~20次之间的人数为30-10-12-5=3,∴仰卧起座次数在15~20次之间的频率是330=0.1,故选:A【点睛】此题考查了频率,熟练掌握频率的定义是解题的关键.5.如果斜坡的坡度为,那么这条斜坡的坡角为()A.75度B.60度C.45度D.30度【答案】D 【解析】【分析】本题考查了解直角三角形的应用坡度坡角问题.根据坡角的正切=坡度,列式可得结果.【详解】解:设这个斜坡的坡角为α,由题意得:3tan 3α==,30α∴=︒.故选:D .6.已知正多边形的边数是素数,那么下列命题中,真命题是()A.这个正多边形是轴对称图形,但不是中心对称图形B.这个正多边形不是轴对称图形,但是中心对称图形C.这个正多边形既是轴对称图形,也是中心对称图形D.这个正多边形既不是轴对称图形,也不是中心对称图形【答案】A 【解析】【分析】本题考查了命题的概念,正多边形:各边相等,各角也相等,,轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;及中心对称图形的概念:把一个图形绕某点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,根据真命题和假命题的概念结合正多边形的对称性即可解答.【详解】解: 奇数边的正多边形是轴对称图形,不是中心对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.∴这个正多边形一定是轴对称图形,正多边形的边数是素数,除2以外的素数都是奇数.∴当这个多边形的边形为奇数时,则不是中心对称图形,∴正多边形的边数是素数时,一定不是中心对称图形,故选:A .二、填空题:(本大题共12题,每题4分,满分48分)7._______【答案】3【解析】【分析】根据算术平方根的定义计算即可.3=.故答案为:3.【点睛】本题主要考查了算术平方根,掌握算术平方根的求法是解答本题的关键.8.计算:()232m m n +-=___________.【答案】56m n - ##65n m-+【解析】【分析】本题考查了向量的线性运算,熟练掌握运算法则是解题关键.先去括号,再计算向量的加减运算即可得.【详解】解:()232m m n +-236m m n =+- 56m n =- .故答案为:56m n -.9.方程24022x x x+=--的解是___________.【答案】2x =-【解析】【分析】本题主要考查了解分式方程,按照解分式方程的步骤解方程即可.【详解】解:2422x x x+=--去分母得:240x -=,移项得:24x =,∴12x =,22x =-,经检验:12x =是原分式方程的增根,22x =-是原分式方程的根.故答案为:2x =-.10.已知()62f x x =+,那么(4)f -=___________.【答案】3-【解析】【分析】本题考查了求函数的值.把4x =-代入求值即可.【详解】解:∵()62f x x =+,∴4(4)66322f =-=--=-+,故答案为:3-.11.已知正比例函数图像与反比例函数图像都经过点()3,5-,那么这两个函数图象必都经过另一个点的坐标为___________.【答案】()3,5-【解析】【分析】本题考查了正比例函数图象、反比例函数图象的对称性,熟记才能灵活运用.根据反比例函数的图象与正比例函数图象的两个交点一定关于原点对称即可求解.【详解】解:∵反比例函数的图象与正比例函数图象的两个交点一定关于原点对称,∴另一个交点的坐标与点()3,5-关于原点对称,即该点的坐标为()3,5-.故答案为:()3,5-.12.如果直线l 与直线21y x =+平行,且直线l 在y 轴上的截距为5-,那么直线l 的表达式是___________.【答案】25y x =-【解析】【分析】本题主要考查了一次函数图像平移的问题,根据直线l 与直线21y x =+平行,所以得到两个函数的k 值相同,再根据截距是5-,可得=5b -,即可求解.【详解】解:∵直线l 与直线21y x =+平行,∴设直线l 的解析式为:2y x b =+,∵在y 轴上的截距是5-,∴=5b -,∴直线l 的表达式为:25y x =-.故答案为:25y x =-.13.口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是___________.【答案】34【解析】【分析】本题考查了根据概率公式求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()mP A n=,据此即可求解.【详解】解:口袋中放有3只红球和9只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,共有12种等可能性,其中取到黄球的可能性有3种,∴取到黄球的概率是93=124P =.故答案为:3414.一双皮鞋原价是m 元,如果以9折降价出售,那么这双皮鞋的售价是___________元.【答案】0.9m ##90%m ##9m 10【解析】【分析】本题考查了列代数式,根据售价等于原价乘以折扣列出代数式即可.【详解】解:根据题意得:这双皮鞋的售价是0.9m ,故答案为:0.9m .15.如图,直线EF 分别交直线、AB CD 于点P 和点Q ,点R 在直线CD 上,且RQ PQ =,如果,40AB CD APQ ∠=︒∥,那么BPR ∠=___________度.【答案】70【解析】【分析】本题考查了等腰三角形的性质,平行线的性质,邻补角,根据等腰三角形的性质得到QRP QPR ∠=∠,由平行线的性质得到BPR QRP ∠=∠,进而得到BPR QPR ∠=∠,再根据40APQ ∠=︒,由邻补角的定义即可求解.【详解】解: RQ PQ =,∴QRP QPR ∠=∠,AB CD ∥,∴BPR QRP ∠=∠,∴BPR QPR ∠=∠,40APQ ∠=︒,180140BPQ APQ ∴∠=︒-∠=︒,∴1702BPR QPR BPQ ∠=∠=∠=︒,故答案为:70.16.已知1O 与2O 内切,1O 的半径为4,12O O 的长等于6,那么2O 的半径等于___________.【答案】10【解析】【分析】本题考查两圆的位置关系.根据圆心距和两圆半径之间的关系:1212()d r r r r =->即可得出.【详解】解:∵1O 与2O 内切,1O 的半径为4,设2O 的半径为2r ,12O O 的长等于6,46<,∴只可能是264r =-∴2O 的半径为24610r =+=.故答案为:1017.已知ABC 的三条中线AD BE CF 、、相交于点G ,9,12,15AD BE CF ===,那么ABC 的面积等于___________.【答案】72【解析】【分析】如图,首先把BDG 绕点D 作中心对称变换得到CDM V ,然后根据重心的性质可以分别得到22110,8,26333CG CF CM BG BE GM GD AD ========,由此利用勾股定理的逆定理可以证明GCM 是直角三角形,即90GMC ∠=︒,再利用三角形的面积公式求出GCM S ,最后可以得到24BGC GCM S S == ,而3ABC BGC S S =△△,由此即可求解.【详解】解:如图,把BDG 绕点D 作中心对称变换得到CDM V ,∴22210,8,26333CG CF CM BG BE GM GD AD ========,222100GM CM CG +== ,∴GCM 是直角三角形,即90GMC ∠=︒,1242GCM S CM GM ∴=⋅= 24BGC GCM S S ∴== ,∴372ABC BGC S S == ,故答案为:72.【点睛】此题分别考查了旋转的性质、直角三角形的性质、勾股定理的逆定理及三角形的面积公式,其中对于中线问题一般可以尝试中心变换,此题把三条中线的有关线段集中在一起,构造出一个规则图形--直角三角形.18.已知在平行四边形ABCD 中,5760AB BC B ==∠=︒,,,P 是边CD 上一点,将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是___________.【答案】702CP <<【解析】【分析】本题主要考查了相似三角形的性质与判定,平行四边形的性质,等边三角形的性质与判定等等,如图所示,当点C 的对应点E 切换在AD 上时,如图所示,在AD 上取一点H 使得DH DP =,连接PH ,先由平行四边形的性质得到57CD AB AD BC ====,,60D ABC ∠=∠=︒,120A C ∠=∠=︒;再证明DPH △是等边三角形,得到60DHP PH DH PD =︒==∠,,由折叠的性质可得7120PE PC BE BC BEP C =====︒,,∠∠,设CP EP y AE t ===,,则5DH PH y ==-,则2EH t y =-+,证明ABE HEP △∽△,得到2557t y y y t -+-==,求出2147y t +=,则521477y yy -=+,解方程即可得到答案.【详解】解:如图所示,当点C 的对应点E 在AD 上时,如图所示,在AD 上取一点H 使得DH DP =,连接PH ,∵四边形ABCD 是平行四边形,∴57CD AB AD BC ====,,60D ABC ∠=∠=︒,AD BC ∥,∴18060120A ∠=︒-︒=︒,同理可得120C ∠=︒,又∵DH DP =,∴DPH △是等边三角形,∴60DHP PH DH PD =︒==∠,,由折叠的性质可得7120PE PC BE BC BEP C =====︒,,∠∠,∴60ABE AEB AEB HEP +=︒=+∠∠∠∠,∴ABE HEP =∠∠;设CP EP y AE t ===,,则5DH PH y ==-,∴2EH t y =-+,又∵120A EHP ==︒∠∠,∴ABE HEP △∽△,∴EH PH PE AB AE BE ==,即2557t y y yt -+-==,∴14775t y y -+=,即2147y t +=,∴521477y yy -=+,∴解得72y =或35y =-(舍去),经检验,72y =是原方程的解,∴将BCP 沿直线BP 折叠,点C 落在这个平行四边形的内部,那么CP 长的范围是702CP <<,故答案为:702CP <<.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:22213431121x x x x x x x +++-÷+--+,其中【答案】22,1(1)x +.【解析】【分析】首先把除法运算转化成乘法运算,分式的分子、分母能分解因式的先分解因式,进行约分,然后进行减法运算,最后代值计算.【详解】原式=11x +﹣()()311x x x ++-•()()2(1)13x x x -++=11x +﹣21(1)x x -+=21(1)x x ++﹣21(1)x x -+=22(1)x +,当﹣1时,原式==22=1.故答案为()22,11x +【点睛】这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.20.解方程组:224321x y x y ⎧-=⎨+=⎩【答案】212x y =⎧⎪⎨=-⎪⎩【解析】【分析】本题考查了二元二次方程组的解法,方程组中第一个方程可因式分解为两个二元一次方程,再把第二个方程整体代入第一个方程,再利用加减消元法求解即可.【详解】解:第一个方程可化为()()223x y x y +-=,把第二个方程代入第一个方程,得23x y -=,解方程组2321x y x y -=⎧⎨+=⎩①②,由①得32x y =+,代入②得:3221y y ++=,解得:12y =-,将12y =-代入①得:13222x ⎛⎫=+⨯-= ⎪⎝⎭,∴212x y =⎧⎪⎨=-⎪⎩.21.已知:如图,M 是 AB 的中点,过点M 的弦MN 交弦AB 于点C ,设O 的半径为4cm,MN =.(1)求圆心O 到弦MN 的距离;(2)求ACN ∠的度数.【答案】(1)2cm (2)120︒【解析】【分析】本题考查了垂径定理、勾股定理、解直角三角形,熟练掌握垂径定理和勾股定理是解题的关键.(1)过点O 作OD MN ⊥,垂足为点D ,由垂径定理,得MD ND =,由43cm MN =,得到3cm MD =,根据4cm OM =,利用勾股定理即可求解出OD ,即可得出结果;(2)根据点M 是 AB 的中点,得到OM AB ⊥,根据3cos 2MD OMD OM ∠==,得到30OMD ∠=︒,进而得到60ACM ∠=°,即可求出ACN ∠的度数.【小问1详解】解:过点O 作OD MN ⊥,垂足为点D ,连接OM ,∴MD ND =,∵3cm MN =,∴23cm MD =,又∵4cm OM =,∴222cm OD OM MD =-=,即圆心O 到弦MN 的距离为2cm ;【小问2详解】解:∵点M 是 AB 的中点,∴OM AB ⊥.∵cos 2MD OMD OM ∠==,∴30OMD ∠=︒.∴60ACM ∠=°.∴120ACN ∠=︒.22.已知货船B 在观测站A 的北偏西30︒的方向上,灯塔C 在观测站A 的北偏西60︒方向上,且与观测站A 的距离为20海里,在货船B 上测得灯塔C 在它的南偏西15︒方向上,求观测站A 与货船B 之间的距离(精确到0.1 1.41= 1.73=).【答案】观测站A 与货船B 之间的距离为27.3海里【解析】【分析】本题考查了解直角三角形的实际应用-方位角的应用,作CH AB ⊥,垂足为点H .在Rt ACH 中,求出,CH AH ,在Rt BCH △中,求出BH ,即可得出结果.【详解】解:作CH AB ⊥,垂足为点H .由题意,得30,45,20BAC ABC AC ∠=︒∠=︒=海里.在Rt ACH 中,∵90,30,20AHC BAC AC ∠=︒∠=︒=海里,∴1102CH AC ==海里,sin 30AH AC =⋅︒=在Rt BCH △中,∵90,45BHC ABC ∠=︒∠=︒,∴10BH CH ==.∴1027.3AB =≈(海里).答:观测站A 与货船B 之间的距离为27.3海里.23.已知:如图,在等腰梯形ABCD 中,AD BC ∥,E 是下底BC 延长线上一点,且CE AD =.(1)求证:BDE △是等腰三角形;(2)如果P 是线段DE 上的点,连接CP ,AD DE BC PE ⋅=⋅,求证:CP AB ∥.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用平行线的性质得到180A ABC ∠+∠=︒,进而得到A DCE ∠=∠,由等腰梯形的性质得到AB CD =,证明ABD CDE ≌△△,得到BD DE =,即可证明结论;(2)根据AD DE BC PE ⋅=⋅结合,AD CE DE BD ==得到CE PEBC BD=,由E DBC ∠=∠,证明CEP CBD ∽ ,得到PCE BCD ∠=∠,根据BCD ABC ∠=∠,推出PCE ABC ∠=∠,即可证明结论.【小问1详解】证明:在等腰梯形ABCD 中,∵AD BC ∥,∴180A ABC ∠+∠=︒.又∵,180ABC BCD BCD DCE ∠=∠∠+∠=︒,∴A DCE ∠=∠.∵,AD CE AB CD ==,∴()SAS ABD CDE ≌ ,∴BD DE =,即BDE △是等腰三角形;【小问2详解】证明:∵AD DE BC PE ⋅=⋅,∴AD PEBC DE=,∵,AD CE DE BD ==,∴CE PEBC BD=,∵BD DE =,∴E DBC ∠=∠,∴CEP CBD ∽ ,∴PCE BCD ∠=∠,BCD ABC ∠=∠,∴PCE ABC ∠=∠,∴CP AB ∥.【点睛】本题主要考查等腰梯形的性质,全等三角形的判定与性质,等腰三角形的判定与性质,相似三角形的判定和性质,解题的关键是证明三角形全等,三角形相似.24.将抛物线1C :2=23y x x --沿x 轴翻折,得到抛物线2C .(1)求抛物线2C 的表达式;(2)将抛物线1C 向左平移m 个单位,与x 轴相交于点A 和点B (点A 在点B 的左边),顶点为M ;将抛物线2C 向右平移2m 个单位,与x 轴相交于点D 和点E (点D 在点E 的左边),顶点为N .①当AB BE =时,求m 的值;②当AM AN ⊥时,求m 的值.【答案】(1)223y x x =-++(2)①43m =,②2m =【解析】【分析】(1)抛物线翻折前后顶点关于x 轴对称,a 互为相反数,据此即可解答;(2)对于抛物线1C :2=23y x x --,令0y =,求出抛物线1C 与x 轴的两个交点坐标,进而根据平移的坐标变化可得点A ,B ,M ,D ,E ,N 的坐标.①根据两点间的距离可表示出AB ,BE 的长,根据AB BE =即可列得方程,求解即可;②根据两点间的距离公式可表示出MN ,AM ,AN 的长,根据勾股定理即可列得方程,求解即可.【小问1详解】∵抛物线1C :()22=23=14y x x x ----,∴抛物线1C 的顶点坐标为()1,4-,抛物线1C 沿x 轴翻折,得到抛物线2C ,则抛物线2C 的顶点坐标为()1,4,∴抛物线2C 的表达式为2(1)4y x =--+,即223y x x =-++.【小问2详解】对于抛物线1C :2=23y x x --,令0y =,则2230x x --=,解得11x =-,23x =,∴抛物线1C 与x 轴的两个交点坐标是()1,0-和()3,0,∴()1,0A m --,()3,0B m -,()1,4M m --,对于抛物线2C :223y x x =-++,令0y =,则2230x x -++=,解得11x =-,23x =,∴抛物线2C 与x 轴的两个交点坐标是()1,0-和()3,0,∴()12,0D m -+,()32,0E m +,()12,4N m +,①()()314AB m m =----=,()()3233BE m m m =+--=,当AB BE =时,43m =,解得43m =;②MN =AM =,AN =,当AM AN ⊥时,根据勾股定理,得222MN AM AN =+,∴229642091220m m m +=+++,解得2m =.【点睛】本题考查关于x 轴对称的图象特征,抛物线与x 轴的交点,平移的坐标变化,两点间的距离,勾股定理,熟练掌握关于x 轴对称的图象特征和平移的坐标变化,运用方程思想是解决问题的关键.25.已知:在ABC 中,AB AC =,将ABC 绕点C 旋转使点B 落在直线AB 上的点D 处,点A 落在点E 处,直线DE 与直线BC 相交于点F ,射线AC 与射线DE 相交于点P ,6BC =.(1)如图,连接AE ,当6AB >时,求证:①四边形ADCE 是等腰梯形;②PE 是PD 与PF 的比例中项.(2)当点D 与点A 的距离为5时,求CP 的长.【答案】(1)①见解析,②见解析(2)8114CP =或16CP =【解析】【分析】(1)①证明ACB ECD ∠=∠,CBD CDB ∠=∠,再证明BCD BAC ECA ∠=∠=∠,可得AD CE ∥,证明AE 与CD 不平行,结合AC DE =,可得梯形ADCE 是等腰梯形.②证明PD AP PE PC=,PE AP PF PC =,可得PD PE PE PF =,即PE 是PD 与PF 的比例中项.(2)分两种情况讨论:(i )当6AB >时,点D 在边AB 上.证明CBD ABC ∽,可得2BC BD BA =⋅.求解4BD =(负根舍去),证明APD CPE ∽,再利用相似三角形的性质可得答案,(ii )当6AB <时,点D 在边BA 的延长线上.同理可得答案.【小问1详解】证明:①由旋转条件,得CD CB =,ACB ECD ∠=∠,∴CBD CDB ∠=∠.∵AB AC =,∴A ABC CB =∠∠.∴BCD BAC ECA ∠=∠=∠.∴AD CE ∥.∵AD AB AC CE DE <===,∴AE 与CD 不平行.∴四边形ADCE 是梯形.∵AC DE =,∴梯形ADCE 是等腰梯形.②∵AD CE ∥,∴ADP CEP △∽△,∴PD AP PE PC =.∵AB CE =,AB CE ∥,∴四边形ABCE 是平行四边形.∴AE BC ∥.∴APE CPF ∽,∴PE AP PF PC =.∴PD PEPE PF =,即PE 是PD 与PF 的比例中项.【小问2详解】(i )当6AB >时,点D 在边AB 上.∵ABC ACB CDB ∠=∠=∠,∴CBD ABC ∽,∴BD BC BC BA =,∴2BC BD BA =⋅.∵6BC =,5AD =,∴()536BD BD +=,∴4BD =(负根舍去),∴9AB AC CE DE ====.∵AD CE ∥,∴APD CPE ∽,∴CP CE AP AD =,即995CP CP =-.解得8114CP =.(ii )当6AB <时,点D 在边BA 的延长线上.同理可得:9BD =.∴4AB AC CE ===.∵AD CE ∥,∴PCE PAD ∽,∴CP CEAP AD =,即445CPCP =+.解得16CP =.综上所述,8114CP =或16CP =.。

2023年上海市中考数学模拟试题及答案5套

2023年上海市中考数学模拟试题及答案5套

2023年上海市中考数学模拟试题及答案5套目录1. 套题一2. 套题二3. 套题三4. 套题四5. 套题五套题一题目1. 计算:\[2 \times (3 + 5)\]2. 现有一组数:\[4, 7, 2, 9, 1\],请将其按照从小到大的顺序排列。

答案1. 解答:\[2 \times (3 + 5) = 2 \times 8 = 16\]2. 解答:\[1, 2, 4, 7, 9\]套题二题目1. 用\[ \frac{5}{8} \]表示小数形式。

2. 已知一个三角形的底边长为5cm,高为12cm,请计算其面积。

答案1. 解答:\[ \frac{5}{8} = 0.625\]2. 解答:三角形的面积为\[ \frac{1}{2} \times 5 \times 12 = 30 \]平方厘米。

套题三题目1. 甲、乙两个数的和是18,且乙比甲大2,请计算甲、乙各是多少。

2. 若\[ x + 5 = 12 \],求x的值。

答案1. 解答:设甲为x,则乙为\[ x + 2\]。

由题意可得:\[ x + (x + 2) = 18 \],解得:\[ x = 8 \]。

因此甲为8,乙为10。

2. 解答:\[ x + 5 = 12 \],移项可得:\[ x = 12 - 5 = 7 \]。

因此x 的值为7。

套题四题目1. 一个矩形的长为6cm,宽为4cm,请计算其周长。

2. 若\[ \frac{3}{4}x = 6 \],求x的值。

答案1. 解答:矩形的周长为\[ 2 \times (6 + 4) = 20 \]厘米。

2. 解答:将方程两边同时乘以\[ \frac{4}{3} \],可得:\[ x = 8 \]。

因此x的值为8。

套题五题目1. 用\[ \pi \]表示圆周率。

2. 若\[ 2x - 3 = 9 \],求x的值。

答案1. 解答:\[ \pi = 3.14 \](常量)。

2. 解答:将方程两边同时加上3,可得:\[ 2x = 12 \],再除以2,可得:\[ x = 6 \]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市中考数学模拟试卷(5月份)一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.2.(4分)下列根式中,最简二次根式是()A.B.C.D.3.(4分)下列事件中,属于随机事件的是()A.()2=aB.若a>b(ab≠0),则<C.|a|?|b|=|ab|D.若m为整数,则(m+)2+是整数4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为()A.y=x2+18x+84 B.y=x2+2x+4 C.y=x2+18x+76 D.y=x2+2x﹣2 5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n变形的边心距为()A.r?sin B.r?cos C.r?sin D.r?cos6.(4分)下列命题中真命题的个数是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.A.1个B.2个C.3个D.4个二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:a6(﹣a2)= .8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第象限.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2= .10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是.11.(4分)正方形有条对称轴.12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC= .13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm):172,171,175,174,178,则这组数据的方差为.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k= .16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设=,=,则= (用含,的式子表示)17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,在⊙O中,直径AB=2,PQ是弦,若四边形ABPQ是“倍边梯形”,那么PQ的长为.18.(4分)在矩形ABCD中,P在边BC上,联结AP,DP,将△ABP,△DCP分别沿直线AP,DP翻折,得到△AB1P,△DC1P,且点B1,C1,P在同一直线上,线段C1P交边AD于点M,联结AC1,若∠AC1D=135°,则= .三、解答题(本大题共7小题,共78分)19.(10分)计算:×cot30°﹣8+|cos30°﹣2|×20170.20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点D,E,F分别在边AB,BC,AC上,且四边形ADEF是正方形,联结AE.(1)求AE的长;(2)求∠AEB的正弦值.22.(10分)小金到一文具店用12元钱买某种练习本若干本,隔了一段时间他再去那个店,发现这种练习本正在“让利销售”中,每1本降价元,这样用12元可以比上次多买3本,求小金第一次买的练习本的数量.23.(12分)如图,四边形ABCD是菱形,点E在AB延长线上,联结AC,DE,DE分别交BC,AC于点F,G,且CD?AE=AC?AG.求证:(1)△ABC∽△AGE;(2)AB2=GD?DE.24.(12分)如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.(1)求抛物线的解析式;(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.25.(14分)如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.(1)若BC=,求⊙O与⊙D公共弦的长;(2)当△ODA为等腰三角形时,求BC的长;(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.2017年上海市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:如果a与3互为相反数,那么a等于﹣3,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)下列根式中,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数不含能开得尽方的因数或因式,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(4分)下列事件中,属于随机事件的是()A.()2=aB.若a>b(ab≠0),则<C.|a|?|b|=|ab|D.若m为整数,则(m+)2+是整数【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、()2=a是必然事件,故A不符合题意;B、若a>b>0时(ab≠0),则<,a>0>b时,>,是随机事件,故B符合题意;C、|a|?|b|=|ab是必然事件,故C不符合题意;D、若m为整数,则(m+)2+=m2+m+2是整数是必然事件,故D不符合题意;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为()A.y=x2+18x+84 B.y=x2+2x+4 C.y=x2+18x+76 D.y=x2+2x﹣2【分析】先确定出原抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后根据顶点式解析式写出解析式即可.【解答】解:抛物线y=(x+5)2﹣1的顶点坐标为(﹣5,﹣1),∵向右平移4个单位,再向上平移4个单位,∴平移后的抛物线顶点坐标为(﹣1,3),∴所得抛物线的解析式是y=(x+1)2+3=x2+2x+4.故选:B.【点评】本题考查了二次函数图象与几何变换,利用顶点的变换确定抛物线的变换是解题的关键.5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n 变形的边心距为()A.r?sin B.r?cos C.r?sin D.r?cos【分析】先根据题意画出图形,根据正n边形的半径为r,得出圆的半径为r,由垂径定理及锐角三角函数的定义即可求解.【解答】解:如图所示,过点O作OF⊥AB于点F交圆O于点E,设正n边形的半径为r,则圆的半径为r,∵∠AOF==,∴OF=rcos ,边心距为r=rcos ,n故选:D.【点评】本题考查的是正多边形和圆、垂径定理及锐角三角函数的定义,根据题意画出图形,利用数形结合是解答此题的关键.6.(4分)下列命题中真命题的个数是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选:B.【点评】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:a6(﹣a2)= ﹣a8.【分析】根据同底数幂的乘法法则即可求出答案.【解答】解:原式=﹣a8,故答案为:﹣a8【点评】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法法则,本题属于基础题型.8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第二象限.【分析】根据一次函数的性质即可得到结论.【解答】解:当k<0时,﹣k>0,函数图象经过第一三四象限,不经过第二象限,故答案为二.【点评】本题考查了一次函数的性质,对于一次函数y=kx+b,k>0时,函数图象经过第一三象限,y随x的增大而增大;k<0时,函数图象经过第二四象限,y随x的增大而减小.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2= (x+)(x﹣).【分析】将原式在实数范围内分解即可.【解答】解:令2x2+4xy﹣3y2=0,解得:x==,则原式=(x+)(x﹣),故答案为:(x+)(x﹣)【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是m≥﹣1 .【分析】将原方程变形为一般式,由方程有两个实数根,可得出△=4+4m ≥0,解之即可得出实数m的取值范围.【解答】解:原方程可变形为x2+2x﹣m=0.∵方程x2+2x=m有两个实数根,∴△=22+4m=4+4m≥0,解得:m≥﹣1.故答案为:m≥﹣1.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有两个实数根”是解题的关键.11.(4分)正方形有 4 条对称轴.【分析】根据正方形是轴对称图形的性质分析.【解答】解:根据正方形的性质得到,如图:正方形的对称轴是两组对边中线所在直线和两组对角线所在直线,共有4条.故答案为:4.【点评】此题主要考查正方形的性质.12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC= 26°.【分析】根据平行线的性质求出∠MAC,根据角平分线性质求出∠BAC,根据三角形内角和定理求出即可.【解答】解:∵a∥b,∠ACB=77°,∴∠MAC=∠ACB=77°,∵点C在直线b上,且它到直线a和到直线AB的距离相等,∴∠BAC=∠MAC=77°,∴∠ABC=180°﹣∠BAC ﹣∠ACB=26°, 故答案为:26°.【点评】本题考查了角平分线性质和平行线的性质,能根据角平分线性质求出∠BAC=∠MAC 是解此题的关键.13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm ):172,171,175,174,178,则这组数据的方差为 6 .【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可得出答案.【解答】解:这组数据的平均数是:(172+171+175+174+178)÷5=174(cn ), 则这组数据的方差为S 2=[(172﹣174)2+(171﹣174)2+(175﹣174)2+(174﹣174)2+(178﹣174)2]=6; 故答案为:6.【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.【分析】根据题意可以写出所有的可能性,从而可以求得2道选择题答案全对的概率.【解答】解:假设第1道选择题选项分别为A、B、C、D,选项A是正确的,第2道选择题选项分别为A、B、C、D,选项A是正确的,如图所示:出现的可能性是16种,则2道选择题答案全对的概率为.故答案为:.【点评】本题考查列表法与树状图法,解答此类问题的关键是明确题意,写出所有的可能性.15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k= 6 .【分析】先根据四边形ACBD为平行四边形的性质和反比例函数的对称性得到A点与点B关于原点对称,然后根据平行四边形的性质和k的几何意义求解.【解答】解:∵点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,∴AC∥BD,∵四边形ACBD是面积为12的平行四边形,∴AC=BD,∴A点与点B关于原点对称,∴OA=OB,OC=OD,∴S四边形ACBD =4S△AOC=12,∴S△AOC=3,∴k=6,故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,平行四边形的性质,正确的理解题意是解题的关键.16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设=,=,则=﹣(用含,的式子表示)【分析】延长AG交BC于点F,根据重心的性质可得出=,由DE为△ABC的中位线可得出=,根据=,结合=﹣,即可用含,的式子表示出.【解答】解:延长AG交BC于点F,如图所示.∵点G是△ABC的重心,∴=2,∴=+=.∵DE是△ABC的一条中位线,∴===﹣=﹣.故答案为:﹣.【点评】本题考查了三角形的重心、三角形中位线定理以及平面向量,根据三角形重心的性质找出=是解题的关键.17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,在⊙O中,直径AB=2,PQ是弦,若四边形ABPQ是“倍边梯形”,那么PQ的长为 1 .【分析】由梯形知AB∥PQ,据此可得AQ=BP,即四边形ABPQ是等腰梯形,再根据“倍边梯形”的定义分AB=2PQ和AB=2AQ两种情况求解可得.【解答】解:如图,∵四边形ABPQ是梯形,∴PQ∥AB,∴AQ=PB,∵四边形ABPQ是“倍边梯形”,且AB=2,∴当AB=2PQ时,PQ=1;当AB=2AQ=2时,AQ=PB=1,∵OA=OQ=OP=OB=1,∴△AOQ、△BOP均为等边三角形,∴∠AOQ=∠BOP=60°,则∠POQ=60°,∵OQ=OP=1,∴△POQ也是等边三角形,∴PQ=1; 综上,PQ=1, 故答案为:1.【点评】本题主要考查垂径定理定理,解题的关键是掌握垂径定理、等腰梯形的判定与性质、等边三角形的判定与性质等知识点.18.(4分)在矩形ABCD 中,P 在边BC 上,联结AP ,DP ,将△ABP ,△DCP 分别沿直线AP ,DP 翻折,得到△AB 1P ,△DC 1P ,且点B 1,C 1,P 在同一直线上,线段C 1P 交边AD 于点M ,联结AC 1,若∠AC 1D=135°,则=.【分析】先设BP=B 1P=1,CP=C 1P=x ,则B 1C 1=x ﹣1,AD=BC=1+x ,根据题意得到Rt △ABP 中,AP 2=AB 2+BP 2=(x ﹣1)2+12,Rt △DCP 中,DP 2=PC 2+CD 2=x 2+(x ﹣1)2,Rt △ADP 中,AD 2=AP 2+DP 2,进而得出AD 2=AB 2+BP 2+PC 2+CD 2,据此可得方程(1+x )2=(x ﹣1)2+12+x 2+(x ﹣1)2,求得PC=,BC=AD=1+=,再根据△DC 1M ≌△AB 1M (AAS ),可得DM=AM=AD=,最后计算的值即可.【解答】解:如图,设BP=B 1P=1,CP=C 1P=x ,则B 1C 1=x ﹣1,AD=BC=1+x ,由折叠可得,∠PC 1D=∠C=90°,而∠AC 1D=135°, ∴∠AC 1P=135°﹣90°=45°,当点B 1,C 1,P 在同一直线上时,由∠B=∠AB 1P=90°,可得∠AB 1C 1=90°, ∴△AB 1C 1是等腰直角三角形,即AB 1=B 1C 1=x ﹣1, ∴AB=AB 1=x ﹣1=CD ,由折叠可得,∠APD=∠APM+∠DPM=∠BPM+∠CPM=∠BPC=90°,∵Rt △ABP 中,AP 2=AB 2+BP 2=(x ﹣1)2+12, Rt △DCP 中,DP 2=PC 2+CD 2=x 2+(x ﹣1)2, Rt △ADP 中,AD 2=AP 2+DP 2, ∴AD 2=AB 2+BP 2+PC 2+CD 2,即(1+x )2=(x ﹣1)2+12+x 2+(x ﹣1)2, 解得x 1=,x 2=(舍去),∴PC=,BC=AD=1+=,由折叠可得,AB=AB 1=CD=CD 1,∠DC 1M=90°=∠AB 1M , 在△DC 1M 和△AB 1M 中,∴△DC 1M ≌△AB 1M (AAS ), ∴DM=AM=AD=,∴==,故答案为:.【点评】本题属于折叠问题,主要考查了矩形的性质,轴对称的性质,勾股定理的运用以及等腰直角三角形的判定的综合应用,解决问题的关键是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题(本大题共7小题,共78分)19.(10分)计算:×cot30°﹣8+|cos30°﹣2|×20170.【分析】原式利用特殊角的三角函数值,分数指数幂,以及零指数幂法则计算即可得到结果.【解答】解:原式=1﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(10分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式+<,得:x<1,解不等式+1≤,得:x≥,∴不等式组的解集为≤x<1,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点D,E,F分别在边AB,BC,AC上,且四边形ADEF是正方形,联结AE.(1)求AE的长;(2)求∠AEB的正弦值.【分析】(1)根据题意和相似三角形的对应边的比相等,可以求得AE的长;(2)根据题意可以求得BC的长,然后根据题意即可求得BC边上的高,进而可以求得∠AEB的正弦值.【解答】解:(1)∵四边形ADEF是正方形,∴AD=DE=EF=FA,设AD=x,则BD=3﹣x,DE=x,∵∠BDE=∠BAC=90°,AB=3,AC=4,∴DE∥AC,∴△BDE∽△BAC,∴,即,解得,x=,∴AD=DE=,∵∠BAC=90°,∴AE=;(2)作AH⊥BC于点H,∵∠BAC=90°,AB=3,AC=4,∴BC=5,∴,即,解得,AH=,∵AE=,AH⊥BC,∴∠AHE=90°,∴sin∠AEB=.【点评】本题考查相似三角形的判定与性质、解直角三角形、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(10分)小金到一文具店用12元钱买某种练习本若干本,隔了一段时间他再去那个店,发现这种练习本正在“让利销售”中,每1本降价元,这样用12元可以比上次多买3本,求小金第一次买的练习本的数量.【分析】设小金第一次买了x本,则第二次买了(x+3)本,然后依据第二次每本比第一次每本降价元,列方程求解即可.【解答】解:设小金第一次买了x本,则第二次买了(x+3)本.根据题意得:﹣=,解得:x=12或x=﹣15(舍去).经检验,x=12是原方程的解,答:小金第一次买了12本练习本.【点评】本题主要考查的是分式方程的应用,依据题意列出关于x的分式方程是解题的关键.23.(12分)如图,四边形ABCD是菱形,点E在AB延长线上,联结AC,DE,DE分别交BC,AC于点F,G,且CD?AE=AC?AG.求证:(1)△ABC∽△AGE;(2)AB2=GD?DE.【分析】(1)只要证明=,又∠BAC=∠GAE,即可证明△ABC∽△AGE;(2)只要证明△ADG∽△EDA,可得=,推出AD2=DE?DG即可证明;【解答】证明:(1)∵CD?AE=AC?AG.∴=,∵四边形ABCD是菱形,∴AB=CD,∴=,∵∠BAC=∠GAE,∴△ABC∽△AGE,(2)∵△ABC∽△AGE,∴∠ACB=∠E,∵四边形ABCD是菱形,∴AB=AD,BC∥AD,∴∠ACB=∠CAD=∠E,∵∠ADG=∠ADE,∴△ADG∽△EDA,∴=,∴AD2=DE?DG,∴AB2=DE?DG.【点评】本题考查相似三角形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(12分)如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.(1)求抛物线的解析式;(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.【分析】(1)如图1中,由题意OB=4OA,设OA=m,则OB=4m易知△ACO∽△CBO,可得OC2=OA?OB,推出m=1或(﹣1舍弃),可得A(﹣1,0),B (4,0),设抛物线的解析式为y=a(x+1)(x﹣4),把(0,2)代入得到a=﹣即可解决问题;(2)想办法求出直线ON的解析式,利用方程组求出交点N的坐标即可解决问题;(3)分两种情形讨论:①如图2中,当∠BED=90°时,△BED∽△BCA,②如图3中,当∠EDB=90°时,△BDE∽△BCA,分别求解即可;【解答】解:(1)如图1中,由题意OB=4OA,设OA=m,则OB=4m,∵∠ACB=90°,易知△ACO∽△CBO,∴可得OC2=OA?OB,∴4m2=4,∴m=1或(﹣1舍弃),∴A(﹣1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x﹣4),把(0,2)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+x+2.(2)如图1中,设ON交BC于M.作MH⊥AB于H.∵∠COM=∠CBO,∠COM=∠OCB,∴△OCM∽△BCO,∴OC2=CM?CB,∴4=CM?2,∴CM=,MB=,∵MH∥OC,∴==,∴==,∴MH=,BH=,OH=,∴M(,),∴直线ON的解析式为y=2x,由,解得,或,∴N(,﹣1+),∴S=×4×(﹣1+)=﹣2+2.△OBN(2)①如图2中,当∠BED=90°时,△BED∽△BCA,∴BE:DE=BC:AC=2:1,作DH⊥y轴于H.易证△DHE∽△EOB,∴OE:DH=BE:DE=2:1,∵DH=,∴OE=3,EH=OB=2,∴D(,﹣5).②如图3中,当∠EDB=90°时,△BDE∽△BCA,∴BD:DE=BC:AC=2:1,作DH⊥y轴于H,BN⊥DH于N.由△HDE∽△NBD,可得BN:DH=BD:DE=2:1,∴BN=3,∴D(,﹣3),综上所述,满足条件的点D的坐标为(,﹣5)或(,﹣3).【点评】本题考查二次函数综合题、相似三角形的判定和性质、一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(14分)如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.(1)若BC=,求⊙O与⊙D公共弦的长;(2)当△ODA为等腰三角形时,求BC的长;(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.【分析】(1)如图1中,设CM是两圆的公共弦,CM交BD于N,交OA于K,BD交⊙O于G,连接OC、CG交OA于H.首先证明OH是三角形中位线,根据△GCN∽△GOH,可得=,由此求出相关线段即可解决问题;(2)只要证明△OCA∽△DCO,设AC=x,则有OC2=CA?CD,可得1=x(x+1),即可解决问题;(3)首先证明BD=BE,再利用平行线的性质求出DG即可解决问题;【解答】解:(1)如图1中,设CM是两圆的公共弦,CM交BD于N,交OA 于K,BD交⊙O于G,连接OC、CG交OA于H.∵BG是直径,∴∠BCG=90°,∵BC∥OA,∴∠OHG=∠BCG=90°,∴OA⊥CG,∴CH=HG,∵CM⊥BD,∴∠ONK=∠CHK=90°,∵∠OKN=∠CKH,∴∠KON=∠KCH,∵OG=OB,CH=HG,∴OH=BC=,∵OC=1,∴CH=HG==,∵∠OGH=∠CGN,∠GCN=∠GOH,∴△GCN∽△GOH,∴=,∴=,∴CN=,∴CM=2CN=.(2)如图2中,当△OAD是等腰三角形时,观察图形可知,只有OA=AD,∴∠AOD=∠ADO=∠COA,∵∠OCA=∠OCD,∴△OCA∽△DCO,设AC=x,则有OC2=CA?CD,∴1=x(x+1),∴x=或(舍弃),∴CD=CA+AD=,∵OA∥BC,∴∠AOD=∠B=∠ODA,∴BC=CD=.(3)如图3中,作DN⊥CE于N.∵DC=DE,∴∠DCE=∠E,∵BC∥OA,∴∠OAC=∠DCE=∠OCA,∴∠AOC=∠CDE=∠B,∴∠E=∠BDE,∴BE=BD,∵CG⊥BE,DN⊥BE,∴CG∥DN,∴=,∴=,∴DG=,∵BD=BE,∴2+=x+y,∴y=(1<x<2)【点评】本题考查圆综合题、垂径定理、勾股定理、平行线的性质、相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考压轴题.。

相关文档
最新文档