2019版数学人教a版选修2-3:课时作业 5组合与组合数公式 含解析

合集下载

数学新导学同步人教A版选修2-3课件:1.2.2.1组合与组合数公式

数学新导学同步人教A版选修2-3课件:1.2.2.1组合与组合数公式
性质 2:Cmn+1=Cnm+Cmn -1. 特点是左端下标为 n+1,右端下标都为 n,相差 1;左端的上
标与右端上标的一个一样,右端的另一个上标比它们少 1. 要注意性质 Cnm+1=Cmn +Cmn -1的顺用、逆用、变形用.顺用是将
一个组合数拆成两个;逆用则是“合二为一”;变形式 Cmn -1=Cmn+1 -Cmn 的使用,为某些项相互抵消提供了方便,在解题中要注意灵活 运用.
2.组合数的概念、公式、性质
组合数 从 n 个不同元素中取出 m(m≤n)个元素的所有不同组合的
定义 个数,叫做从 n 个不同元素中取出 m 个元素的组合数
表示法 组合数
乘积式
Cmn Cmn =AAmnmm=nn-1n-m2!…n-m+1
公式 阶乘式
Cmn =m!nn!-m!
性质 备注
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。

一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
理课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
方法归纳 组合数公式①体现了组合数与相应排列数的关系,一般在计算 具体的组合数时会用到.组合数公式②的主要作用有: (1)计算 m,n 较大时的组合数; (2)对含有字母的组合数的式子进行变形和证明.
特别地,当 m>n2时计算 Cmn ,用性质 Cnm=Cnn-m转化,减少计算 量.
跟踪训练 3 计算:(1)C212=________; (2)C338n-n+C32n1+n=________.

人教A版 数学 选修2-3《组合(二)》

人教A版 数学 选修2-3《组合(二)》
解析答案
12345
5.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的 抽法共有__4__1_8_6__种. 解析 分两类,有 4 件次品的抽法为 C44C146种; 有 3 件次品的抽法有 C34C246种, 所以共有 C44C146+C34C246=4 186(种)不同的抽法.
投放方法,
所以共有 C24A34=144(种)放法.
解析答案
(4)每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同, 有多少种放法? 解 1 个球的编号与盒子编号相同的选法有 C14种, 当1个球与1个盒子的编号相同时,用局部列举法可知其余3个球的投入 方法有2种, 故共有 C14·2=8(种)放法.
解析答案
12345
4.某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门, 若要求两类课程中各至少选一门,则不同的选法共有___3_0____种.(用数 字作答) 解析 分两类,A类选修课2门,B类选修课1门,或者A类选修课1门, B类选修课2门, 因此,共有 C23·C14+C13·C24=30(种)选法.
一红点的直线的条数是( B )
A.28
B.29
C.30
D.27
解析 可分两类:第一类,红点连蓝点有 C14C16-1=23(条);
第二类,红点连红点有 C24=6(条),
所以共有29条.故选B.
解析答案
12345
3.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数 为( D ) A.24 B.48 C.60 D.72 解析 由题意,可知个位可以从 1,3,5 中任选一个,有 A13种方法,其 他数位上的数可以从剩下的 4 个数字中任选,进行全排列,有 A44种方法, 所以奇数的个数为 A13A44=3×4×3×2×1=72,故选 D.

2019秋 金版学案 数学·选修2-3(人教A版)练习:第一章1.2-1.2.2第1课时组合与组合数公式 Word版含解析

2019秋 金版学案 数学·选修2-3(人教A版)练习:第一章1.2-1.2.2第1课时组合与组合数公式 Word版含解析

第一章计数原理1.2 排列与组合1.2.2 组合第1课时组合与组合数公式[A级 基础巩固]一、选择题1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法?②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?其中属于组合问题的个数为( )A.0 B.1 C.2 D.3解析:①与顺序有关,是排列问题;②③均与顺序无关,是组合问题.答案:C2.C+C的值为( )6979A .36B .45C .120D .720解析:C +C =C =C ==120.697971031010×9×83×2×1答案:C3.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A .60种B .48种C .30种D .10种解析:从5人中选派2人参加星期六的公益活动有C 种方法,再25从剩下的3人中选派2人参加周日的公益活动有C 种方法,故共有C23·C =30(种).2523答案:C4.(C +C )÷A 的值为( )2100971003101A .6 B. C .101 D.161101解析:(C +C )÷A =(C +C )÷A =C ÷A =÷A =210097100310121003100310131013101A A3101=.1A 16答案:B5.C +C +C +…+C =( )22324216A .C B .C C .C D .C 215316317417解析:原式=C +C +C +…+C =C +C +…+C =C +C 2232421634242163525+…+C =…=C +C =C .216316216317答案:C二、填空题6.化简:C -C +C =________.9m 9m +18m 解析:C -C +C =(C +C )-C =C -C =0.9m 9m +18m 9m 8m 9m +19m +19m +1答案:07.已知圆上有9个点,每两点连一线段,则所有线段在圆内的交点最多有________个.解析:此题可化归为圆上9个点可组成多少个四边形,所以交点最多有C =126(个).49答案:1268.某单位需同时参加甲、乙、丙三个会议,甲会议需2人参加,乙、丙会议各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法有________种.解析:从10人中选派4人有C 种方法,对选出的4人具体安排410会议有C C 种方法,由分步乘法计数原理知,不同的选派方法有C C 2412410C =2 520(种).2412答案:2 520三、解答题9.解方程3C =5A .7x -32x -4解:由排列数和组合数公式,原方程化为=5·3(x -3)!(x -7)!4!,(x -4)!(x -6)!则=,即为(x -3)(x -6)=40.3(x -3)4!5x -6所以x 2-9x -22=0,解之可得x =11或x =-2.经检验知x =11是原方程的解,所以方程的解为x =11.10.平面内有10个点,其中任何3个点不共线.(1)以其中任意2个点为端点的线段有多少条?(2)以其中任意2个点为端点的有向线段有多少条?(3)以其中任意3个点为顶点的三角形有多少个?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C ==45(条),即以10个点中的任意2个点为端点的线21010×92×1段共有45条.(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A =10×9=90(条),即以10个点中的2个点为端点的有向线段210共有90条.(3)所求三角形的个数,即从10个元素中任选3个元素的组合数,共有C ==120(个).31010×9×83×2×1B 级 能力提升1.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为( )A .120B .84C .52D .48解析:用间接法可求得选法共有C -C =52(种).3834答案:C2.(2018·江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.解析:从5人中选取2人有C =10种方法,25恰好选中2名女生有C =3种方法,23所以所求事件的概率P ==.C C 310答案:3103.男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)至少有1名女运动员;(2)既要有队长,又要有女运动员.解:(1)法一(直接法) “至少1名女运动员”包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得有C·C+C·C+C·C+C·C=246种选法.144624363426416法二(间接法) “至少1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有C种选法,其中全是男运动员的选法有C510种.56所以“至少有1名女运动员”的选法有C-C=246种选法.51056(2)当有女队长时,其他人选法任意,共有C种选法.不选女队长49时,必选男队长,共有C种选法.其中不含女运动员的选法有C种,4845所以不选女队长时共有C-C种选法.4845所以既有队长又有女运动员的选法共有C+C-C=191种选494845法.。

数学高二-选修2-3课时作业 组合与组合数公式

数学高二-选修2-3课时作业 组合与组合数公式

选修2-3 第一章 §3 课时作业32一、选择题1.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开不同的车从甲地到乙地解析:只是从100位幸运观众选出2位幸运之星,与顺序无关,是组合问题. 答案:C2.从5人中选3人参加座谈会,则不同的选法有( ) A .60种 B .36种 C .10种D .6种解析:由于与顺序无关,是组合问题,共有C 35=10种不同选法. 答案:C3.若A 3n =12C 2n ,则n 等于( )A .8B .5或6C .3或4D .4解析:∵A 3n =12C 2n,∴n (n -1)(n -2)=12×n (n -1)2.解得n =8. 答案:A4.方程C x 28=C 3x -828的解为( )A .4或9B .4C .9D .其他解析:法一:(验证法)当x =4时,C 428=C 3×4-828=C 428;当x =9时,C 928=C 3×9-828=C 1928. 法二:(直接法)当x =3x -8,解得x =4;当28-x =3x -8,解得x =9. 答案:A 二、填空题5.不等式C 2n -n <5的解集为__________.解析:由C 2n -n <5,得n (n -1)2-n <5, ∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}6.设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集共有________个.解析:从5个元素中取出3个元素组成一组就是集合A 的子集,则共有C 35=10个子集.答案:107.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为__________.(用数字作答)解析:从10人中任选出4人作为甲组,则剩下的人即为乙组,这是组合问题,共有C 410=210种分法.答案:210 三、解答题8.(1)求值:C 5-n n +C 9-n n +1;(2)求证:C m n =m +1n -m C m +1n . 解:(1)⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N +,所以n =4或n =5.当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.(2)证明:因为C m n =n !m !(n -m )!, m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)! =n !m !(n -m )!,所以C m n=m +1n -m C m +1n.9.某区有7条南北向街道,5条东西向街道.(如下图)(1)图中有多少个矩形?(2)从A点走向B点最短的走法有多少种?解:(1)在7条竖线中任选2条,5条横线中任选2条,这样4条线可组成一个矩形,故可组成矩形有C27·C25=210个.(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C610=C410=210种走法.。

人教A版数学选修2-3全册课件:第一章 1.2 1.2.2 第一课时 组合与组合数公式

人教A版数学选修2-3全册课件:第一章 1.2 1.2.2 第一课时 组合与组合数公式
2 提示:A4 =4×3=12 个不同的商.
问题 2: 如何用分步法求商的个数?
提示:第 1 步,从这四个数中任取两个数,有 C2 4种方 法; 第 2 步, 将每个组合中的两个数排列, 有 A2 由 2种排法.
2 分步乘法计数原理,可得商的个数为 C2 4A2.
问题 3:由问题 1,2 你能得出计算 C2 4的公式吗?
组合的有关概念
[例 1]
判断下列各事件是排列问题,还是组合问题.
(1)10 个人相互各写一封信,共写多少封信? (2)10 个人相互通一次电话,共通了多少次电话? (3)从 10 个人中选 3 个代表去开会,有多少种选法? (4)从 10 个人里选出 3 个不同学科的代表,有多少种选法?
[解]
(1)是排列问题.因为发信人与收信人是有区别的.
提示:不相同. 问题2:它们是排列吗? 提示:从1,3,5,7中任取两个数相除是排列,而相乘 不是排列.
[导入新知]
1.组合 一般地,从 n 个不同 的元素中取出 m(m≤n)个元素合成
一组,叫做从 n个不同元素中取出m个元素 的一个组合.
2.组合数 从 n 个不同的元素中取出 m(m≤n)个元素的 所有不同
[例 2]
4 3 (1)计算:C10 -C3 · A 7 3;
1 1 7 m 5-m (2)已知 m- m= . m,求 C8 +C8 C5 C6 10C7
[解] -210=0. m!5-m! m!6-m! (2)原式= - 5! 6! 7×7-m!m! = , 10×7! 10×9×8×7 4 3 (1)原式=C10-A7= -7×6×5=210 4×3×2×1
[导入新知]
组合数公式
m A nn-1n-2…n-m+1 n 乘积形式 Cm = = n Am 组合数 m m!

2019-2020学年数学人教A版选修2-3检测:1.2.2.1组合与组合数公式

2019-2020学年数学人教A版选修2-3检测:1.2.2.1组合与组合数公式

1.2.2组合第一课时组合与组合数公式填一填1.组合及组合数的定义(1)组合:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.2.组合数公式及其性质公式展开式C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!阶乘式C m n=n!m!(n-m)!性质性质1C m n=C n-mn性质2C m n+1=C m n+C m-1n备注①n,m∈N*且m≤n;②规定:C0n=1判一判判断(1.从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.(√) 2.从1,3,5,7中任取两个数相乘可得C24个积.(√)3.C35=5×4×3=60.(×)4.C2 0162 017=C12 017=2 017.(√)5.10个人相互写一封信,共写出了C210封信.(×)6.10个人相互通一次电话,共通了A210电话.(×)7.从10个人中选3人去开会,有C310种选法.(√)8.从10个人中选出3人担任不同学科的科代表,有A310种选法.(√)想一想1.提示:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m(m≤n)个元素,这是排列,组合的共同点;它们的不同点是:排列与元素的顺序有关,组合与元素的顺序无关.只有元素相同且顺序也相同的两个排列才是相同的;只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.2.“abc ”和“acb ”是相同的排列还是相同的组合?提示:由于“abc ”与“acb ”的元素相同,但排列的顺序不同,所以“abc ”与“acb ”是相同的组合,但不是相同的排列.3.我们知道,“排列”与“排列数”是两个不同的概念,那么,“组合”与“组合数”是同一个概念吗?为什么?提示:“组合”与“组合数”是两个不同的概念,“组合”是指“从n 个不同元素中取出m (m ≤n )个元素合成一组”,它不是一个数,而是具体的一件事;“组合数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数”,它是一个数.4.两个组合是相同组合的充要条件是什么?提示:只要两个组合中的元素安全相同,不管顺序如何,这两个组合就是相同的组合. 5.判断组合与排列的依据是什么?提示:判断组合与排列的依据是看是否与顺序有关,与顺序有关的是排列问题,与顺序无关的是组合问题.思考感悟:练一练1.(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?(3)从9名学生中选出4名参加一个联欢会,有多少种不同的选法?解析:(1)是组合问题.由于4张票是相同的(都是当日动物园的门票),不同的分配方法取决于从5人中选择哪4人,这和顺序无关.(2)是排列问题,选出的2个数作分子或分母,结果是不同的. (3)是组合问题,选出的4人无角色差异,不需要排列他们的顺序.2.求值:3C 38-2C 25.解析:3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148. 3.求值:C 34+C 35+C 36+…+C 310.解析:利用组合数的性质C m n +1=C m n +C m -1n, 则C 34+C 35+C 36+…+C 310=C 44+C 34+C 35+…+C 310-C 44 =C 45+C 35+…+C 310-C 44= … =C 411-1=329.4.求值:C 5-n n +C 9-nn +1.(提示:先求n 的范围,再确立n 的值进而求值)解析:⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5.当n =4时,原式=C 14+C 55=5.当n =5时,原式=C 05+C 46=16.知识点一组合的概念1.(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票价?(往返票价相同)(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项劳动,有多少种不同的选法? 在上述问题中,哪些是组合问题?哪些是排列问题?解析:(1)飞机票与起点、终点有关,有顺序,是排列问题. (2)票价与起点、终点无关,没有顺序,是组合问题. (3)3人分别担任三个不同职务、有顺序,是排列问题. (4)3人参加某项相同劳动,没有顺序,是组合问题.知识点二 组合数公式2.计算:C 581007解析:原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006. 3.下列计算结果为21的是( )A .A 24+C 26B .C 37C .A 27D .C 27解析:C 27=7×62×1=21. 答案:D知识点三 组合数性质4.C 05+C 15+5555解析:原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. 5.证明:C m +1n +C m -1n +2C m n =C m +1n +2.解析:法一:左边=n !(m +1)!(n -m -1)!+n !(m -1)!(n -m +1)!+2n !m !(n -m )!=n !(m +1)!(n -m +1)![(n -m )(n -m +1)+m (m +1)+2(m +1)(n -m +1)] =n !(m +1)!(n -m +1)!(n +2)(n +1) =(n +2)!(m +1)!(n -m +1)! =C m +1n +2=右边,原结论得证.法二:利用公式C m n =C m n -1+C m -1n -1推得左边=(C m +1n +C m n )+(C m n +C m -1n )=C m +1n 1+C m n 1=C m +1n 2=右边.知识点四6.6解析:每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.7.现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法? (3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解析:(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种. (2)可把问题分两类情况:第1类,选出的2名是男教师有C 26种方法; 第2类,选出的2名是女教师有C 24种方法.根据分类加法计数原理,共有C 26+C 24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有不同的选法C 26×C 24=6×52×1×4×32×1=90种.基础达标一、选择题1.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开同一辆车从甲地到乙地解析:只有从100位幸运观众选出2位幸运之星,与顺序无关,是组合问题. 答案:C2.计算C 28+C 38+C 29等于( )A .120B .240C .60D .480解析:∵C m -1n +C m n =C mn +1,∴原式=C 39+C 29=C 310=120. 答案:A3.如果C 2n=28,则n 的值为( ) A .9 B .8 C .7 D .6解析:∵C 2n =n (n -1)2, ∴n (n -1)2=28,即n 2-n -56=0,解得n =8.答案:B4.(C 2100+C 97100)÷A 3101的值为( ) A .6 B .101 C.16 D.1101解析:(C 2100+C 97100)÷A 3101=(C 2100+C 3100)÷A 3101=C 3101÷(C 3101A 33)=1A 33=16.5.某施工小组有男工7人,女工3人,现要选1名女工和2名男工去支援另一施工小组,不同的选法有( )A .C 310种B .A 310种C .A 13A 27种D .C 13C 27种解析:每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C 13种选法;第二步,选男工,有C 27种选法.故共有C 13C 27种不同的选法.答案:D6.方程C x 14=C 2x -414的解为( )A .4B .14C .4或6D .14或2解析:由题意知⎩⎪⎨⎪⎧x =2x -42x -4≤14x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4)2x -4≤14x ≤14解得x =4或6.故选C.答案:C7.从一个正方体的顶点中选四个点,可构成四面体的个数为( ) A .70 B .64 C .58 D .52解析:四个顶点共面的情况有6个表面和6个对角面,共12个,所以组成四面体的个数为C 48-12=58.故选C 项.答案:C 二、填空题8.10个人分成甲、乙两组,甲组4人,乙组6人,则不同的分组种数为________.(用数字作答)解析:先选甲组有C 410,再选2组C 66,不同分组方法有C 410·C 66=210种. 答案:2109.若A 3n =12C 2n ,则n =________.解析:因为A 3n =n (n -1)(n -2),C 2n =12n (n -1),所以n (n -1)(n -2)=6n (n -1).又n ∈N *,且n ≥3,所以n =8.答案:810.若C m -1n :C m n :C m +1n=3:4:5,则n -m =________. 解析:由题意知⎩⎨⎧C m -1nC m n =34,CmnCm +1n=45,由组合数公式得⎩⎪⎨⎪⎧ 3n -7m +3=0,9m -4n +5=0,解得⎩⎪⎨⎪⎧n =62,m =27.所以n -m =62-27=35.答案:3511.不等式C 2n-n <5的解集为________. 解析:由C 2n-n <5,得n (n -1)2-n <5,∴n 2-3n -10<0,解得-2<n <5.由题设条件知n ≥2,且n ∈N *,∴n =2,3,4.故原不等式的解集为{2,3,4}.答案:{2,3,4}12.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A 地到东北角B 地的最短路线共有________条.解析:要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B 地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C 49C 55=126(种)走法,故从A 地到B 地的最短路线共有126条.答案:126 三、解答题13.试判断下列问题是组合问题还是排列问题.(1)从a 、b 、c 、d 四名学生中选2名学生完成同一件工作,有多少种不同的选法? (2)从a 、b 、c 、d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需比赛多少场? (4)a 、b 、c 、d 四支足球队争夺冠亚军,有多少种不同的结果? 解析:(1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.14.(1)解方程:C x -2x +2+C x -3x +2=110A 3x +3; (2)解不等式:1C 3x -1C 4x <2C 5x.解析:(1)原方程可化为C x -2x +3=110A 3x +3, 即C 5x +3=110A 3x +3, ∴(x +3)!5!(x -2)!=(x +3)!10·x !, ∴1120(x -2)!=110·x (x -1)·(x -2)!, ∴x 2-x -12=0,解得x =4或x =-3, 经检验知,x =4是原方程的解.(2)将原不等式化简可以得到6x (x -1)(x -2)-24x (x -1)(x -2)(x -3)<240x (x -1)(x -2)(x -3)(x -4). 由x ≥5,得x 2-11x -12<0,解得5≤x <12. ∵x ∈N *,∴x ∈{5,6,7,8,9,10,11}.能力提升15.设x ∈N *,求Cx -12x -3+x +1解析:由题意可得:⎩⎪⎨⎪⎧2x -3≥x -1,x +1≥2x -3,解得2≤x ≤4.∵x ∈N *,∴x =2或x =3或x =4.当x =2时原式的值为4;当x =3时原式的值为7; 当x =4时原式的值为11.∴所求的值为4或7或11.16.某足球赛共32支球队有幸参加,它们先分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这16支球队再分成8个小组决出8强,8强再分成4个小组决出4强,4强再分成2个小组决出2强,最后决出冠、亚军,此外还要决出第三名、第四名,问这次足球赛共进行了多少场比赛?解析:可分为如下几类比赛:(1)小组循环赛:每组有C24=6场,8个小组共有48场;(2)八分之一淘汰赛,8个小组的第一、二名组成16强,根据赛制规则,16强分成8组,每组两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛,根据赛制规则,8强再分成4组,每组两个队比赛一次,可以决出4强,共有4场;(4)半决赛,4强再分成2组,每组两个队比赛一场,可以决出2强,共有2场;(5)决赛,2强比赛1场确定冠、亚军,4强中的另两支队比赛1场,决出第三、四名,共有2场.综上,共有48+8+4+2+2=64场比赛.。

高中数学1.2.2组合第1课时组合与组合数公式人教A版选修2_3


【解】 (1)从 10 名教师中选 2 名去参加会议的选法种数,就是 从 10 个不同的元素中取出 2 个元素的组合数,即 C210=120××19= 45(种). (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同的选 法.
2.由 13 个人组成的课外活动小组,其中 5 个人只会跳舞,5 个人 只会唱歌,3 个人既会唱歌也会跳舞,若从中选出 4 个会跳舞和 4 个会唱歌的人去演节目,共有多少种不同的选法?
解:对 3 个既会唱歌又会跳舞的人进行分类: 第一类:若 3 人都不参加,共有 C03C45C45=25(种); 第二类:若 3 人都跳舞或都唱歌,共有 2C33C15C45=50(种); 第三类:若 3 人中有两人唱歌或跳舞,共有 2C23C25C45=300(种); 第四类:若 3 人中有一人唱歌或跳舞,共有 2C13C35C45=300(种);
判断下列问题是组合问题还是排列问题: (1)把 5 本不同的书分给 5 个学生,每人一本; (2)从 7 本不同的书中取出 5 本给某个同学; (3)10 个人互相写一封信,共写了几封信; (4)10 个人互相通一次电话,共通了几次电话.
解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它 是排列问题. (2)从 7 本不同的书中,取出 5 本给某个同学,在每种取法中取出 的 5 本并不考虑书的顺序,故它是组合问题. (3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排 列问题. (4)因为互通电话一次没有顺序之分.故它是组合问题.
■名师点拨 对组合概念的三点说明
(1)组合的特点 组合要求 n 个元素是不同的,被取出的 m 个元素也是不同的,即 从 n 个不同的元素中进行 m 次不放回地取出.

最新人教A版高中数学选修2-3全册课时同步作业

人教A版高中数学选修2-3全册课时同步作业1、分类加法计数原理与分步乘法计数原理2、分类加法计数原理与分步乘法计数原理的应用3、排列与排列数公式4、排列的应用5、组合与组合数公式6、组合的应用7、二项式定理8、“杨辉三角”与二项式系数的性质9、离散型随机变量10、离散型随机变量的分布列11、条件概率12、事件的相互独立性13、独立重复试验与二项分布14、离散型随机变量的均值15、离散型随机变量的方差16、正态分布17、回归分析的基本思想及其初步应用1、分类加法计数原理与分步乘法计数原理一、题组对点训练对点练一分类加法计数原理的应用1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为( )A.13 B.16C.24 D.48解析:选A 由分类加法计数原理可知,不同走法种数为8+2+3=13.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10解析:选C 分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.3.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A .3种B .6种C .7种D .9种解析:选C 分3类:买1本好书,买2本好书和买3本好书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).4.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.解析:因为焦点在y 轴上,所以0<m <n ,考虑m 依次取1,2,3,4,5时,符合条件的n 值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20.答案:205.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数为8+7+6+5+4+3+2+1=36.法二:按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理,满足条件的两位数的个数为1+2+3+4+5+6+7+8=36.对点练二 分步乘法计数原理的应用6.如图,一条电路从A 处到B 处接通时,可构成线路的条数为( )A .8B .6C .5D .3解析:选B 从A 处到B 处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A 处到B 处接通时,可构成线路的条数为2×3=6,故选B.7.给一些书编号,准备用3个字符,其中首字符用A ,B ,后两个字符用a ,b ,c (允许重复),则不同编号的书共有( )A .8本B .9本C .12本D .18本解析:选D 完成这件事可以分为三步.第一步确定首字符,共有2种方法;第二步确定第二个字符,共有3种方法;第三步确定第三个字符,共有3种方法.所以不同编号的书共有2×3×3=18(本),故选D.8.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个解析:选C 要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a 有6种方法,故由分步乘法计数原理知共有6×6=36个虚数.9.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.解析:将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有6×7=42种插入方法.答案:4210.某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,问可以配成多少种不同的套餐?解:完成一荤一素一汤的套餐分三步:第一步,配一个荤菜有6种选择;第二步,配一个素菜有5种选择;第三步,配一个汤有3种选择.根据分步乘法计数原理,共可配成6×5×3=90种不同的套餐.对点练三两个计数原理的综合应用11.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.12.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?解:(1)小明爸爸选凳子可以分两类:第一类,选东面的空闲凳子,有8种坐法;第二类,选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14种坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182种坐法.二、综合过关训练1.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有( )A.27种B.36种C.54种D.81种解析:选C 小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知,共有2×3×3×3=54种不同的报名方法,故选C.2.有5列火车停在某车站并排的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种解析:选A 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种停车方法.3.将3封不同的信投到4个不同的邮箱,则不同的投法种数为( )A.7 B.12C.81 D.64解析:选D 第一步,第一封信可以投到4个邮箱,有4种投法;第二步,第二封信可以投到4个邮箱,有4种投法;第三步,第三封信可以投到4个邮箱,有4种投法.根据分步乘法计数原理,得不同的投法的种数为4×4×4=64,选D.4.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D 以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个等比数列,∴所求的数列共有2×(2+1+1)=8(个).5.定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B}.若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为( )A.34B.43C.12 D.以上都不对解析:选C 由分步乘法计数原理可知,A*B中有3×4=12个元素.6.3张不同的电影票全部分给10个人,每人至多1张,则所有分法的种数是________.解析:第一步,分第1张电影票,有10种分法;第二步,分第2张电影票,有9种分法;第三步,分第3张电影票,有8种分法,共有10×9×8=720种分法.答案:7207.已知集合A={2,4,6,8,10},B={1,3,5,7,9},在A中任取一元素m和在B中任取一元素n,组成数对(m,n),问:(1)有多少个不同的数对?(2)其中m>n的数对有多少个?解:(1)∵集合A={2,4,6,8,10},B={1,3,5,7,9},在A中任取一元素m和在B中任取一元素n,组成数对(m,n),先选出m有5种结果,再选出n有5种结果,根据分步乘法计数原理知共有5×5=25个不同的数对.(2)在(1)中的25个数对中m>n的数对可以分类来解.当m=2时,n=1,有1个数对;当m=4时,n=1,3,有2个数对;当m=6时,n=1,3,5,有3个数对;当m=8时,n=1,3,5,7,有4个数对;当m=10时,n=1,3,5,7,9,有5个数对.综上所述共有1+2+3+4+5=15个数对.8.现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?解:(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14种不同的选法.(2)分为三步:国画、油画、水彩画分别有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.(3)分为三类:第一类,一幅选自国画,一幅选自油画.由分步乘法计数原理知,有5×2=10种不同的选法;第二类,一幅选自国画,一幅选自水彩画.由分步乘法计数原理知,有5×7=35种不同的选法;第三类,一幅选自油画,一幅选自水彩画.由分步乘法计数原理知,有2×7=14种不同的选法.所以共有10+35+14=59种不同的选法.2、分类加法计数原理与分步乘法计数原理的应用一、题组对点训练对点练一组数问题1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252C.261 D.279解析:选B 由分步乘法计数原理知,用0,1,…,9十个数字组成三位数(可用重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252.故选B.2.由数字1,2,3,4组成的三位数中,各位数字按严格递增(如“134”)或严格递减(如“421”)顺序排列的数的个数是( )A.4 B.8C.16 D.24解析:选B 由题意分析知,严格递增的三位数只要从4个数中任取3个,共有4种取法;同理严格递减的三位数也有4个,所以符合条件的数的个数为4+4=8.3.由1,2,3,4,5,6,7,8,9可以组成多少个无重复数字的三位偶数与三位奇数?解:当个位上的数是偶数时,该三位数就是偶数.可分步完成:第一步,先排个位,个位上的数只能取2,4,6,8中的1个,有4种取法;第二步,排十位,从剩余的8个数字中取1个,有8种取法;第三步,排百位,从剩余的7个数字中取1个,有7种取法.所以可以组成无重复数字的三位偶数的个数为4×8×7=224.当个位上的数是奇数时,该三位数就是奇数.可分步完成:第一步,先排个位,个位上的数只能取1,3,5,7,9中的1个,有5种取法;第二步,排十位,从剩余的8个数字中取1个,有8种取法;第三步,排百位,从剩余的7个数字中取1个,有7种取法.所以可以组成无重复数字的三位奇数的个数为5×8×7=280.对点练二涂色问题4.如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有( )A.180种B.240种C.360种D.420种解析:选D 区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域4与区域2同色时区域4有1种种法,此时区域5有3种种法;区域4与区域2不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(3+2×2)=420种栽种方案.故选D.5.如图所示,“中国印”被中间的白色图案分成了5个区域,现给它着色,要求相邻区域不能用同一颜色,如果只有4种颜色可供使用,那么不同的着色方法有( )A.120种B.72种C.48种D.24种解析:选B 以所选颜色的种数为标准,可分两类进行:第一类,用3种颜色有4×3×2=24(种);第二类,用4种颜色有4×3×2×2=48(种).∴共有24+48=72种不同的方法,故选B.6.用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.问:该板报有多少种书写方案?解:第一步,选英语角用的彩色粉笔,有6种不同的选法;第二步,选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步,选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步,选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法,共有6×5×4×5=600种不同的书写方案.对点练三抽取(分配)问题7.某乒乓球队里有6名男队员,5名女队员,从中选取男、女队员各一名组成混合双打队,则不同的组队方法的种数为( )A.11 B.30C.56D.65解析:选B 先选1名男队员,有6种方法,再选1名女队员,有5种方法,故共有6×5=30种不同的组队方法.8.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( ) A.4种B.5种C.6种D.7种解析:选A 共有4种方法.列举如下:1,4,5;2,4,4;2,3,5;3,3,4.9.某外语组有9人,每人至少会英语和日语中的一门,其中7个会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解:“完成一件事”指“从9人中选出会英语与日语的各1人”,故需分三类:①既会英语又会日语的不当选;②既会英语又会日语的按会英语当选;③既会英语又会日语的按会日语当选.既会英语又会日语的人数为7+3-9=1,仅会英语的有6人,仅会日语的有2人.先分类后分步,从仅会英、日语的人中各选1人有6×2种选法;从仅会英语与英、日语都会的人中各选1人有6×1种选法;从仅会日语与英、日语都会的人中各选1人有2×1种选法.根据分类加法计数原理,共有6×2+6×1+2×1=20种不同选法.二、综合过关训练1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9解析:选B 分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.2.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18C.12 D.6解析:选B ①当从0,2中选取2时,先排2,再排1,3,5中选出的两个数,共有2×3×2=12个奇数.②当从0,2中选取0时,必须排在十位,只要从1,3,5中选出两个数排在个位、百位即可,共有3×2=6个奇数.由分类加法计数原理,知共有12+6=18个奇数.3.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有( )A.6种B.8种C.12种D.48种解析:选D 每个景区都有2条线路,所以游览第一个景点有6种选法,游览第二个景点有4种选法,游览第三个景点有2种选法,故共有6×4×2=48种不同的游览线路.4.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3 542大的四位数的个数是( )A.360 B.240C.120 D.60解析:选C 因为3 542是能排出的四位数中千位为3的最大的数,所以比3 542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3 542大的四位数.5.用数字1,2组成一个四位数,则数字1,2都出现的四位偶数有________个.解析:由四位数是偶数,知最后一位是2.在四位数中,当出现1个1时,有1 222,2 122,2 212,共3个,当出现2个1时,有1 122,1 212,2 112,共3个,当出现3个1时,只有1 112这1个四位偶数,故数字1,2都出现的四位偶数有3+3+1=7(个).答案:76.直线方程Ax+By=0,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为系数A、B的值,则方程表示不同直线的条数是________.解析:若A=0,则B从1,2,3,5,7中任取一个,均表示直线y=0;同理,当B=0时,表示直线x=0;当A≠0且B≠0时,能表示5×4=20条不同的直线.故方程表示直线的条数是1+1+20=22.答案:227.有4种不同的作物可供选择种植在如图所示的4块试验田中,每块种植一种作物,相邻的试验田(有公共边)不能种植同一种作物,共有多少种不同的种植方法?解:法一:第一步:种植A试验田有4种方法;第二步:种植B试验田有3种方法;第三步:若C试验田种植的作物与B试验田相同,则D试验田有3种方法,此时有1×3=3种种植方法.若C试验田种植的作物与B试验田不同,则C试验田有2种种植方法,D试验田也有2种种植方法,共有2×2=4种种植方法.由分类加法计数原理知,有3+4=7种种植方法.第四步:由分步乘法计数原理有N=4×3×7=84种不同的种植方法.法二:(1)若A、D种植同种作物,则A、D有4种不同的种法,B有3种种植方法,C 也有3种种植方法,由分步乘法计数原理,共有4×3×3=36种种植方法.(2)若A、D种植不同作物,则A有4种种植方法,D有3种种植方法,B有2种种植方法,C有2种种植方法,由分步乘法计数原理,共有4×3×2×2=48种种植方法.综上所述,由分类加法计数原理,共有N=36+48=84种种植方法.8.用1,2,3,4四个数字组成可有重复数字的三位数,这些数从小到大构成数列{a n}.(1)这个数列共有多少项?(2)若a n=341,求n的值.解:(1)由题意,知这个数列的项数就是由1,2,3,4四个数字组成的可有重复数字的三位数的个数.由于每个数位上的数都有4种取法,由分步乘法计数原理,得满足条件的三位数的个数为4×4×4=64,即数列{a n}共有64项.(2)比341小的数分为两类:第一类,百位上的数是1或2,有2×4×4=32个三位数;第二类,百位上的数是3,十位上的数可以是1,2,3中的任一个,个位上的数可以是1,2,3,4中的任一个,有3×4=12个三位数.所以比341小的三位数的个数为32+12=44,因此341是这个数列的第45项,即n=45.3、排列与排列数公式一、题组对点训练对点练一排列概念的理解1.下列问题是排列问题的是( )A.从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B.10个人互相通信一次,共写了多少封信?C.平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?解析:选B 排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B.2.从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( )A .2B .3C .4D .5解析:选B 排列与顺序有关,故②④⑤是排列. 对点练二 利用排列数公式进行计算或证明 3.已知A 2n =132,则n 等于( ) A .11 B .12 C .13D .14解析:选B A 2n =n (n -1)=132,即n 2-n -132=0, 解得n =12或n =-11(舍去). 4.A 312-A 310的值是( ) A .480 B .520 C .600D .1 320解析:选C A 312=12×11×10=1 320, A 310=10×9×8=720, 故A 312-A 310=1 320-720=600. 5.下列等式中不成立的是( ) A .A 3n =(n -2)A 2n B.1nA n n +1=A n -1n +1C .n A n -2n -1=A nn D.nn -mA m n -1=A mn解析:选B A 中,右边=(n -2)(n -1)n =A 3n 成立;C 中,左边=n ×(n -1)× (2)n ×(n -1)×(n -2)×…×2×1=A n n 成立;D 中,左边=nn -m ×(n -1)!(n -m -1)!=n !(n -m )!=A mn 成立;经验证只有B 不正确.6.计算下列各题: (1)A 66;(2)2A 58+7A 48A 88-A 59;(3)若3A 3n =2A 2n +1+6A 2n ,求n .解:(1)A 66=6!=6×5×4×3×2×1=720.(2)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=1.(3)由3A 3n =2A 2n +1+6A 2n ,得3n (n -1)(n -2)=2(n +1)n +6n (n -1). 因为n ≥3且n ∈N *, 所以3n 2-17n +10=0. 解得n =5或n =23(舍去).所以n =5.对点练三 简单的排列问题7.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案共有( )A .180种B .360种C .15种D .30种解析:选B 问题为6选4的排列即A 46=360.8.由数字1,2,3,4,5组成无重复数字的四位偶数的个数是( ) A .12 B .24 C .36D .48解析:选D 从2,4中取一个数作为个位数字,有2种取法,再从其余四个数中取出三个数排在前三位,有A 34种,由分步乘法计数原理知组成无重复数字的四位偶数的个数为2×A 34=48.9.沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备的不同的火车票的种数为( )A .15B .30C .12D .36解析:选B 只需分析每两个大站之间需要的火车票的种数即可.对于两个大站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,所以问题归结为求从6个不同元素中每次抽出2个不同元素的排列数,故不同的火车票有A 26=6×5=30(种).10.将A 、B 、C 、D 四名同学按一定顺序排成一行,要求自左向右,且A 不排在第一,B 不排在第二,C 不排在第三,D 不排在第四.试写出他们四人所有不同的排法.解:由于A 不排在第一,所以第一只能排B 、C 、D 中的一个,据此可分为三类.由此可写出所有的排法为:BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.11.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号?解:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号种数为A13+A23+A33=3+3×2+3×2×1=15.二、综合过关训练1.89×90×91×…×100可表示为( )A.A10100B.A11100C.A12100D.A13100解析:选C 最大数为100,共有12个连续整数的乘积,由排列数公式的定义可以得出.2.与A310·A77不相等的是( )A.A910B.81A88C.10A99D.A1010解析:选B A310·A77=10×9×8×7!=A910=10A99=A1010,81A88=9A99≠A1010,故选B.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A.12种B.24种C.48种D.120种解析:选B ∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有( ) A.120个B.80个C.40个D.20个解析:选C 由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有A25个;第二类,十位数字取6,有A24个;第三类,十位数字取5,有A23个;第四类,十位数字取4,有A22个.所以“伞数”的个数为A25+A24+A23+A22=40.故选C.5.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数是________.解析:当十位数字为0,千位数字为7时,四位数的个数是A28;当十位数字与千位数字为1,8或8,1时,四位数的个数是A28A22;当十位数字与千位数字为2,9或9,2时,四位数的个数是A28A22.故所求的四位数的个数是A28+A28A22+A28A22=280.答案:2806.有3名大学毕业生,到5家公司应聘,若每家公司至多招聘1名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 解析:将5家公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有A35=5×4×3=60(种).答案:607.有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?解:先排列三张卡片,有A33×2×2×2种排法,0排在首位的个数为A22×2×2,则这三张卡片可以组成A33×2×2×2-A22×2×2=40个三位数.8.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解:(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.4、排列的应用一、题组对点训练对点练一数字排列问题1.用数字1,2,3,4,6可以组成无重复数字的五位偶数有( )A.48个B.64个C.72个D.90个解析:选C 有A13A44=72个无重复数字的五位偶数.2.用0,1,2,3组成的能被5整除且没有重复数字的四位数的个数为________.解析:因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其个数为A33=6.答案:63.用数字0,1,2,3,4,5组成没有重复数字的四位数.(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?(3)在所有的四位数中按从小到大的顺序排成一个数列,则第85个数为多少?解:(1)法一(直接法):A15·A35=300(个).法二(间接法):A46-A35=300(个).(2)法一(直接法):因为0为特殊元素,故先考虑0.若0在个位有A35个;0不在个位时,从2,4中选一个放在个位,再从余下的四个数中选一个放在首位,有A12·A14·A24,故有A35+A12·A14·A24=156个不同的四位偶数.法二:(间接法):从这六个数字中任取四个数字组成最后一位是偶数的排法,有A13·A35个,其中第一位是0的有A12·A24个.故适合题意的有A13·A35-A12A24=156个不同的四位偶数.(3)1在首位的数的个数为A35=60.2在首位且0在第二位的数的个数为A24=12.2在首位且1在第二位的数的个数为A24=12.以上四位数共有84个,故第85个数是2 301.对点练二排队问题4.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9!解析:选C 利用“捆绑法”求解.满足题意的坐法种数为A33(A33)3=(3!)4.5.4名男生和4名女生并坐一排照相,女生要排在一起,不同排法的种数为( ) A.A88B.A55A44C.A44A44D.A58解析:选B 因为4名女生要排在一起,所以先将4名女生捆绑与其他4名男生一起排列,然后再将4名女生排列,共有A55A44种排法.6.6个人排成一行,其中甲、乙两人不相邻的不同排法共有( )A.120种B.240种。

2019数学人教A版选修2-3优化课件:第一章 1-2 1-2-2 组 合


97 3 3 (2)C3 100-C100=C100-C100=0. 5 6 5 6 6 4 (3)原式=C4 8+C8+C9=C9+C9=C10=C10=210.
组合数的计算或证明: 对于简单的组合数计算,可用组合数的性质 (1)计算,对于组合数较大,或者求和问 题,可用性质化简,对于等式证明可用组合数的性质(2).
m Cn Cn =______
m 1 m Cn +Cm Cn +Βιβλιοθήκη 1=__________ n-
n-m
C0 n=1
[双基自测] 1.下列四个问题属于组合问题的是( )
A.从 4 名志愿者中选出 2 人分别参加导游和翻译的工作 B.从 0,1,2,3,4,这 5 个数字中选取 3 个不同的数字,组成一个三位数 C.从全班同学中选出 3 名同学出席深圳世界大学生运动会开幕式 D.从全班同学中选出 3 名同学分别担任班长、副班长和学习委员
1.2.2
组 合
考 纲 定 位 1.理解组合的概念. 2.能根据两个计数原理推导组合数公式. 3.能用组合知识解决简单的实际问题. 4.根据实际问题的特征,正确区分“排 列”或“组合”.
重 难 突 破 重点:组合的概念;组合数公式 的推导;应用组合知识解决简单 的实际问题. 难点:组合数公式的推导,根据 实际问题的特征,正确区分“排 列”或“组合”.
[解析] (1)从余下的 34 名学生中选取 2 名, 有 C2 34=561(种). ∴不同的取法有 561 种. (2)从 34 名可选学生中选取 3 名,有 C3 34种.
2 3 或者 C3 35-C34=C34=5 984 种.
∴不同的取法有 5 984 种.
2 (3)从 20 名男生中选取 1 名,从 15 名女生中选取 2 名,有 C1 20C15=2 100 种.

人教A版22019高中数学选修2-3教学案:复习课(一) 计数原理_含解析

复习课(一)计数原理对应学生用书P48(1)两个计数原理是学习排列与组合的基础,高考中一般以选择题、填空题的形式出现,难度中等.(2)运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.[考点精要]计数原理(1)分类加法计数原理:N=n1+n2+n3+…+n m;(2)分步乘法计数原理:N=n1·n2·n3·…·n m.[典例]如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有()A.180种B.240种C.360种D.420种[解析]由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A35种方案.②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A45种方案.③当用五种颜色时有A55种方案.因此所有栽种方案为A35+2A45+A55=420(种).[答案] D[类题通法]使用两个原理解决问题时应注意的问题(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.[题组训练]1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种解析:选B法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18种.法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18种.2.有红、黄、蓝旗各3面,每次升一面、二面或三面在旗杆上纵向排列表示不同的信号,顺序不同则表示不同的信号,共可以组成的信号有________种.解析:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理,共可组成3+9+27=39种不同的信号.答案:39(1)高考中往往以实际问题为背景,考查排列与组合的综合应用,同时考查分类讨论的思想方法,常以选择题、填空题形式出现,有时与概率结合考查.(2)解决排列组合问题的关键是掌握四项基本原则①特殊优先原则:如果问题中有特殊元素或特殊位置,优先考虑这些特殊元素或特殊位置的解题原则.②先取后排原则:在既有取出又需要对取出的元素进行排列中,要先取后排,即完整地把需要排列的元素取出后,再进行排列.③正难则反原则:当直接求解困难时,采用间接法解决问题的原则.④先分组后分配原则:在分配问题中如果被分配的元素多于位置,这时要先进行分组,再进行分配.[考点精要]1.排列与组合的概念2.排列数与组合数的概念3.排列数与组合数公式 (1)排列数公式①A m n =n (n -1)…(n -m +1)=n !(n -m )!;②A n n =n !. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.4.组合数的性质(1)C m n =C n-mn;(2)C m n +C m -1n=C mn +1. [典例] (1)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!(2)(重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168(3)从6位同学中选出4位参加一个座谈会,要求张、王两同学中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15[解析] (1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.(2)依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120,选B .(3)法一:(直接法)分两类,第一类张、王两同学都不参加,有C 44种选法;第二类张、王两同学中只有1人参加,有C 12C 34种选法.故共有C 44+C 12C 34=9种选法.法二:(间接法)C46-C24=9种.[答案](1)C(2)B(3)A[类题通法]排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.[题组训练]1.有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是()A.12 B.24C.36 D.48解析:选B2盆黄菊花捆绑作为一个元素与一盆红菊花排列,2盆白菊花采用插空法,所以这5盆花的不同摆放共有A22A22A23=24种.2.某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为()A.720 B.520C.600 D.360解析:选C根据题意,分2种情况讨论.①只有甲乙其中一人参加,有C12C35A44=480种情况;②若甲乙两人都参加,有C22C25A44=240种情况,其中甲乙相邻的有C22C25A33A22=120种情况,不同的排法种数为480+240-120=600种,故选C.(1)求二项展开式中的项或项的系数是高考的热点,通常以选择题、填空题形式考查,难度中低档.(2)解决此类问题常遵循“知四求一”的原则在二项式的通项公式中共含有a, b,n,k,T k+1这五个元素,只要知道其中的4个元素,便可求第5个元素的值,在有关二项式定理的问题中,常常会遇到这样的问题:知道这5个元素中的若干个(或它们之间的关系),求另外几个元素.这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组).这里要注意n为正整数,k为自然数,且k≤n.[考点精要]1.二项式定理2.二项式系数的性质[典例](1)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4 B.-3C.-2 D.-1(2)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6C.7 D.8(3)若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=________.[解析](1)展开式中含x2的系数为C25+a C15=5,解得a=-1,故选D.(2)由题意得:a=C m2m,b=C m2m+1,所以13C m2m=7C m2m+1,∴13·(2m)!m!·m!=7·(2m+1)!m!·(m+1)!,∴7(2m+1)m+1=13,解得m=6,经检验为原方程的解,选B.(3)令x=1可得a0+a1+a2+a3+a4=1,令x=0,可得a0=1,所以a1+a2+a3+a4=0.[答案](1)D(2)B(3)0[类题通法]求二项式展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r +1项,由特定项得出r 值,最后求出其参数.(3)与二项式各项系数的和有关的问题一般用赋值法求解.[题组训练]1.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:选C 只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C .2.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .6D .5解析:选B 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,∴a 0+a 2+a 4=8.1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b =80,则n 的值为( )A .8B .4C .3D .2解析:选C 由题意a =4n ,b =2n ,∵a +2b =80, ∴4n +2×2n -80=0,即(2n )2+2×2n -80=0,解得n =3.2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有( ) A .63种 B .31种 C .8种D .7种解析:选D 由题意知,可以开2盏、4盏、6盏灯照明,不同方法有C 13+C 23+C 33=7(种).3.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( )A .A 34种B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种解析:选C 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种.4.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0解析:选A 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55(-1)5=-1,因此x 7系数与常数项之差的绝对值为5.5.⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B .54C .-1516D .1516解析:选D T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12r C r 6x 12-13r ,令12-3r =0,解得r =4. ∴常数项为⎝⎛⎭⎫-124C 46=1516.故选D . 6.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种解析:选A 分为两类:①1号盒子放入1个球,2号盒子放入3个球,有C 14=4种放球方法;②1号盒子放入2个球,2号盒子放入2个球,有C 24=6种放球方法.∴共有C 14+C 24=10种不同的放球方法.7.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:108.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)解析:由已知条件可得第1块地有C 12种种植方法,则第2~4块地共有A 35种种植方法,由分步乘法计数原理可得,不同的种植方案有C 12A 35=120种.答案:1209.(北京高考)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.解析:将A ,B 捆绑在一起,有A 22种摆法,再将它们与其他3件产品全排列,有A 44种摆法,共有A 22A 44=48种摆法,而A ,B ,C 3件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有2×A 33=12种摆法,故A ,B 相邻,A ,C不相邻的摆法有48-12=36种.答案:3610.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,求a 0+a 1+2a 2+3a 3的值. 解:由(2x +3)3=[2(x +2)-1]3=C 03[2(x +2)]3(-1)0+C 13[2(x +2)]2(-1)1+C 23[2·(x +2)]1(-1)2+C 33[2(x +2)]0(-1)3=8(x +2)3-12(x +2)2+6(x +2)-1 =a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3. 则a 0=-1,a 1=6,a 2=-12,a 3=8. 则a 0+a 1+2a 2+3a 3=5.11.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C 310=120种放入方式.12.已知(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数的最大项; (2)求展开式中系数最大的项.解:(1)令x =1,则二项式各项系数和为(1+3)n =4n , 展开式中各项的二项式系数之和为2n . 由题意,知4n -2n =992.∴(2n )2-2n -992=0.∴(2n +31)(2n -32)=0. ∴2n =-31(舍)或2n =32,∴n =5. 由于n =5为奇数,∴展开式中二项式系数最大项为中间两项,它们是 T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)展开式通项公式为T r +1=C r 53r·(x 23)5-r (x 2)r =C r 5·3r ·x 103+4r 3.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1, ∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎨⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92. ∵r ∈N *,∴r =4.∴展开式中系数最大项为T 5=C 45·34·x 103+4×43=405x 263.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业 5 组合与组合数公式
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一
个医疗小组,则不同的选法共有( )
A.60种 B.70种
C.75种 D.150种
解析:由题意知,选2名男医生、1名女医生的方法有C26C15=75种.
答案:C
2.若Cn12=C2n-312,则n等于( )
A.3 B.5
C.3或5 D.15
解析:由组合数的性质得n=2n-3或n+2n-3=12,解得n=3或n=5,
故选C.
答案:C
3.现有6个白球,4个黑球,任取4个,则至少有两个黑球的取法种数是( )
A.90 B.115
C.210 D.385
解析:依题意根据取法可分为三类:两个黑球,有C24C26=90(种);
三个黑球,有C34C16=24种;四个黑球,有C44=1(种).
根据分类计数原理可得,至少有两个黑球的取法种数是90+24+1=115,
故选B.
答案:B
4.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型和乙型
电视机各1台,则不同的取法共有( )
A.140种 B.84种
C.70种 D.35种
解析:可分两类:第一类甲型1台、乙型2台,有C14·C25=4×10=40(种)
取法,第二类甲型2台、乙型1台,有C24·C15=6×5=30(种)取法,
∴共有70种不同取法.故选C.
答案:C
5.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位
不变,则不同的调整方案的种数有( )
A.35 B.70
C.210 D.105
解析:先从7人中选出3人有C37=35种情况,再对选出的3人相互调整座
位,共有2种情况,故不同的调整方案种数为2C37=70.故选B.
答案:B
二、填空题(每小题5分,共15分)
6.按ABO血型系统学说,每个人的血型为A,B,O,AB四种之一,依
血型遗传说,当且仅当父母中至少有一人的血型是AB型时,子女一定不是O型,
若某人的血型为O型,则父母血型所有可能情况有________种.
解析:父母应为A或B或O,共有C13·C13=9种情况.
答案:9
7.方程Cx+113=C2x-313的解集为________.
解析:由原方程得x+1=2x-3或x+1+2x-3=13.
所以x=4或x=5.
经检验x=4或x=5都符合题意,
所以原方程的解为x=4或x=5.
答案:{4,5}
8.某校高一学雷锋志愿小组共有8人,其中一班、二班、三班、四班各2
人,现在从中任选3人,要求每班至多选1人,不同的选取方法的种数为
________.
解析:现在从中任选3人,要求每班至多选1人,则这3人来自不同的三
个班级,每个班级的人数选择都有2种,故有C34C12C12C12=32(种).
答案:32
三、解答题(每小题10分,共20分)
9.判断下列问题是组合问题还是排列问题.并用组合数或排列数表示出来.
(1)8人相互发一个电子邮件,共写了多少个邮件?
(2)10支球队以单循环制进行比赛,共需要进行多少场比赛?
(3)10支球队主客场制进行比赛,共需要进行多少场比赛?
(4)有4张电影票,要在7人中确定4人去观看,不同的选法种数是多少?
解析:(1)发邮件有先后之分,与顺序有关,是排列问题,共写了A28个电子
邮件.
(2)是组合问题.两队只需要比赛一次,与顺序无关,共进行C210场比赛.

相关文档
最新文档