5-1模拟电子技术课件
模拟电子技术基础(第4版)ppt课件

多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
华成英 hchya@
二、晶体管的放大原理
(发射结正偏) uBE U on 放大的条件 (集电结反偏) uCB 0,即 uCE uBE
少数载流 子的运动 因集电区面积大,在外电场作用下大 部分扩散到基区的电子漂移到集电区 因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合 因发射区多子浓度高使大量 电子从发射区扩散到基区 基区空穴 的扩散
华成英 hchya@
§1.3
晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响
五、主要参数
华成英 hchya@
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
华成英 hchya@
2、本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
指数曲线
若正向电压 UT,则i ISe u
u UT
若反向电压u UT,则i IS
2. 伏安特性受温度影响
反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓ →反向饱和电流IS↑,U(BR) ↓ 增大1倍/10℃
T(℃)↑→正向特性左移,反向特性下移
华成英 hchya@
华成英 hchya@
大学课程模拟电子技术基础第5章课件

1 ( f )2 fL
90o tan1 f
fL
90o tan1 f
fL
1. 当 f fL 时, 20 lg A&u 0 dB, 0o
2. 当 f fL 时,
3. 当 f fL 时,
20lg A&u 20lg 2 3 dB, 45o
20 lg
A&u
20 lg
f fL
20dB/十倍频
高 路通
电
幅频图
fL
相频图
低
通 电
fH
路
极间 电容
低通电路
fH : 上限截止频率
A&u
1
1 j
f
fH
5.1.3 波特图
幅频特性——X:lg f , Y: 20 lg A&u
相频特性——X:lg f , Y:
f
高通电路:
A&u
fL 1 ( f )2
fL
20 lg
A&u
20 lg
f fL
20 lg
( f )
相频特性: 放大电路放大倍数的相位随频率变 化的关系
5.1.2 RC电路的频率响应
耦合 电容
高 通 电 路
: 时间常数
A&u
U&o U&i
R
R
1
1 1 1
jC
j RC
令
L
1 RC
1
则
fL
L 2
1
2
1
2 RC
jf
A&u
1
1
L
1 1 fL
1
fL jf
j
jf
精品课件-模拟电子技术-第5章

第五章 负反馈放大电路
(2)电流反馈:对交变信号而言,若基本放大器、反馈 网络、负载三者在取样端是串联连接,则称为串联取样,如图 5-3所示。由于在这种取样方式下,Xf正比于输出电流,Xf反映 的是输出电流的变化,所以又称之为电流反馈。
第五章 负反馈放大电路
图 5 – 3 反馈电路与输出回路的联接
第五章 负反馈放大电路
第五章 负反馈放大电路
5.1 反馈的基本概念 5.2 反馈放大器的四种组态 5.3 负反馈对放大器性能的影响 5.4 负反馈放大器的指标计算 5.5 负反馈放大电路的自激振荡
第五章 负反馈放大电路
5.1 反馈的基本概念
5.1.1 反馈的定义 所谓反馈就是把放大器的输出量(电压或电流)的
Ui' Ui U f
第五章 负反馈放大电路
图 5-4 串联反馈与并联反馈
第五章 负反馈放大电路
(2)并联反馈:对交流信号而言,信号源、基本放大器、 反馈网络三者在比较端是并联连接,则称为并联反馈。并联反 馈要求信号源趋近于恒流源,若信号源是恒压源,则并联反馈 无效。因为若信号源为恒压源,则并联反馈的净输入信号不随 反馈信号而变,从而使反馈失去作用。
第五章 负反馈放大电路
图5-2 反馈极性判断
第五章 负反馈放大电路
2. 电压反馈与电流反馈
(1)电压反馈:对交变信号而言,若基本放大器、 反馈网络、负载三者在取样端是并联连接,则称为并联取 样,如图5-2所示。由于在这种取样方式下,Xf正比于输出 电压,Xf反映的是输出电压的变化,所以又称之为电压反馈。
4. 直流反馈和交流反馈
(1) 直流反馈:若反馈环路内, 直流分量可以流通, 则该反馈环可以产生直流反馈。直流负反馈主要用于稳定静 态工作点。
《模拟电子技术》(第3版)课件与教案 第1章

第1章 半导体二极管及其应用试确定图(a )、(b )所示电路中二极管D 是处于正偏还是反偏状态,并计算A 、B 、C 、D 各点的电位。
设二极管的正向导通压降V D(on) =。
解:如图E1.1所示,断开二极管,利用电位计算的方法,计算二极管开始工作前的外加电压,将电路中的二极管用恒压降模型等效,有(a )V D1'=(12-0)V =12V >0.7V ,D 1正偏导通,)7.02.22.28.17.012(A +⨯+-=VV B =V A -V D(on))V =6. 215V(b )V D2'=(0-12)V =-12V <0.7V ,D 2反偏截止,有V C =12V ,V D =0V二极管电路如图所示,设二极管的正向导通压降V D(on) =,试确定各电路中二极管D 的工作状态,并计算电路的输出电压V O 。
解:如图E1.2所示,将电路中连接的二极管开路,计算二极管的端电压,有 (a )V D1'=[-9-(-12)]V =3V >0.7V ,D 1正偏导通V O1(b )V D2'=[-3-(-29)]V =1.5V >0.7V ,D 2正偏导通V O2图E1.2(c)V D3'=9V>0.7V,V D4'=[9-(-6)]V=15V>0.7V,V D4'>V D3',D4首先导通。
D4导通后,V D3''=(0.7-6)V=-5.3V<,D3反偏截止,V O3。
二极管电路如图所示,设二极管是理想的,输入信号v i=10sinωt V,试画出输出信号v O的波形。
图E1.3解:如图E1.3所示电路,二极管的工作状态取决于电路中的输入信号v i的变化。
(a)当v i<0时,D1反偏截止,v O1=0;当v i>0时,D1正偏导通,v O1=v i。
(b)当v i<0时,D2反偏截止,v O2=v i;当v i>0时,D2正偏导通,v O2=0。
(c)当v i<0时,D3正偏导通,v O3=v i;当v i>0时,D3反偏截止,v O3=0。
模拟电子学基础课件-第五章

工业制造学院测控系
5.1 金属-氧化物-半导体(MOS)场效应管
5.2 MOSFET放大电路
5.3 结型场效应管(JFET) *5.4 砷化镓金属-半导体场效应管 5.5 各种放大器件电路性能比较
场效应管(FET)是一种利用电场效应来控制其电流大小的半导 体器件,具有体积小、重量轻、耗电省、寿命长等特点。
3. 饱和漏电流IDSS (耗尽型参数) 在vGS=0时,当 vDS VP 时的漏极电流——饱和漏极电流IDSS 4. 直流输入电阻RGS
在漏源短路时,栅源间加一定电压所对应的栅源直流电阻。 一般可达 109 Ω ~ 1015 Ω
二、交流参数
1. 输出电阻rds
rds vDS i D
VGS
因此,感生沟道的出现,实际上将原来被P型衬底隔开的源 区和漏区连通,一旦vDS≠0,则将有漏极电流iD产生。
这种在vGS=0时无导电沟道,而必须依靠vGS的作用才能形成 感生沟道的FET称为 增强型FET 开启电压VT:是指在漏源电压vDS作用下开始导电时的栅源 电压vGS。 显然,当vGS<VT时,iD≈0,场效应管工作在截止区。 (3)可变电阻区和饱和区的形成机制 如图5.1.2c所示,当vGS=VGS>VT时: 外加较小vDS时,漏极电流iD将随vDS 的上升迅速增大;
Kn Kn 2
W nCox W 0.249mA/V 2 L 2 L
当vGS=2VT时,有
iD K n ( vGS VT ) 2 0.14mA
5.1.2 N沟道耗尽型MOSFET
1. 结构和工作原理简述
N沟道耗尽型MOSFET(D型NMOS管)的结构与增强型基本相 同,如图5.1.5a所示。 不同之处: 二氧化硅绝缘层中掺有大量的正离子
模拟电子技术(第三版)江晓安版 第一章ppt

教材:《模拟电子技术》(第三版) 作者:江晓安 西电出版社
专业基础课课程体系
专业基础课
专业课
模电 (低频电子线路) 高频电子线路等 电路 数电 (计算机硬件) 信号与系统
学位课
微机原理、单片机等
数字信号处理
语音信号处理
图像信号处理等
考研课—电子技术(模电、数电)、信号与系统
概述:
3. 本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电 子和带正电的空穴均参与导电, 且运动方向相反。由于载流子数 目很少,故导电性很差。 温度升高,热运动加剧,载 流子浓度增大,导电性增强。 热力学温度0K时不导电。 两种载流子
为什么要将半导体变成导电性很差的本征半导体?
2. 本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
电子技术的发展 从电子管→半导体管→集成电路
1904年 电子管问世
1947年 晶体管诞生
1958年集成电 路研制成功
1958年只有4个晶体管 1997年一芯片中有40亿个晶体管 电子管、晶体管、集成电路比较
值得纪念的几位科学家!
第一只晶体管的发明者 (by John Bardeen , William Schockley and Walter Brattain in Bell Lab) 贝尔实验室三名科学家在1947 年11月底发明了晶体管,1956年因 此获得诺贝尔物理学奖。 巴因所做的超导研究于1972年 第二次获得诺贝尔物理学奖。 第一个集成电路及其发明者 ( Jack Kilby from TI ) 1958年9月12日,在德州仪器公司 的实验室,实现了把电子器件集成在 一块半导体材料上的构想。42年后, 于2000年获诺贝尔物理学奖。
《模拟电子技术》(余红娟)电子教案第1章 半导体二极管 电子课件
术
流子,在N区内,“空穴”称 为少数载流子,扩散到对方的
专
“电子”或“空穴”称为“非
业
平衡少数载流子”。P型半导 体体内的“空穴”成为P型半
教
导体的“多子”,同理,N型 半导体内的“电子”称为N型
学
半导体的“多子”。这些非平
资
衡少数载流子的注入,必然与 对方的多子复合,在交界面附
源
近使载流子成对的消失,并且 各留下不能移动的正、负离子,
设
常,较长引线表示正极(+),另一根为负极(-)。 测试方法与 普通二极管一样
金华职业技术学院
应 二极管的应用: 例1 LED节能灯
用
电
子
技
术
专
业
教
整流二极管: 整流电流0.5A, 反向压降600V
学
资
稳压二极管: 稳压电压20V, 额定功率1W
源
LED: 正向压降3V以上
建
说明本电路工作原理:R1、C1降压\QZ整流桥把交流变成直
技 =1kΩ,未经稳压的直流输入电压Ui=24V。
术 专
(1)试求Uo、Io、I 及Iz; (2)若负载电阻RL 的阻值减小为0.5K,再求Uo、Io、I 及Iz。
业
教
学
资
源
建
设
金华职业技术学院
当P区电位低于N区电位——PN结反向偏置时,回路基本无电流产生,
源
PN结趋于截止。
建
由于正反向电流相差悬殊,所以PN结具有单向导电的性质
设
金华职业技术学院
应
二极管----单向导电性
用
电
将一个“PN”结
子
封装在一个密
技
模拟电子技术第五版课件
其最小值也只能为0,即IC的最大电流为:
I VCC UCE S 12V 6mA
CM
R
2k
c
此时,Q(120uA,6mA,0V),PPT学由 习交流于 IBICM 所以BJT工作在饱和区。
19
2.3 放大电路的交流通路
2.3.1 画交流通路的原则
画出下图的交流通路
• 直流电源:内阻为零,相 当于短路
当 iC 0 时,uCEVCC
当 uCE0 时,iC VRCcC
T
图 2.2.1 基本共射放大电路
PPT学习交流
26
输出回路 输出特性
iC 0,uCE VCC
uCE
0,iC
VCC RC
直流负载线
Q
PPT学习交流
由静态工作点 Q 确 定 的 ICQ 、 UCEQ 为静态值。
27
【例】图示单管共射放大电路及特性曲线中,已知
PPT学习交流
18
例题
放大电路如图所示。已知BJT
的 ß=80, Rb=300k, Rc=2k, VCC= +12V,(求1):放大电路的Q点。此时BJT
工作在哪个区域?
(2)当Rb=100k时,放大电路的Q点。此 时BJT工作在哪个区域?(忽略BJT的饱
和压降)
解:(1)
共射极放大电路
IBQ VCC R UBE3 120V 0 4ku 0AICIB8 04u 0A 3.2mA b
PPT学习交流
14
常见的共射放大电路
1.直接耦合共射放大电路 静Q点的计算
Rb2 Rb1
T
V U U
I CC
BEQ
BEQ
BQ
R
R
模拟电子技术课件chapter1
N型半导体(掺五价元素)
硅原子
Negative(负) 自由电子为多子; 空穴为少子
磷原子
Si
Si
多余电子获很 少能量可成为 自由电子
P
Si
N型硅表示
+
施主原子(正离子)
自由电子
17
P型半导体(掺三价元素) 硅原子 空位 Si B Si
Positive(正)
空穴为多子;
自由电子为少子
硼原子
Si
iD
uD UT
rd
Q
●
UT ID
iD
+
iD
ID
uD UD
u D
-
rd
uD
36
三、高频模型
1. 正向偏置 1. 反向偏置
势垒电容Cb 加扩散电容Cd
势垒电容Cb
37
1.2.5 稳压二极管(zener diode)
稳压二极管符号 +
当稳压二极管工 作在反向击穿状 态下,当工作电 流IZ在Izmax和 Izmin之间时,其两 端电压近似为常 数 稳压二极管特性曲线 I 稳定 电压 UZ IZmin U 稳定 IZ 电流 IZmax
Industrial ~
Mechtronics ~ Medical ~ Office ~
4
应用举例
传感器
电子线路
执行器件
5
§0.3 课程特点
• 技术基础课(专业基础课) – 实践性强 – 讨论共性概念问题 – 基本分析方法、分析原则 – 为后续课程打基础 时间紧、任务重、难度大、难掌握 问题实质:实践性强、内容分散
一般,击穿电压在6V以下的属于齐纳击穿,6V以上的 主要是雪崩击穿。 6V左右,两种击穿都有。
《 模拟电子技术》课件第5章
3. 测量最大不失真输出功率 在输入端加入f=1 kHz的正弦信号ui,ui的幅度逐渐加大, 与此同时用示波器观察输出电压uo的波形,至uo最大又不出 现削波为止。用毫伏表或示波器测量负载两端的电压uo,并 由uo、RL值计算最大不失真输出功率Po实。
10
4. 测量电源供给功率 将直流电流表串入电源供电电路。电路输入端加1 kHz 正弦信号ui,逐渐加大ui的幅度,与此同时用示波器观察输 出电压uo的波形,至uo最大又不出现削波为止,然后固定ui。 读取并记录直流电流表读数ICo,记下电源供电电压UCC,计 算出电源供给功率PU实。
54
由上述分析可以看出,与OCL电路(图5.3.4(b))相比,在 相同电源电压下(图中均为UCC),BTL电路中流过负载RL的 电流及RL两端的电压均加大了一倍,据此可分析出它的最大 输出功率为
55
图5.3.5为TDA2030组成的BTL电路,除电阻R9(22 kΩ)外, 其余电路是由TDA2030组成的两个OCL电路,结构对称,元 件参数与图5.3.2(b)中的相同。
20
图5.2.2 乙类互补对称电路图解 (a) NPN管输出特性; (b) PNP管输出特性; (c)两管特性曲线合成
21
1) 输出功率Po 在电阻负载RL上,输出功率等于输出电压有效值与输出 电流有效值之积,即
(5.2.1)
22
在输入信号足够大时,可使输出电压幅值最大,输出功 率最大。此时功放管处于尽限运用状态,可忽略功放管的饱 和压降UCES,即有UCEM=UCC-UCES≈UCC,因此,最大输出 功率为
56
图5.3.5 TDA2030组成的BTL电路
57
5.4 功率放大器的应用
5.4.1 功率放大器实际应用电路 1. OCL功率放大器实际应用电路 图5.4.1为一准互补功率放大电路,它是高保真功率放大