最新高考物理专题汇编牛顿运动定律的应用(一)

合集下载

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)含解析

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)含解析

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】(1)由v-t 图象的面积规律可知传送带A 、B 间的距离L 即为v-t 图线与t 轴所围的面积,所以:112122v v v L t t t =++代入数值得:L =16m由平均速度的定义得:168/2L v m s t ===(2)由v-t 图象可知传送代运行速度为v 1=10m/s ,0-1s 内物体的加速度为:22110/10/1v a m s m s t V V === 则物体所受的合力为:F 合=ma 1=2×10N=20N .1-2s 内的加速度为:a 2=21=2m /s 2, 根据牛顿第二定律得:a 1=mgsin mgcos mθμθ+=gsinθ+μgcosθa 2= mgsin mgcos mθμθ-=gsinθ-μgcosθ联立两式解得:μ=0.5,θ=37°.(3)0-1s 内,物块的位移:x 1=12a 1t 12=12×10×1m =5m 传送带的位移为:x 2=vt 1=10×1m=10m则相对位移的大小为:△x 1=x 2-x 1=5m则1-2s 内,物块的位移为:x 3=vt 2+12a 2t 22=10×1+12×2×1m =11m 0-2s 内物块向下的位移:L =x 1+x 3=5+11=16m物块下降的高度:h =L sin37°=16×0.6=9.6m物块机械能的变化量:△E =12m v B 2−mgh =12×2×122−2×10×9.6=-48J 负号表示机械能减小.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)

高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

牛顿运动定律的应用专题:板块模型 课件-高一物理人教版(2019)必修第一册

牛顿运动定律的应用专题:板块模型 课件-高一物理人教版(2019)必修第一册
4.5《牛顿运动定律的应用》 专题课件
(板块)
板块模型:一个物体(物块)在另一个物体(长板)上,两者之 间或有相对运动、或相对静止。
A
v0
B
AF B
板块系统中的一个物体可能受到外力作用,而另一个物体则会受到 板块之间的摩擦力或者板块之间的摩擦力和系统外的摩擦力共同作用。
由于摩擦力的作用与运动、位移有关,所以板块运动影响因素较多, 我们在研究时应该细心、有序。
(3)A、B一起在水平面上滑行至停下的距离。
(1)aA=2m/s2 ,aB=1m/s2;(2)t=1s;(3)x=0.5m
今天的内容,你掌握了吗?
C.两物体从受力开始就有相对运动 D.两物体始终没有相对运动
2、某同学利用图甲所示装置研究摩擦力的变化情况。实验台上固定一个力 传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。水平向左拉 长木板,传感器记录的F-t图像如图乙所示。下列说法正确的是( B) A.实验中必须让长木板保持匀速运动 B.最大静摩擦力与滑动摩擦力之比约为10:7 C.物块与木板间的动摩擦因数为0.7 D.图乙中曲线可以反映长木板所受拉力随时间的变化趋势
例2:如图所示,质量M=1 kg、长L=4 m的木板静止在粗糙的水平地面上,木 板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1 kg、大小 可以忽略的铁块,铁块与木板上表面间的动摩擦因数μ2=0.4,某时刻起在铁块 上加一个水平向右的恒力F=8 N,g取10 m/s2,求:(1)加上恒力F后铁块和木 板的加速度大小;(2)铁块经多长时间到达木板的最右端,此时木板的速度多 大?(3)当铁块运动到木板最右端时,把铁块拿走,木板还能继续滑行的距 离.
3.如图所示,质量为2Kg的小物块A可以看作质点,以初速度v0=3m/s滑上静止的木 板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直 至停下。已知B的质量为1Kg,A、B间的动摩擦因数为0.2,木板B与水平面间的动摩

人教版高中物理必修一4.5 牛顿运动定律的应用练习(一)(解析版) 同步练习

人教版高中物理必修一4.5 牛顿运动定律的应用练习(一)(解析版) 同步练习

4.5 牛顿运动定律的应用 同步练习一、单选题1.一质量为2 kg 的物体,在竖直向上的拉力F 作用下由静止开始向上做匀加速直线运动,第2 s 内的位移为3 m ,已知重力加速度g =10 m/s 2,不计空气阻力,则拉力F 大小为A .2 NB .4 NC .12ND .24N 【答案】D 【解析】根据位移时间公式212x at =得,第2s 内的位移: 22222211111213m 2222x at at a a =-=⨯⨯-⨯⨯= 解得物体的加速度为:a =2m/s 2,根据牛顿第二定律得:F −mg =ma ,解得:F =mg +ma =20+2×2N=24N.故ABC 错误;D 正确。

2.在欢庆节日的时候,人们会在夜晚燃放美丽的焰火。

按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4s 末到达离地面100m 的最高点时炸开,构成各种美丽的图案。

假设礼花弹从炮筒中竖直射出时的初速度是v 0,上升过程中所受的平均阻力大小始终是自身重力的k 倍,那么v 0和k 分别等于(重力加速度g =10m/s 2)( )A .50m/s ,1.25B .40m/s ,0.25C .50m/s ,0.25D .80m/s ,1.25【答案】C【解析】上升过程中所受的平均阻力f=kmg ,根据牛顿第二定律得: 1mg f a k g m +==+() 根据212h at =得: 22212.5m/s h a t== 所以v 0=at =50m/s而(k +1)g =12.5m/s 2所以k =0.25。

A .50m/s ,1.25,与结论不相符,选项A 错误;B .40m/s ,0.25,与结论不相符,选项B 错误;C .50m/s ,0.25,与结论相符,选项C 正确;D .80m/s ,1.25,与结论不相符,选项D 错误;3.一物块以某一初速度从倾角30θ=︒的固定斜面底端上滑,到达最大高度处后又返回斜面底端,已知物块下滑时间是上滑时间的3=1.73,则物块与斜面间的动摩擦因数为( )A .0.1B .0.29C .0.46D .0.58【答案】C【解析】向上运动的末速度等于0,其逆过程为初速度为0的匀加速直线运动,设加速度的大小为a 1,则: 21112x a t =,设向下运动的加速度的大小为a 2,则向下运动的过程中:22212x a t =,由于知物块下滑的时间是上滑时间的3倍,即t 2=3t 1。

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。

物理牛顿运动定律的应用练习题20篇及解析



B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos

高考物理专题讲座:板块问题


F
m
M
答案:⑴设小物块的加速度为a1,由牛顿第二定律得 F-μmg=ma1 代入数据得: a1= 4m/s2 ⑵设小物块的加速度为a2,由牛顿第二定律得:μmg=Ma2 由运动学规律可得: L+½a2t2=½a1t2 代入数据得:t=2s
4.如图所示,在光滑的桌面上叠放着一质量为mA=2.0kg的薄木板A和质量为mB=3 kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为mC=1.0 kg的物块C相连.B与A之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间t后 B从 A的右端脱离(设 A的右端距滑轮足够远)(取g=10m/s2).
A
F
B
答案:D
2.如图所示,在光滑水平面上有一小车A,其质量为mA=2.0kg,小车上放一个物体B,其质量为mB=1.0kg,如图(1)所示。给B一个水平推力F,当F增大到稍大于3.0N时,A、B开始相对滑动。如果撤去F,对A施加一水平推力F′,如图(2)所示,要使A、B不相对滑动,求F′的最大值Fm.
答案:以桌面为参考系,令aA表示A的加速度,aB表示B、C的加速度,sA和sB分别表示 t时间 A和B移动的距离,则由牛顿定律和匀加速运动的规律可得 mCg-µmBg=(mC+mB)aB µ mBg=mAaA sB=½aBt2 sA=½aAt2 sB-sA=L 由以上各式,代入数值,可得:t=4.0s
高考物理专题讲座 板块问题(一)
牛顿运动定律的应用
考点1、板块的临界问题 【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)及解析

高考物理试卷分类汇编物理牛顿运动定律的应用(及答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量M=2kg 足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg 的小滑块,以6m/s 的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g 取l0m/s 2.(1)若木板固定,求小滑块在木板上滑过的距离.(2)若木板不固定,求小滑块自滑上木板开始多长时间相对木板处于静止. (3)若木板不固定,求木板相对地面运动位移的最大值.【答案】(1)203.6m 2v x a==(2)t=1s (3)121x x m +=【解析】 【分析】 【详解】试题分析:(1)225m /s a g μ==20 3.6m 2v x a==(2)对m :2125/a g m s μ==,对M :221()Ma mg m M g μμ=-+,221m /s a =012v a t a t -=t=1s(3)木板共速前先做匀加速运动2110.52x at m == 速度121m /s v a t ==以后木板与物块共同加速度a 3匀减速运动231/a g m s μ==,22310.52x vt a t m =+=X=121x x m +=考点:牛顿定律的综合应用2.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2;由速度时间关系得 t 1=11v a =1s(2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯在水平面上第二阶段(速度从4m/s减速到0)a4=−μ1g=−2.5m/s2,2443.22vx ma==所以在水平面上运动的最大位移是 x=x3+x4=54.4m【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.3.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s 小物块与小车相对静止,一起做加速运动且加速度:m/s 2这0.5s 内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.4.如图所示,水平传送带长为L =11.5m ,以速度v =7.5m/s 沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=-滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V5.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示。

物理牛顿运动定律的应用练习题20篇及解析

由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高考物理专题汇编牛顿运动定律的应用(一) 一、高中物理精讲专题测试牛顿运动定律的应用 1.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m的小物块

a相连,如图所示.质量为35m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为

x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动.经过一段

时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求:

(1)弹簧的劲度系数;

(2)物块b加速度的大小;

(3)在物块a、b分离前,外力大小随时间变化的关系式.

【答案】(1)08sin5mgx (2)sin5g (3)22

084sinsin2525mg

Fmgx

【解析】 【详解】 (1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有:

kx0=(m+35 m)gsinθ

解得:k=08 5mgsinx (2)由题意可知,b经两段相等的时间位移为x0;

由匀变速直线运动相邻相等时间内位移关系的规律可知:10

1

4xx

说明当形变量为0010344xxxx时二者分离; 对m分析,因分离时ab间没有弹力,则根据牛顿第二定律可知:kx1-mgsinθ=ma 联立解得:a=1 5gsin

(3)设时间为t,则经时间t时,ab前进的位移x=12at2=2

10gsint

则形变量变为:△x=x0-x 对整体分析可知,由牛顿第二定律有:F+k△x-(m+35m)gsinθ=(m+35m)a 解得:F=825 mgsinθ+220425mgsinxt2 因分离时位移x=04x由x=04x=12at2解得:052xtgsin

故应保证0≤t<052xgsin,F表达式才能成立.

点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.

2.如图所示,有1、2、3三个质量均为m=1kg的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H=5.75m, 物体1与长板2之间的动摩擦因数μ=O.2.长板2在光滑的桌面上从静止开始释放,同时物体

1(视为质点)在长板2的左端以v=4m/s的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g=10m/s²)求: (1)长板2开始运动时的加速度大小;

(2)长板2的长度0L;

(3)当物体3落地时,物体1在长板2的位置.

【答案】(1)26m/s(2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向 (1)物体1: -μmg = ma1 a1=–μg = -2m/s2 物体2:T+μmg= ma2

物体3:mg–T= ma3

且a2= a3

由以上两式可得:22

gga=6m/s2

(2)设经过时间t1二者速度相等v1=v+a1t=a2t 代入数据解t1=0.5s v1=3m/s

112

vvxt=1.75m 122

vtx=0.75m

所以木板2的长度L0=x1-x2=1m (3)此后,假设物体123相对静止一起加速 T=2ma mg—T=ma 即mg=3ma

得3

ga

对1分析:f静=ma=3.3N>Ff=μmg=2N,故假设不成立,物体1和物体2相对滑动 物体1: a3=μg=2m/s2 物体2:T—μmg= ma4

物体3:mg–T= ma5

且a4= a5

得:42

gga=4m/s2

整体下落高度h=H—x2=5m 根据21242

1

2hvtat

解得t2=1s 物体1的位移231232

1

2xvtat=4m

h-x3=1m 物体1在长木板2的最左端

【点睛】 本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.

3.如图甲所示,有一倾角为37°的光滑固定斜面,斜面底端的水平面上放一质量为M的木板。开始时质量为m=2 kg 的滑块在水平向左的力F作用下静止在斜面上,现将力F变为水平向右,当滑块滑到木板上时撤去力F,木块滑上木板的过程不考虑能量损失。此后滑块和木板在水平面上运动的v-t图象如图乙所示,g=10 m/s2。求:

(1)水平作用力F的大小;

(2)滑块开始下滑时的高度;

(3)木板的质量。

【答案】(1)15N(2)2.5m(3)3kg 【解析】 【分析】 (1)对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小; (2)根据图乙判断滑块滑到斜面底部的速度,由牛顿第二定律求出加速度,从而根据在斜面上的位移和三角关系求出下滑时的高度。 (3)根据摩擦力的公式求出地面和木板间的摩擦力,根据牛顿第二定律求出滑块和木板间的摩擦力,进而根据牛顿第二定律求出木板的质量。 【详解】 (1)滑块受到水平推力F、重力mg和支持力N处于平衡,如图所示,

水平推力:F=mgtanθ=2×10×0.75N=15N (2)由图乙知,滑块滑到木板上时速度为:v1=10m/s

设下滑的加速度为a,由牛顿第二定律得:mgsinθ+Fcosθ=ma 代入数据得:a=12m/s2

则下滑时的高度:21100

·0.62.5224vhsinmma=

(3)设在整个过程中,地面对木板的摩擦力为f,滑块与木板间的摩擦力为f1

由图乙知,滑块刚滑上木板时加速度为:a1=210 20vtVV=

=−4m/s2

对滑块:f1=ma1 ① 此时木板的加速度:a2=20 20vtVV==1m/s2 对木板: f1-f=Ma2 ② 当滑块和木板速度相等,均为:v=2m/s,之后连在一起做匀减速直线运动,加速度为:

a3=02 42m/s2=-1m/s2 当滑块和木板速度相等后连在一起做匀减速直线运动,受到的摩擦力: f =(M+m)a3 ③

联立①②③代入数据解得:M=3kg 【点睛】 本题考查斜面上力的合成与分解,和牛顿第二定律的应用,关键是分析物理过程,从v-t图像中获取信息求解加速度。

4.如图,质量M=4kg的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg的小木块以v0=14m/s的速度从一端滑上木板,恰好未从木板上

滑下,滑块与长木板的动摩擦因数μ2=0.5,g取10m/s2,求: (1)木块刚滑上木板时,木块和木板的加速度大小;

(2)木板长度;

(3)木板在地面上运动的最大位移。

【答案】(1)5m/s2 2m/s2(2)14m(3)12m 【解析】 【分析】 (1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移. 【详解】 (1)由题意知,冲上木板后木块做匀减速直线运动,

初速度 v0=14m/s,加速度大小 212aμg5m/s 木板由静止做匀加速度直线运动 即

212μmgμMmgMa

解得 22a2m/s (2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。设此过程所用

时间为t 即

012

vvatvat

木板木块

解得 t=2s

木块位移

201

1xvtat18m2木块

木板位移

22

1xat4m2木板

木板长度 Lxx14m木板木块 (3)木块木板达到共同速度后将一起作匀减速直线运动,分析得

2231vat4m/saμg1m/s共,

木板位移 23vx8m2a,共木板 总位移

,xxx12m

木板木板

5.如图所示,质量为m=5kg的长木板B放在水平地面上,在木板的最右端放一质量也为m=5kg的物块A(可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动

相关文档
最新文档