mmc 基本单元的拓扑结构

合集下载

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型
随着电力系统的发展和电力需求的增加,高电压直流(HVDC)传输系统被广泛应用,以解决传统交流输电系统存在的一些问题。

在HVDC系统中,多电平电压源换流器(MMC)是一种非常有效的换流器拓扑结构,能够实现高效能量转换和电压调节。

为了实现对MMC的控制和优化,需要建立一个准确的数学模型来描述其动态特性。

MMC的数学模型通常基于电路等效原理和电压源等模型。

以下是一个简化的MMC数学模型。

首先,MMC的主要组成部分是直流电压源和一组电容和电感组成的分别与直流电压源并联和串联的二极管和开关单元。

根据电路等效原理,可以将MMC模型化简为一个等效的电路网络。

其次,MMC的数学模型需要考虑到其动态特性,包括电压和电流的响应速度、能量损耗和功率因素等。

这需要考虑到电容和电感元件的动态特性以及开关单元的工作方式。

通过适当的参数选择和数学建模,可以准确地描述MMC的动态响应。

最后,MMC的数学模型还需要考虑到控制策略和控制算法。

MMC的控制策略包括电压控制、电流控制和功率控制等,其中电压控制是MMC的关键功能之一。

通过设计合适的控制算法,可以实现MMC的
稳定工作和有效能量转换。

总之,模块化多电平电压源换流器的数学模型是描述其动态特性和控制策略的基础。

通过准确的数学模型,可以实现对MMC系统的控制和优化,提高电力系统的稳定性和效率。

MMC-HVDC基本控制策略研究及改进

MMC-HVDC基本控制策略研究及改进

MMC-HVDC基本控制策略研究及改进模块化多电平换流器(MMC)作为全控型电压源换流器(VSC)的一种新型拓扑结构,具有开关频率低、波形质量高、可拓展等优点,具有良好的发展前景。

十几年来,MMC-HVDC技术发展飞快,在工程应用领域以及理论研究领域取得了众多的成果,但依然尚有许多研究问题需要解决,如电容电压平衡优化控制问题、控制系统优化设计问题,等等。

本文在总结前人研究成果的基础上,对MMC-HVDC系统基本控制策略展开了深入研究。

本文首先针对MMC-HVDC系统的拓扑结构及其基本工作原理进行了详细分析,建立了MMC换流器的数学模型,阐述了MMC换流器子模块电容器以及桥臂电抗器的选取方法,并就MMC-HVDC系统基本控制策略进行了简单的介绍,为MMC-HVDC系统模型的搭建提供了一定的理论依据。

其次,针对MMC-HVDC系统阀组级控制策略进行了研究,介绍了MMC调制技术,并对CPS-SPWM调制策略进行了重点叙述,对子模块电容电压波动机理与环流产生原理进行了分析,阐述了传统的电容电压均衡控制与环流抑制控制策略,并利用传统电容电压平衡控制的思想设计了改进的均压拓扑,搭建了仿真模型对改进的均压拓扑的有效性进行了仿真验证。

再者,针对MMC-HVDC系统换流站级控制策略进行了研究,根据MMC交流侧数学模型,推导出了基于d-q轴解耦控制的电流内环控制以及功率外环控制,并结合系统级控制和阀组级控制设计了两端有源MMC-HVDC控制系统,在MATLAB/Simulink仿真平台上,搭建了MMC-HVDC系统仿真模型,分别对有功、无功功率的阶跃和反转进行了仿真分析,结果验证了所设基本控制策略的正确性。

最后,为提高MMC-HVDC系统受干扰能力,本文对换流站级控制策略进行了改进,将功率外环控制由开环改进成闭环,同时在功率外环控制的基础上添加交流侧故障控制,在MATLAB/Simulink仿真平台上,搭建了两端有源MMC-HVDC系统仿真分析模型,对采用改进控制策略前后的小扰动工况以及暂态工况运行特性进行了对比分析,结果验证了改进控制策略的有效性。

基于MMC的柔性直流输电换流阀试验系统设计

基于MMC的柔性直流输电换流阀试验系统设计

行 模 拟 ,以 期 验 证 换 流 阀 设 计 是 否 符 合 要 求 。首先 介绍了基于M M C 的柔性直流输电换流阀试验系 统的主回路和控制系统设计,并针对某集团研制 的换流阀组件进行了测试,验证了试验系统的正 确性和实用性。
2 MMC换流阀及其运行特性 2.1 M M C 换流阀基本结构
图 la为 M M C 型直流输电拓扑,换流器的各 桥 臂 由 图 lb 所示的子模块串联构成。
此处设计了一种基于M M C 的柔性直流输电 换 流 阀 试 验 系 统 。该 试 验 系 统 采 用 等 效 试 验 方 法 , 对换流阀在稳态和暂态运行工况下的主要应力进
25
第 55卷第6 期 2021年 6 月
电力电子技术 Power Electronics
Vol.55, No.6 June 2021
式 中 :/2f为 2 次 谐 波 环 流 幅 值 ; 为 其 初 相 角 。
3 试验应力
换 流 阀 承 受 过 应 力 是 其 失 效 的 根 本 原 因 ,分 析换流阀不同工况下的应力是研宄换流阀等效试 验方法及开发试验电路的基础。换流阀失效主要 发生在运行工况下,因此此处仅关注换流阀在稳 态和暂态运行工况下的应力。 3.1 稳态应力
LIU Jing-yi1,2, D O N G Chao-yang1,2, JI Pan-pan1,2, Y A N G Feng-yuan1,2
( l . X J Electric L td., X uchang 461000, China) Abstract:The converter valve is core module to complete power conversion in the flexible high-voltage DC transmis­ sion project.Its operational reliability is directly related to the stability of the entire direct current (DC) transmission sys­ tem. Therefore, the converter valve needs to be strictly type tested.The operation test is an important part of the type test,which mainly detects the resistance of the converter valve to current, voltage and temperature stress.According to the actual engineering operating conditions of the modular multi-level converter (MMC) voltage source converter valve, an equivalent test method is adopted to design a MMC-based flexible DC transmission converter valve test system,which can realize the steady-state operating condition of the converter valve simulate with transient working conditions, and then realize the inspection of the on,off and related current characteristics of the converter valve.The main circuit de­ sign and control system design of the MMC-based flexible DC transmission converter valve test system are introduced in detail, and the actual engineering converter valve is assembly taken as the test object to verify the correctness and practicability of the designed MMC-based flexible DC transmission converter valve test system. Keywords : flexible direct current transmission ;converter valve;modular multi-level converter Foundation Project :Supported by Major Science and Technology Projects in Henan Province( No. 191110210900)

C_MMC直流故障穿越机理及改进拓扑方案_薛英林

C_MMC直流故障穿越机理及改进拓扑方案_薛英林
第 33 卷 第 21 期 2013 年 7 月 25 日 文章编号:0258-8013 (2013) 21-0063-08

国 电 机 工 程 学 Proceedings of the CSEE 中图分类号:TM 72

Vol.33 No.21 Jul.25, 2013 ©2013 Chin.Soc.for Elec.Eng. 学科分类号:470·40
Ldc
(c) B 型闭锁模式,当 iSM<0
图2 Fig. 2
箝位子模块的稳态和闭锁模式
C Nc f 2L 2R
Normal and block operation modes of the CDSM
基金项目:国家 863 高技术基金项目(2012AA050205)。 The National High Technology Research and Development of China 863 Program (2012AA050205).
值。PSCAD/EMTDC 仿真结果验证了所提出的改进拓扑结 构方案的可行性和有效性。 关键词:模块化多电平换流器;箝位双子模块;阻尼电阻; 直流故障;故障穿越
63文献标志码:A来自C-MMC 直流故障穿越机理及改进拓扑方案
薛英林,徐政
(浙江大学电气工程学院,浙江省 杭州市 310027)
DC Fault Ride-through Mechanism and Improved Topology Scheme of C-MMC
XUE Yinglin, XU Zheng
U c
Uc D0

D22 C D21
D32
(b) A 型闭锁模式,当 iSM>0
第 21 期

模块化多电平换流器的均压优化控制仿真研究

模块化多电平换流器的均压优化控制仿真研究

模块化多电平换流器的均压优化控制仿真研究摘要本文主要对模块化多电平换流器(modular multilevel converter, MMC) 中的均压优化控制进行的研究,整个模块化多电平换流器仿真需要将输入的三相交流电转化为直流电,并且各个子模块电压差值需要尽量的小,从而保证整个系统能够稳定运行,对载波移相脉宽调制策略进行推导与改进,使得模块化多电平换流器能够在更短的时间内稳定,且子模块电容电压在合理的控制中保持均衡。

仿真实验结果证明了所提方法的正确性和可行性。

关键词模块化多电平换流器;子模块均压;载波移相脉宽调制Simulation Study on Optimal Voltage Equalization Control ofModular Multi-level ConverterZ5号宋体oufucheng Daipanyang(Aba Teachers University,Si chuan Wenchuan,China )Abstract This paper mainly studies the voltage optimizationcontrol in Modular Multilevel Converter. The whole modular multi-level converter simulation needs to convert the input three-phase AC into DC, and the voltage difference between each sub-module needs to be assmall as possible. Thus, the whole system can run stably, and the strategy of carrier phase-shifted PWM is deduced and improved, so that the modular multi-level converter can be stable in a shorter time, andthe capacitance voltage of the sub-modules can be balanced in a reasonable control.The simulation experiment results prove the correctness and feasibility of the proposed method.keywords MMC; sub-module voltage equalizer; carrier phase shift PWM引言随着西电东送工程的实施,电能的损耗也随着高压长距离输电不断增大,从而使得直流输电在电力传输中脱颖而出。

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器1柔直输电的基本原理柔性直流输电系统作为直流输电的一种新技术,也同样由换流站和直流输电线路构成。

柔性直流输电功率可双向流动,两个换流站中的任一个既可以作整流站也可以作逆变站运行,其中处在送电端的工作在整流方式,处在受电端的工作在逆变方式。

为简明起见,以典型的三相两电平六脉动型换流器的柔性直流输电换流站为例,介绍柔性直流输电的基本原理。

系统结构如图2-1所示。

由图虚线划分可知,两端柔性直流输电系统可以看作为两个独立的静止无功发生器(STATCOM)通过直流线路联结的合成系统;对于交流系统而言,交流系统向柔性直流换流站提供连接节点,即换流站与交流系统是并联的。

由以上柔性直流输电系统拓扑结构特点分析可知,柔性直流输电系统具有STATCOM进行动态无功功率交换的功能,除此之外,由于两个电压源换流器(VSC)的直流侧互联,它们之间又具备了有功功率交换的能力,可以在互联系统间进行有功潮流的传输。

图2-1两端VSC-HVDC结构示意图(1-两端交流系统;2-联结变;3-交流滤波器;4-相电抗/阀电抗器;5-换流阀;6-直流电容;7-直流电缆/架空线路。

背靠背式两端VSC-HVDC不包含7)柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器/阀电抗器、联结变压器、交流滤波器、控制保护以及辅助系统(水冷系统、站用电系统)等。

电压源型换流器包括换流电路和直流电容器,实现交流电和直流电转换的换流电路由一个或多个换流桥并联(或串联)组成,目前在柔性直流工程中还未出现多个换流桥组成的组合式换流器,但组合式换流器可以达到降低开关频率,减少损耗的目的,在某些情况下也可能被采用。

电压源型换流桥可以采用多种拓扑结构,工程中常用的有三相两电平桥式结构,二极管钳位式三电平桥式结构、模块化多电平结构,还有工程中未曾应用,但研究者比较关注的二极管钳位多电平结构和飞跨电容多电平结构。

换流器中的每个桥有三个相单元,一个相单元有上下两个桥臂,每个桥臂或由一重阀(两电平)构成,或由两重阀(三电平)构成,或由多重阀(多电平)构成。

模块化多电平换流器(MMC)调制方法综述

模块化多电平换流器(MMC)调制方法综述

•分布式电源及并网技术!电器与能效管理技术(2017%). 8)模块化多电平换流器(MMC )调制方法综述王蕊1,王斌2,万杰星1(!东南大学电气工程学院,江苏南京210096;2.中航宝胜海洋工程电缆有限公司,江苏南京225100)摘要:介绍了模块化多电平换流器(MMC )的拓扑和工作原理,分类别详叙了各种调制方法。

总结了不同调制技术的优缺点和应用场合,为MMC 的工程应用提供了借鉴意义。

提出了 MMC 调制技术的改进方向,对进一步的研究探索有积极意义。

关键词:模块化多电平换流器;调制技术;载波移相调制法;载波层叠调制;最近电平逼近调制;多电平SVPWM ;特定次谐波消除脉宽调制中图分类号:TM 46文献标志码# A文章编号# 2095-8188(2017)08-0043-05DOI : 10.16628/j . cnki . 2095-8188. 2017. 08. 011王 蕊(1993—),女,硕士研究生,研 究方向为电力电子 技术在电力系统中 的应用。

Review on Modulation Metliods for Modular Multi-level ConvertersWANG Rui 1, WANG Bin 2, WAN Jiexing 1(1. School of Electrical Engineering ,Southeast University ,Nanjing 210096,China ;2. China Ocean Engineering Baoshen Cable Co .,Ltd .,Nanjing 225100,China )Abstract : The topology and working principle ofmodular multi-level converter ( MMC ) were introduced andthe different modulation methods were introduced in detail . Next,it summarized the advantages and disadvantages of different modulation techniques and applications,providing a reference for the MMC ) s engineering application .At last , this paper put forward the improvement direction of MMC modulation technology ,significance for the further research and exploration .Key words : modular multi-level converter ( MMC ); modulation technique ; carrier phase shifted SPWM ( CPS -SPWM ); phase disposition PWM (PDPWM ); nearest level modulation (NLM ); multi-level space vector PWM ( SVPWM ); selective harmonic elimination PWM ( SHEPWM )步的研究成果,展现出良好的应用前景[1]。

《2024年模块组合多电平变换器(MMC)研究》范文

《2024年模块组合多电平变换器(MMC)研究》范文

《模块组合多电平变换器(MMC)研究》篇一一、引言随着电力电子技术的不断发展,高压大功率的电力变换系统已成为电力系统的重要一环。

其中,模块组合多电平变换器(MMC)作为一种新型的变换器拓扑结构,以其优越的性能和良好的灵活性,得到了广泛的关注和应用。

本文将对MMC的基本原理、特点及其在电力系统中的应用进行研究。

二、模块组合多电平变换器(MMC)的基本原理和特点MMC是一种基于模块化设计的多电平变换器,其基本原理是将多个子模块通过串联的方式组成一个整体,形成一个具有多电平输出的变换器。

每个子模块包含一个IGBT桥臂、一个电容和相关的保护电路等。

当需要调节输出电压时,通过控制各个子模块的通断状态,即可实现电压的调节和电能的质量控制。

MMC具有以下优点:1. 高电压输出:由于采用了多电平技术,MMC能够输出更高的电压,适用于高压大功率的场合。

2. 谐波性能好:多电平技术能够降低输出电压的谐波分量,减小对电网的污染。

3. 模块化设计:MMC采用模块化设计,方便了维护和升级。

4. 灵活性高:通过调整子模块的通断状态,可以灵活地控制输出电压和电能质量。

三、MMC在电力系统中的应用MMC在电力系统中的应用非常广泛,主要表现在以下几个方面:1. 新能源并网:MMC可以用于风电、光伏等新能源的并网系统中,实现电能的转换和传输。

2. 柔性直流输电:MMC可以用于构建柔性直流输电系统,实现电能的远距离、大容量传输。

3. 电机驱动:MMC可以用于电机驱动系统中,实现电机的高效、可靠运行。

4. 电力质量改善:通过MMC的多电平技术和灵活的控制策略,可以有效地改善电力系统的电能质量,减少谐波对电网的污染。

四、MMC的研究进展和挑战近年来,MMC的研究已经取得了重要的进展。

研究人员对MMC的控制策略、保护机制、故障诊断等方面进行了深入的研究,提出了许多新的思路和方法。

同时,随着新材料、新技术的不断发展,MMC的性能和效率也得到了进一步的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mmc 基本单元的拓扑结构
MMC(Multimedia Card)基本单元的拓扑结构主要包括以下
几个部分:
1. 存储单元:MMC基本单元的核心部分是存储单元,用于存
储数据,包括照片、音频、视频等多媒体文件。

存储单元的结构类似于闪存,通过堆叠多个闪存芯片来实现较大的存储容量。

2. 控制器:MMC基本单元还包括一个控制器,用于控制存储
单元的读写操作。

控制器负责管理MMC的文件系统、数据传输、错误检测与修复等功能,确保数据的可靠存储和读取。

3. 接口:MMC基本单元的拓扑结构还包括与主机设备(如相机、手机等)进行连接的接口。

常见的MMC接口有
MMC/SD接口、MMC/SDIO接口等,通过这些接口,MMC
可以与主机设备进行数据传输和交互。

4. 电源管理单元:MMC基本单元还包括一个电源管理单元,
用于调节和管理MMC的电源供应。

电源管理单元可以根据实际的工作负载和需求,灵活地控制MMC的功耗,以延长电池寿命或提升性能。

总的来说,MMC基本单元的拓扑结构由存储单元、控制器、
接口和电源管理单元组成,这些部分相互协作,实现数据存储、传输和管理的功能。

相关文档
最新文档