2007-2018年全国卷高考数学大数据

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2007-2018新课标高考数学导数专题全收录

2007-2018新课标高考数学导数专题全收录

2007——2018新课标理科数学----导数200721.(本小题满分12分)设函数2()ln()f x x a x =++,(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性;200821、(本小题满分12分)设函数1()(,)f x ax a b Z x b =+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =。

求()y f x =的解析式;200921.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式:2010(21)(本小题满分12分)已知函数32()(3)x f x x x ax b e -=+++,如3a b ==-,求()f x 的单调区间;2011(21)(本小题满分12分)设函数f(x) =.(Ⅰ)若a=0,求f(x)的单调区间;2012(21)(本小题满分12分)已知函数,曲线在点处的切线方程为。

(Ⅰ)求、的值;2013121、(本小题满分12分)已知函数满足,求的解析式及单调区间;21x e x ax ---ln ()1a x b f x x x=++()y f x =(1,(1))f 230x y +-=a b )(x f 2121)0()1(')(x x f e f x f x +-=-)(x f20132(21)(本小题满分12分)已知函数f(x)=e x -ln(x+m),(Ι)设x=0是f(x)的极值点,求m ,并讨论f(x)的单调性;201421.已知函数()f x =2x x e e x ---,(Ⅰ)讨论()f x 的单调性;21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;20151 (21)(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=- ,(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;21. (本小题满分12分)设函数()2ln x f x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数;20152(21)(本小题满分12分)设函数2()mx f x ex mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;21.已知函数f (x )=ln x +a (1- x ),讨论f (x )的单调性;20161(21)(本小题满分12分)已知函数 有两个零点.(I)求a 的取值范围;(21)(本小题满分12分)已知函数 .(I)讨论 的单调性;20162(21)(本小题满分12分)(I)讨论函数x x 2f (x)x 2-=+e 的单调性,并证明当x >0时,(2)20;x x e x -++>(20)(本小题满分12分)已知函数.(I )当时,求曲线在处的切线方程;20163(21)(本小题满分12分)设函数()()()cos21cos +1f x x x αα=+-,其中α>0,记 ( ) 的最大值为A .(Ⅰ)求f '(x );(Ⅱ)求A ;(21)(本小题满分12分)设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性;(II )证明当(1,)x ∈+∞时,11ln x x x-<<; 20171 21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x .(1)讨论()f x 的单调性;21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;2017221.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;21.(12分)设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;2017321.(12分)已知函数()f x =x ﹣1﹣a ln x .(1)若()0f x ≥ ,求a 的值;()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性;2018121.(12分)已知函数.(1)讨论的单调性; 21.(12分)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;2018221.(12分)已知函数.(1)若,证明:当时,;21.(12分)已知函数. (1)若,求的单调区间;2018321.(12分)已知函数.(1)若,证明:当时,;当时,;21.(12分)已知函数. (1)求曲线在点处的切线方程;1()ln f x x a x x=-+()f x 2()e x f x ax =-1a =0x ≥()1f x ≥()()32113f x x a x x =-++3a =()f x ()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >21()ex ax x f x +-=()y f x =(0,1)-。

2007-2018新课标高考真题汇编之数列(理科)(K12教育文档)

2007-2018新课标高考真题汇编之数列(理科)(K12教育文档)

(完整word)2007-2018新课标高考真题汇编之数列(理科)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2007-2018新课标高考真题汇编之数列(理科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2007-2018新课标高考真题汇编之数列(理科)(word版可编辑修改)的全部内容。

1.(2007年新课标第4题)已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A.23-B.13-C.13D.232.(2007年新课标第7)已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是( )A.0 B.1 C.2 D.43.(2008年新课标第4题)设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A 。

2B. 4C 。

152D.1724.(2008年新课标第17题)已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求数列{}n a 的通项n a ;(2)求数列{}n a 的前n 项和n S 的最大值.5.(2009年新课标第7题)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列,若1a =1,则4s =( ) (A )7(B )8(C )15(D )166.(2009年新课标第16题)等差数列{}n a 前n 项和为n S .已知211210,38m m m m a a a S -+-+-==,则m=_______.7.(2010年新课标第17题)设数列{}n a 满足21112,32n n n a a a -+=-=. (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列的前n 项和n S .8.(2011年新课标第17题)等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.9.(2012年新课标第5题)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -710.(2012年新课标第16题)数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为____________.11.(2013年新课标1第7题)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( ) A.3B 。

2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。

历年高考全国卷数学考点分析2018

历年高考全国卷数学考点分析2018

5.线性规划 (1题) 6. 程序框图 (1题) 7.平面向量 (1题) 8.三角函数 (0-2题) 9.解三角形 (0-1题) 10.数列易 、中(0-1 题),难 (1题) 11.立体几 何易、中 (1-2 题),难 (1题) 12.解析几 何易、中 (1题), 难(1题)
二元一次不等式(组)表示的平面区 13.线性规划(目标函数最 域,线性规划有关概念 小值)
17.一边角关系条件求角 (边化角) (Ⅱ)知三条件求边长
18.频数分布表(Ⅰ)分段函数 表达式 (Ⅱ)频率估计概率,分布列 、期望、方差、比较
4.空间向量 空间几何体表面积与体积,线线、线 18.四棱锥(证建系)(Ⅰ)证 19. 直三棱柱(证建系)(Ⅰ) 与立体几何 面、面面间的位置关系、判定、性 明线线垂直 线线垂直证明 质,空间直角坐标系、空间向量及运 (Ⅰ) 算,空间距离、角的计算 (Ⅱ)二面角余弦值 (Ⅱ)二面角大小
6.函数与导 导数在研究函数(单调性、极值、最 21.对数式、反比例(含2参 数综合应用 值)中的应用,函数单调性、最值、 数)(Ⅰ)由切线方程求参数 奇偶性、周期性,指数函数、对数函 (Ⅱ)不等式恒成立求参数范 数、幂函数、二次函数,函数图象平 围 (构造、分类、分解、 移、对称变换, 分离、洛必达法则)
5.圆锥曲线
20.直线,向量关系(Ⅰ求)动 点轨迹方程(抛物线) 直线、圆、椭圆、双曲线、抛物线方 (Ⅱ) 抛物线的切线(可用导 程、几何性质,斜率公式,两点间距 数),基本不等式求点到线 离公式,点到直线距离公式,两平行 距离最小值 线间距离公式,弦长公式,中点线公 式
20.抛物线、圆(Ⅰ)基本量计 算 (Ⅱ)三点共线、距离之比 (导数几何意义)
14.四边形区域、线性目标 函数范围

近六年(2013-2018)新课标I卷全国高考文理科数学考点分布统计表

近六年(2013-2018)新课标I卷全国高考文理科数学考点分布统计表

2013-2018年新课标I 卷高考理科数学考点分布统计表题次2013 2014 2015 2016 2017 20181 集合运算:不等式、集合间关系一元二次不等式、集合运算:交集复数运算:分式、除法、模求不等式集合的交集集合的运算(交集、并集)复数的运算、模2 复数运算:分式、模复数平方、除法、乘法运算三角函数(诱导公式、正弦和角公式逆用)复数相等、模的运算传统文化中的概率问题(几何概率)不等与集合、补集3 统计:分层抽样奇函数、偶函数及其绝对值乘积的奇偶特称命题的否定等差数列及其运算复数的概念及运算与简易逻辑扇形统计图4 圆锥曲线:双曲线、离心率双曲线焦点到渐近线的距离独立重复试验;互斥事件和概率公式等车、几何概型等差数列结合公式运算数列、等差数列5 程序框图:运算、范围概率:二项分布向量数量积;双曲线的标准方程双曲线的性质函数的奇偶性和单调性函数、切线方程6 立体几何:球体嵌入正方体体积计算三视图还原立体图实际应用题、圆锥体积三视图及球的表面积与体积二项式定理求系数向量的运算7 数列:等差数列程序框图平面向量的几何运算函数图像的识别、利用了导数空间几何体求表面积三视图、最短路径问题8 三视图长方体圆柱组合,体积计算导数应用:求切线由三角函数图像求单调递减区间指数函数与对数函数的性质程序框图抛线线、点斜式、向量9 二项式:系数、求参数的值线性规划求最值程序框图程序框图与算法案例三角函数平移问题分段函数与零点、求参数范围10 圆锥曲线:椭圆、韦达定理抛物线焦点三角形二项式定理展开式的系数抛物线的性质抛物线与过焦点弦长问题概率、几何概型11 函数性质:数形结合异面直线所成的角三视图、球、圆柱的表面积平面的截面问题,面面平行的性质定理,异面直线所成的角指数与函数结合双曲线、求弦长12 数列:递推关系函数极值导数的综合应用、零点、取值范围三角函数的性质(零点、单调)数列新颖规律立体几何,求面积最值13 向量运算:求参数二项展开式偶函数,求参数,向量的数量积及坐标运算向量模长运算线性规划14 数列:与三角函数最值椭圆的顶点、圆的标准方程二项式定理指定项系数线性规划求最优解数列,求通项公式15 三角函数:辅助角、最值函数奇偶性单调性线性规划、斜率等比数列及其应用双曲线与点到线的距离古典概率16 函数性质:对称性与最值直线与圆正余弦定理;数形结合思想线性规划的应用平面图形折叠后最大体积三角函数与最值17 解三角形:正弦定理、余弦定理数列通项、放缩求和数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法正弦定理、余弦定理及三角形面积公式三角函数与解三角形三角函数,余弦定理、求边长18 立体几何:线线垂直证明线面角立体几何:线面平行、三棱锥体积空间垂直判定与性质;异面直线所成角的计算;垂直问题的证明及空间向量的应用证明面面垂直关系,求二面角的余弦值立体几何,面面垂直的证明,二面角19 统计与概率:独立重复试验概率、分布列线性回归方程非线性拟合;线性回归方程求法;利用回归方程进行预报预测;概率与统计、随机变量的分布列服从正态分布模型及数学期望椭圆、求直线方程、斜率的关系20 解析几何:轨迹方程(定义法)、韦达定理解析几何:椭圆抛物线的切线;直线与抛物线位置关系;探索新问题;圆锥曲线(圆、椭圆)综合问题直线与圆锥曲线(椭圆)的位置关系,弦长公式,韦达定理,过定点问题。

2007-2018全国卷全国卷导数合集(试题)

2007-2018全国卷全国卷导数合集(试题)

(一) 导数的极最值问题1.(2015新课标Ⅱ)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围.2.(2014新课标Ⅰ)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01a f x a <-,求a 的取值范围.3.(2013新课标Ⅰ)已知函数,曲线()y f x =在点处切线方程为.(Ⅰ)求的值;(Ⅱ)讨论的单调性,并求的极大值.2()()4x f x e ax b x x =+--(0,(0))f 44y x =+,a b ()f x ()f x4.(2013新课标Ⅱ)已知函数.(Ⅰ)求的极小值和极大值; (Ⅱ)当曲线()y f x =的切线的斜率为负数时,求在轴上截距的取值范围.5.(2015新课标2)已知函数()ln (1)f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.(二) 导数的恒成立问题 1.(2018全国卷Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; 2()x f x x e-=()f x l l x(2)若0x =是()f x 的极大值点,求a .2. (2012新课标)设函数()2x f x e ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.3.(2011新课标)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1x f x x >-.4. (2010新课标)设函数2()(1)x f x x e ax =--. (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.5. (2017新课标Ⅱ)设函数2()(1)x f x x e =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax +≤,求a 的取值范围.6. (2016年全国II 卷)已知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.(三) 导数的零点问题1.(2018全国卷Ⅱ)已知函数2()e =-x f x ax .(1)若1=a ,证明:当0≥x 时,()1≥f x ()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f ()1,x ∈+∞()0f x >a(2)若()f x 在(0,)+∞只有一个零点,求a2.(2017新课标Ⅰ)已知函数2()(2)x x f x aea e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.3.(2016年全国Ⅰ) 已知函数2()(2)(1)x f x x e a x =-+-有两个零点. (I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<.4.(2014新课标Ⅱ)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点5. (2018全国卷Ⅱ)已知函数321()(1)3=-++f x x a x x . (1)若3=a ,求()f x 的单调区间;(2)证明:()f x 只有一个零点.6. (2015新课标1)设函数()2e ln x f x a x =-.(Ⅰ)讨论()f x 的导函数()f x '零点的个数;(Ⅱ)证明:当0a >时()22ln f x a a a+≥.(四) 导数的不等式问题1.(2017新课标Ⅲ)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值.2.(2016年全国Ⅲ) 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>, 记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.3.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x .(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0≥f x .4.(2018全国卷Ⅲ)已知函数21()ex ax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.5.(2017新课标Ⅲ)已知函数2()ln (21)f x x ax a x =+++.(1)讨论()f x 的单调性;(2)当0a <时,证明3()24f x a--≤.6.(2016年全国III 卷)设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.(五) 导数的隐零点问题1.(2017新课标Ⅱ)已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.2.(2016年全国Ⅱ)(I)讨论函数2()e 2x x f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.(六) 导数的双变量问题1.(2018全国卷Ⅰ)已知函数1()ln f x x a x x =-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x。

2018年高考数学试题汇编(精校Word版)全国各地试卷高考真题汇总含答案

2018年高考数学试题汇编(精校Word版)全国各地试卷高考真题汇总含答案

2018年全国统一考试高考数学试题汇编(精校版Word版含答案)2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版答案-------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版------------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版答案------ 2018年全国卷文科数学高考真题(全国卷II)Word版--------------- 2018年全国卷文科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷理科数学高考真题(全国卷II)Word版--------------- 2018年全国卷理科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版答案------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版答案-------- 2018年文科数学高考真题(北京卷)Word版含答案---------------- 2018年理科数学高考真题(北京卷)Word版含答案----------------- 2018年文科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(上海卷)Word版含答案---------------- 2018年理科数学高考真题(浙江卷)Word版含答案----------------绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B = ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC -B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值范围是A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知s i n s i n 4s i n s b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档