椭圆的几何性质
数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。
椭圆的几何性质

2.2.2椭圆的简单几何性质第1课时椭圆的简单几何性质1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确椭圆标准方程中a、b以及c、e的几何意义,a、b、c、e之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.,椭圆的简单几何性质1.判断(正确的打“√”,错误的打“×”)(1)椭圆的顶点是椭圆与它的对称轴的交点.()(2)椭圆上的点到焦点的距离的最大值为a+c.()(3)椭圆的离心率e越接近于1,椭圆越圆.()(4)椭圆x2a2+y2b2=1(a>b>0)的长轴长等于a.()答案:(1)√(2)√(3)×(4)×2.椭圆6x2+y2=6的长轴端点坐标为()A.(-1,0),(1,0)B.(-6,0),(6,0) C.(-6,0)(6,0) D.(0,6),(0,-6) 答案:D3.椭圆x2+4y2=1的离心率为()A.32B.34C .22 D .23答案:A4.设P (m ,n )是椭圆x 225+y 29=1上任意一点,则m 的取值范围是________.答案:[-5,5]椭圆的简单几何性质求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率. 【解】 将椭圆方程变形为x 29+y 24=1,所以a =3,b =2,所以c = a 2-b 2=9-4= 5.所以椭圆的长轴长和焦距分别为2a =6,2c =25,焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.用标准方程研究几何性质的步骤(1)将椭圆方程化为标准形式. (2)确定焦点位置. (3)求出a ,b ,c .(4)写出椭圆的几何性质.[注意] 长轴长、短轴长、焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.1.对椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)和椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的几何性质的表述正确的是( )A .范围相同B .顶点坐标相同C .焦点坐标相同D .离心率相同解析:选D.椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)范围是-a ≤x ≤a ,-b ≤y ≤b ,顶点坐标是(-a ,0),(a ,0),(0,-b ),(0,b ),焦点坐标是(-c ,0),(c ,0),离心率e =c a ;椭圆C 2:y 2a 2+x 2b2=1(a >b >0)范围是-a ≤y ≤a ,-b ≤x ≤b ,顶点坐标是(-b ,0),(b ,0),(0,-a ),(0,a ),焦点坐标是(0,-c ),(0,c ),离心率e =ca,只有离心率相同.2.设椭圆方程mx 2+4y 2=4m (m >0)的离心率为12,试求椭圆的长轴长和短轴长、焦点坐标及顶点坐标.解:(1)当0<m <4时,长轴长和短轴长分别是4,23,焦点坐标为F 1(-1,0),F 2(1,0),顶点坐标为A 1(-2,0),A 2(2,0),B 1(0,-3),B 2(0,3).(2)当m >4时,长轴长和短轴长分别为833,4,焦点坐标为F 1⎝⎛⎭⎫0,-233,F 2⎝⎛⎭⎫0,233,顶点坐标为A 1⎝⎛⎭⎫0,-433,A 2⎝⎛⎭⎫0,433,B 1(-2,0),B 2(2,0).利用几何性质求椭圆的标准方程求适合下列条件的椭圆的标准方程. (1)短轴长25,离心率e =23;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.【解】 (1)由2b =25,e =c a =23,得b 2=5,a 2-b 2a 2=49,a 2=9.当焦点在x 轴上时,所求椭圆的标准方程为x 29+y 25=1;当焦点在y 轴上时,所求椭圆的标准方程为y 29+x 25=1.综上,所求椭圆的标准方程为x 29+y 25=1或y 29+x 25=1.(2)依题意可设椭圆方程为 x 2a 2+y 2b 2=1(a >b >0). 如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b ,所以c =b =3,所以a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.求椭圆标准方程的常用方法(1)利用椭圆的几何性质求椭圆的标准方程通常用待定系数法.(2)根据已知条件“选标准,定参数”.其一般步骤为:①确定焦点所在的坐标轴;②求出a 2,b 2的值;③写出标准方程.求适合下列条件的椭圆的标准方程.(1)长轴长与短轴长的和为18,焦距为6; (2)过点(3,0),离心率e =63. 解:(1)设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c ,由题意可知⎩⎪⎨⎪⎧2a +2b =18,2c =6,a 2=b 2+c 2,解得a =5,b =4.因为不确定焦点在哪个坐标轴上,所以所求椭圆的标准方程为x 225+y 216=1或x 216+y 225=1.(2)当焦点在x 轴上时,由题意知a =3, 又因为e =63,所以c =6,所以b 2=a 2-c 2=3. 所以椭圆的方程为x 29+y 23=1.当焦点在y 轴上时,由题意知b =3, 又因为e =63,所以a 2-b 2a 2=e 2=23.即a 2-9a 2=23.所以a 2=27.所以椭圆方程为y 227+x 29=1.求椭圆的离心率(2016·高考全国卷乙)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34【解析】 法一:不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bc b 2+c 2=14×2b ,解得b 2=3c 2,又b 2=a 2-c 2, 所以c 2a 2=14,即e 2=14,所以e =12或e =-12(舍去).法二:不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bc b 2+c 2=14×2b ,所以bc a =14×2b ,所以e =c a =12.【答案】 B求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.1.(2017·青岛高二检测)A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为正三角形,且AF 1的中点B 恰好在椭圆上,则此椭圆的离心率为________.解析:如图,连接BF 2.因为△AF 1F 2为正三角形,且B 为线段AF 1的中点. 所以F 2B ⊥BF 1.又因为∠BF 2F 1=30°,|F 1F 2|=2c , 所以|BF 1|=c ,|BF 2|=3c , 由椭圆定义得|BF 1|+|BF 2|=2a , 即c +3c =2a , 所以ca=3-1.所以椭圆的离心率e =3-1. 答案:3-12.(2017·日照高二检测)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为________.解析:由PF 1⊥PF 2,知△F 1PF 2是直角三角形, 所以|OP |=c ≥b ,即c 2≥a 2-c 2,所以a ≤ 2c , 因为e =ca ,0<e <1,所以22≤e <1. 答案:⎣⎡⎭⎫22,11.椭圆方程x 2a 2+y 2b2=1(a >b >0)中a ,b ,c 的几何意义在椭圆方程x 2a 2+y 2b 2=1(a >b >0)中,a ,b ,c 的几何意义如图所示,即a ,b ,c 正好构成了一个以对称中心、一个焦点、一个短轴顶点为顶点的直角三角形.2.椭圆上到中心距离最远和最近的点设点O 为坐标原点,点P (x ,y )为椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,则|PO |=x 2+y 2=x 2+b 2a 2(a 2-x 2)=c 2x 2+a 2b 2a.因为-a ≤x ≤a ,所以当x =0时,|PO |有最小值b ,这时点P 在短轴的端点B 1或B 2处;当x =±a 时,|PO |有最大值a ,这时点P 在长轴的端点A 1或A 2处.3.椭圆离心率的意义1.椭圆25x 2+9y 2=1的范围为( ) A .|x |≤5,|y |≤3 B .|x |≤15,|y |≤13C .|x |≤3,|y |≤5D .|x |≤13,|y |≤15解析:选B.椭圆方程可化为x 2125+y 219=1,所以a =13,b =15,又焦点在y 轴上, 所以|x |≤15,|y |≤13.故选B.2.已知椭圆C 1:x 212+y 24=1,C 2:x 216+y 28=1,则( )A .C 1与C 2顶点相同B .C 1与C 2长轴长相同 C .C 1与C 2短轴长相同D .C 1与C 2焦距相等解析:选D.由两个椭圆的标准方程可知:C 1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C 2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.故选D.3.已知焦点在x 轴上的椭圆的离心率为12,它的长轴长等于圆x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A .x 24+y 23=1B .x 24+y 2=1C .x 216+y 24=1D .x 216+y 212=1解析:选A.圆的方程可化为(x -1)2+y 2=42,故2a =4,即a =2,又e =c a =12,所以c=1,b 2=a 2-c 2=3.又椭圆的焦点在x 轴上,所以其标准方程为x 24+y 23=1,故选A.4.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.解析:根据题意得2b =6,a +c =9或a -c =9(舍去). 又因为a 2-b 2=c 2, 所以a =5,c =4,故e =c a =45.答案:45, [A 基础达标]1.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8,6B .4,3C .2, 3D .4,2 3解析:选B.过椭圆焦点的最长弦为长轴,其长度为2a =4;最短弦为垂直于长轴的弦,因为c =1,将x =1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y =±32,所以最短弦的长为2×32=3.故选B.2.(2017·泉州高二检测)已知椭圆x 25+y 2k =1的离心率e =105,则实数k 的值为( )A .3B .3或253C . 5D .15或153解析:选B.当k >5时,e =c a =k -5k =105,k =253.当0<k <5时,e =c a =5-k 5=105,k =3.故选B.3.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( )A .x 2144+y 2128=1B .x 236+y 220=1C .x 232+y 236=1D .x 236+y 232=1解析:选D.因为椭圆的中心在原点,焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为长轴长为12,所以a =6.又椭圆的离心率为13,即c a =13,所以c =2,所以b 2=a 2-c 2=36-4=32,故椭圆的方程为x 236+y 232=1.4.已知焦点在x 轴上的椭圆:x 2a 2+y 2=1,过焦点作垂直于x 轴的直线交椭圆于A ,B两点,且|AB |=1,则该椭圆的离心率为( )A .32B .12C .154D .33解析:选A.椭圆的焦点坐标为(±a 2-1,0),不妨设A ⎝⎛⎭⎫a 2-1,12可得a 2-1a 2+14=1, 解得a =2,椭圆的离心率为e =a 2-1a =32.故选A.5.已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,若存在点P 为椭圆上一点,使得∠F 1PF 2=60°,则椭圆离心率e 的取值范围是( )A .⎣⎡⎭⎫22,1B .⎝⎛⎭⎫0,22 C .⎣⎡⎭⎫12,1D .⎣⎡⎭⎫12,22解析:选C.在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,得(2c )2=m 2+n 2-2mn cos 60°,配方得(m +n )2-3mn =4c 2,所以3mn =4a 2-4c 2,所以4a 2-4c 2=3mn ≤3·⎝⎛⎭⎫m +n 22=3a 2, 即a 2≤4c 2,故e 2=c 2a 2≥14,解得12≤e <1.故选C.6.已知椭圆的长轴长为20,短轴长为10,则椭圆上的点到椭圆中心距离的最大值与最小值之和为________.解析:椭圆的长半轴长为10,短半轴长为5,则椭圆上的点到椭圆中心距离的最小值为5,最大值为10,其和为15.答案:157.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________.解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又b =25,故m =20,得x 220+y 225=1.答案:x 220+y 225=18.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点.已知点P (a ,b ),△F 1PF 2为等腰三角形,则椭圆的离心率e =________.解析:设F 1(-c ,0),F 2(c ,0)(c >0),由题意得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c .把b 2=a 2-c 2代入,整理得2⎝⎛⎭⎫c a 2+c a-1=0,解得c a =-1(舍去)或c a =12.所以e =c a =12.答案:129.求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)短轴的一个端点与两焦点组成一个正三角形,且焦点到长轴上同侧顶点的距离为 3. 解:(1)由题意知,2c =8,c =4, 所以e =c a =4a =12,所以a =8,从而b 2=a 2-c 2=48,所以椭圆的标准方程是y 264+x 248=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.从而b 2=9,所以所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.10.已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.解:(1)由题意可得,c =1,a =2, 所以b = 3.所以所求椭圆E 的标准方程为x 24+y 23=1.(2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.① MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0), 由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.② 由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3.因为x 0≠2,所以t =14x 0-32.因为-2<x 0<2,所以-2<t <-1.所以实数t 的取值范围为(-2,-1).[B 能力提升]11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:选C.由题意得F (-1,0),设点P (x 0,y 0), 则y 20=3⎝⎛⎭⎫1-x 204(-2≤x 0≤2), OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=14(x 0+2)2+2, 当x 0=2时,OP →·FP →取得最大值为6.12.(2016·高考江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意得B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2,F (c ,0),则由∠BFC =90°得BF →·CF →=⎝⎛⎭⎫c +32a ,-b 2·⎝⎛⎭⎫c -32a ,-b 2=c 2-⎝⎛⎭⎫32a 2+⎝⎛⎭⎫-b 22=0⇒3c 2=2a 2⇒e =63. 答案:6313.(2017·武汉高二检测)如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程. 解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c .所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0).其中,c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ),解得x =3c 2,y =-b 2, 即B ⎝⎛⎭⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b 2=1, 得94c 2a 2+b 24b2=1, 即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝⎛⎭⎫3c 2,-3b 2=32 ⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3,从而有b 2=2.所以椭圆方程为x 23+y 22=1. 14.(选做题)已知椭圆x 2+y 2b 2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B ,过F ,B ,C 三点作⊙P ,且圆心在直线x +y =0上,求此椭圆的方程.解:设圆心P 的坐标为(m ,n ),因为圆P 过点F ,B ,C 三点,所以圆心P 既在FC 的垂直平分线上,也在BC 的垂直平分线上,FC 的垂直平分线方程为x =1-c 2.① 因为BC 的中点为⎝⎛⎭⎫12,b 2,k BC =-b ,所以BC 的垂直平分线方程为y -b 2=1b ⎝⎛⎭⎫x -12② 由①,②联立,得x =1-c 2,y =b 2-c 2b, 即m =1-c 2,n =b 2-c 2b. 因为P (m ,n )在直线x +y =0上,所以1-c 2+b 2-c 2b=0, 可得(1+b )(b -c )=0,因为1+b >0,所以b =c ,结合b 2=1-c 2得b 2=12, 所以椭圆的方程为x 2+y 212=1, 即x 2+2y 2=1.。
椭圆的简单几何性质 课件

由几何性质求椭圆的标准方程
求适合下列条件的椭圆的标准方程. (1)椭圆过(3,0),离心率 e= 36; (2)在 x 轴上的一个焦点与短轴两个端点的连线互 相垂直,且焦距为 8. 【思路探究】 (1)椭圆的焦点位置确定吗?(2)基 本量 a、b、c 分别为多少?怎样求出?
【自主解答】 (1)若焦点在 x 轴上,则 a=3,
椭圆的简单几何性质
椭圆的简单几何性质 【问题导思】 1.观察椭圆xa22+by22=1(a>b>0)的形状,
图 2-2-2 你能从图中看出它的范围吗?它具有怎样的对称 性?椭圆上哪些点比较特殊?
【提示】 椭圆上的点都在如题图中的矩形框内 部,椭圆关于坐标轴对称.椭圆与坐标轴的四个交点比 较特殊.
求 e 的值或范围问题就是寻求它们的方程或不等 式,具体如下:
(1)若已知 a,c 可直接代入 e=ac求得; (2)若已知 a,b,则使用 e= 1-ba22求解; (3)若已知 b,c,则求 a,再利用(1)或(2)求解; (4)若已知 a,b,c 的关系,可转化为关于离心率 e 的方程(不等式)求值(范围).
【自主解答】 (1)由题意得:b=c,∴e2=ac22=
b2+c2 c2=2cc22=12,∴e=
2 2.
(2)由题意得:2b=a+c,∴4b2=(a+c)2
又∵a2=b2+c2,∴4(a2-c2)=a2+2ac+c2
即 3a2-2ac-5c2=0,∴3-2·ac-5·(ac)2=0 即 5·(ac)2+2·ac-3=0,∴e=ac=35.
2.若用ac来描述椭圆的扁平情况会是怎样的? 【提示】 ac越小椭圆形状越圆;ac越大椭圆形状越 扁.1(注.定意义::0<椭ac圆<的1)焦距与长轴长的比__e_=__ac__,叫做
椭圆的简单几何性质 课件

所以|AF1|= 3c,
所以2a=|AF1|+|AF2|= 3 1 c,
所以 e 3 1.
(3)不妨设椭圆的焦点在x轴上,因为 AB⊥F1F2,且△ABF2为正三角形,所以 在Rt△AF1F2中,∠AF2F1=30°,令|AF1| =x,则|AF2|=2x, 所以 F1F2 AF2 2 AF1 2 3x 2c, 再由椭圆的定义,可知|AF1|+|AF2|=2a=3x, 所以 e 2c 3x 3 .
范围 x∈_[_-_a_,_a_]_,y∈_[_-_b_,_b_]_ x∈_[_-_b_,_b_]_,y∈_[_-_a_,_a_]_
顶点
轴长 焦点 焦距 离心率
_A_1_(_-_a_,_0_)_,_A_2(_a_,_0_)_,_ _B_1(_0_,_-_b_)_,_B_2_(_0_,_b_)_
_A_1_(_0_,_-_a_)_,_A_2(_0_,_a_)_,_ _B_1_(_-_b_,_0_)_,_B_2(_b_,_0_)_
25 9
所以m∈[-5,5].
答案:[-5,5]
知识点 椭圆的简单几何性质 1.椭圆的范围 椭圆的范围决定了椭圆的大小,它位于四条直线x=±a,y=±b围 成的矩形内,即-a≤x≤a,-b≤y≤b.椭圆的范围在解决与椭圆 有关的最值、参数的取值范围问题时,常常涉及.
2.椭圆方程
x2 a2
y2 b2
【解析】(1)由x2+9y2=36,得x2 y2 所1,以b2=4,b=2.因此短
36 4
轴的端点坐标为(0,2),(0,-2).
答案:(0,2),(0,-2)
(2)由 x2 y所2 以1,a2=9,b2=4,
49
所以c2=5,
中职数学教案:椭圆的几何性质

中等专业学校2023-2024-1教案教学内容2.对称性在椭圆的标准方程中,将y换成-y,方程不变. 这说明,当点P(x,y)在椭圆上时,其关于x轴的对称点 P1(x,-y)也在椭圆上. 因此,椭圆关于x轴对称.同理,将x换成-x,方程不变.这说明,当点P(x,y)在椭圆上时,其关于y轴的对称点P2(-x,y)也在椭圆上. 因此,椭圆关于y 轴对称.进一步,将x换成-x,同时y换成-y,方程不变. 这说明,当点P(x,y)在椭圆上时,其关于原点的对称点P3(-x,-y)也在椭圆上. 因此,椭圆关于原点对称.综上所述,椭圆既关于x轴对称,又关于y轴对称,也关于坐标原点对称. x轴与y轴都称为椭圆的对称轴,坐标原点称为椭圆的对称中心(简称中心).3.顶点在椭圆的标准方程22221x ya b+=中,令y =0,得x =±a,这说明椭圆与x轴有两个交点A1(-a,0)和A2(a,0). 同理,令x =0,得y =±b. 这说明椭圆与y轴有两个交点B1(0,-b)和B2(0,b),如图所示.椭圆与它的对称轴的四个交点A1、A2、B1、B2 ,称为椭圆的顶点. 线段A1A2和B1B2分别称为椭圆的长轴和短轴,它们的长分别为2a和2b. a和b分别是椭圆的长半轴长和短半轴长. 显然,椭圆的焦点在它的长轴上.值得注意的是,由于a、b、c满足关系式b²+c²=a²,故长度分别为a、b、c的三条线段构成一个直角三角形. 观察上图,可知故有|OB2|²+|OF2|²=|B2F2|².因此,RtΔF2OB2(或F1OB2)直观地反映了椭圆的标准方程中a、b、c三者之间的关系.。
椭圆的几何性质图表

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
椭圆的几何性质
是焦点,则∠F1PF2的最大值是
.
x2 y 2 (6)已知椭圆 2 2 1(a b 0), F1 , F2分别是左右 a b 焦点,P是椭圆上非长轴端点的任一点,F1PF2 , 试用 表示 F1PF2的面积。
唐洋中学高二数学组
• 已知M(x0,y0)是椭圆x2/a2+y2/b2=1 上一 点,求M到椭圆两焦点F1(-c,0),F2(c,0)的距 离. • 焦半径公式: • MF1=a+ex0 • MF2=a-ex0
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 长半轴长为a,短 半轴长为b. a>b
c e a
c e a
a2=b2+c2
a2=b2+c2
例 2 已知椭圆方程为16x2+25y2=400,
它的长轴长是:10 焦距是: 。短轴长是: 8
3 离心率等于: 5
椭圆的几何性质
知识回顾 1.椭圆的定义:
平面内到两定点F1、F2的距离之和为常数2a(大 于|F1F2 |=2c>0)的动点的轨迹叫做椭圆。
| MF1 | | MF2 | 2a(2a | F1F2 | 2c)
2.椭圆的标准方程是:
当焦点在X轴上时 当焦点在Y轴上时
x2 y2 2 1(a b 0) 2 a b
的左 3 焦点为F,离心率为 , 过点F且与x轴垂直的直线被椭圆 3 截得的 4 3 线段长为 3 . (1)求椭圆的方程. (2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的 直线与 椭圆交于C,D两点.若 AC DB AD CB =8,求k的值.
c 3 【解析】(1)设F(-c,0),由 , 知a 3c. 过点F且 a 3 2 与 x轴 -c y2 1, 垂直的直线为x=-c,代入椭圆方程有 a 2 b 2 解得 6b 2 6b 4 3 y , 于是 , b 2. 2-c2=b2, 解得 又 a 3 3 3
椭圆的简单几何性质教学教案
椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际物体(如地球、月球绕太阳的运动)来让学生理解椭圆的形状。
解释椭圆是由一个固定点(焦点)和到该点距离之和等于常数的点的集合所形成的图形。
1.2 椭圆的标准方程推导椭圆的标准方程,即x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
解释方程中a和b的含义,以及它们与椭圆的性质之间的关系。
第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴定义椭圆的长轴,即通过椭圆中心并且平行于x轴的轴。
解释长轴的长度是2a,与椭圆的半长轴a的关系。
2.2 椭圆的短轴定义椭圆的短轴,即通过椭圆中心并且垂直于x轴的轴。
解释短轴的长度是2b,与椭圆的半短轴b的关系。
2.3 椭圆的焦距定义椭圆的焦距,即焦点之间的距离。
解释焦距与椭圆的长轴和短轴的关系,即焦距等于2c,其中c是焦点到椭圆中心的距离。
第三章:椭圆的面积3.1 椭圆的面积公式推导椭圆的面积公式,即A = πab,其中a和b分别是椭圆的半长轴和半短轴。
解释面积公式中π的作用和意义。
3.2 椭圆的面积性质解释椭圆的面积与长轴和短轴的关系,即面积与长轴和短轴的乘积成正比。
举例说明椭圆面积的计算方法,并进行实际计算练习。
第四章:椭圆的离心率4.1 椭圆的离心率定义定义椭圆的离心率e,即焦距与长轴之间的比值,e = c/a。
解释离心率的作用和意义,以及它与椭圆的形状之间的关系。
4.2 椭圆的离心率性质解释离心率与椭圆的长轴和短轴的关系,即离心率越小,椭圆越接近于圆形。
举例说明椭圆离心率的计算方法,并进行实际计算练习。
第五章:椭圆的焦点和直线的交点5.1 椭圆的焦点定义椭圆的焦点,即椭圆上到焦点距离之和等于常数的点。
解释焦点的性质,以及它们与椭圆的中心和长轴之间的关系。
5.2 椭圆与直线的交点解释椭圆与直线的位置关系,以及交点的性质。
举例说明椭圆与直线交点的计算方法,并进行实际计算练习。
椭圆的标准方程及几何性质
椭圆的标准方程及几何性质椭圆是平面上的一种几何图形,它具有许多独特的性质和特点。
在本文中,我们将探讨椭圆的标准方程及其几何性质。
首先,我们来看椭圆的标准方程。
椭圆的标准方程可以表示为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,a和b分别代表椭圆在x轴和y轴上的半轴长度。
如果椭圆的长轴与x轴平行,那么a代表长轴的长度,b代表短轴的长度;如果椭圆的长轴与y轴平行,则相反。
通过这个标准方程,我们可以轻松地确定椭圆的形状和大小。
接下来,让我们来探讨一下椭圆的几何性质。
椭圆具有许多有趣的性质,其中一些包括焦点、直径、离心率等。
首先是椭圆的焦点。
椭圆有两个焦点,它们分别位于椭圆的长轴两端。
焦点的位置与椭圆的半轴长度有关,可以通过椭圆的标准方程轻松计算得出。
其次是椭圆的直径。
椭圆有两条相互垂直的直径,分别为长直径和短直径。
长直径的长度为2a,短直径的长度为2b。
这些直径是椭圆上许多重要几何元素的基础,如焦点、顶点等。
最后是椭圆的离心率。
椭圆的离心率代表了椭圆的独特形状。
它的计算公式为:\[e = \sqrt{1 \frac{b^2}{a^2}}\]离心率越接近于0,椭圆的形状就越接近于圆;离心率越接近于1,椭圆的形状就越狭长。
离心率是描述椭圆形状的重要参数之一。
除了上述几何性质外,椭圆还具有许多其他有趣的特点,如切线、法线、曲率等。
这些性质使得椭圆成为数学和几何中的重要研究对象,也在实际生活中有许多应用,如天文学中行星轨道的描述、工程学中的椭圆形零件设计等。
总之,椭圆的标准方程及其几何性质是数学和几何中的重要内容,通过本文的介绍,希望读者能对椭圆有更深入的了解,并能在学习和工作中灵活运用。
椭圆的几何性质及其综合问答
椭圆的几何性质一、概念及性质1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”;2.椭圆的通经:3.椭圆的焦点三角形的概念及面积公式:4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1.5.直线与椭圆的位置关系:6.椭圆的中点弦问题:【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度:(1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围.题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围.【典例1】求适合下列条件的椭圆的标准方程:(1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标.【典例3】已知A ,P ,Q 为椭圆C :)0(12222>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为21-,则椭圆C 的离心率为( )A.22B.21C.42D.41【练习】(1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)(2)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D .1925或21(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.【典例4】已知F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是练习:如图,把椭圆1162522=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++Λ=【典例5】若 “过椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点F 1,F 2的两条互相垂直的直线l 1,l 2的交点在椭圆的内部”,求离心率的取值范围.【典例6】已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【方法归纳】:1.在利用椭圆的性质求解椭圆的标准方程时,总体原则是“先定位,再定量”.2.求解与椭圆几何性质有关的问题时,其原则是“数形结合,定义优先,几何性质简化”,一定要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系,充分利用平面几何的性质及有关重要结论来探寻参数a ,b ,c 之间的关系,以减少运算量.3.在求解有关圆锥曲线焦点问题时,结合图形,注意动点到两焦点距离的转化.4. 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围;有时也可利用正弦、余弦的有界性求解离心率的范围.5.在探寻a ,b ,c 的关系时,若能充分考虑平面几何的性质,则可使问题简化,如典例5. 【本节练习】1.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( )A .x 216+y 27=1B .x 216+y 27=1或x 27+y 216=1C .x 216+y 225=1D .x 216+y 225=1或x 225+y 216=12.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)3.已知椭圆短轴上的两个顶点分别为B 1,B 2,焦点为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则这个椭圆的离心率e 等于( )A .22B .12C .32D .334.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为________.5.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为33,过F 2的直线l 交C 于A,B 两点,若△AF 1B 的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x6.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.7.设21,F F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为300的等腰三角形,则E 的离心率为( )A.21B. 32C.43D. 548.过椭圆)0(12222>>=+b a b y a x 的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若02160=∠PF F ,则椭圆的离心率为( )A.25B.33C.21 D.319.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,上顶点为B ,若BA BF ⊥,则称其为“优美椭圆”,那么“优美椭圆”的离心率为10.已知1F 为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当A F PF 11⊥,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为11.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(12,2)B .(1,+∞)C .(1,2)D .(12,1)12.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 313.一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 28+y 24=1D .x 216+y 24=114.如图,已知抛物线y 2=2px (p >0)的焦点恰好是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F ,且这两条曲线交点的连线过点F ,则该椭圆的离心率为________.15.已知抛物线42x y =与椭圆)0(118222>=+a y ax 在第一象限相交于A 点,F 为抛物线的焦点,AB ⊥y 轴于B 点,当∠BAF =300时,a =16. 设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.17.椭圆x 236+y 29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则EP →·QP →的最小值为( )A .6B .3- 3C .9D .12-6 318.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,则这个椭圆方程为________.19.若一个椭圆长轴的长度,短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________.20.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( )A .4B .3C .2D .114. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____设F 1(-c , 0), F 2(c , 0)是椭圆12222=+by a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为(A )316 (B )23 (C )22 (D )32若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是21.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 1,左焦点为F 2,若椭圆上存在一点P ,满足线段PF 1相切于以椭圆的短轴为直径的圆,切点为线段PF 1的中点,则该椭圆的离心率为( )A .53B .23C .22D .5922. 已知,,A P Q 为椭圆:C 22221(0)x y a b a b+=>>上三点,若直线PQ 过原点,且直线,AP AQ 的斜率之积为12-,则椭圆C 的离心率等于( )A B .12 C D .14题型二:直线与椭圆的位置关系的判定.【典例1】当m 为何值时,直线m x y l +=:与椭圆14416922=+y x 相切、相交、相离?【典例2】已知椭圆192522=+y x ,直线04054:=+-y x l ,椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?反馈:(2012福建)如图,椭圆E :)0(12222>>=+b a by a x 的左右焦点分别为F 1、F 2,离心率21=e ,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8. (1)求椭圆E 的方程;(2)设动直线l :m kx y +=与椭圆E 有且只有一个公共点P ,且与直线x =4交于Q ,试探究:在坐标平面内,是否存在定点M ,使得以PQ 为直径的圆恒过定点M ,若存在,求出点M 的坐标,若不存在,请说明理由.【方法归纳】:直线与椭圆位置关系判断的步骤: ①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.注:对比直线与圆的位置关系的判断,它们之间有何联系与区别?题型三:直线与椭圆相交(及中点弦)问题该问题属高考中对圆锥曲线考查的热点和重点问题,其主要方法是数形结合、判别式、根与系数的关系、整体代换.【典例1】已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦AB 的长及1ABF ∆的周长、面积.【典例2】已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点(0,3),离心率为12,左,右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.【典例3】已知一直线与椭圆369422=+y x 相交于A ,B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.变式:过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B ,若M 是线段AB 的中点,则椭圆C 的离心率为【典例4】(2015新课标文)已知椭圆()2222:10x y C a b a b+=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.【典例5】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 23O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【典例6】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 均不在左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.【方法归纳】:(1)解决直线与椭圆相交问题的原则有两个:一是数形结合;二是一条主线:“斜率、方程组、判别式、根与系数的关系”.利用根与系数的关系整体代换,以减少运算量.(2)如果题设中没有对直线的斜率的限定,一定要讨论斜率是否存在,以免漏解;这里又有两个问题需要注意:①若已知直线过y 轴上的定点P (0,b ),可将直线设为斜截式,即纵截距式,即y =kx +b ,但要讨论斜率是否存在;②若已知直线过x 轴上的定点P (a ,0),可以直接将直线方程设为横截距式,即x =my +a ,这样可避免讨论斜率是否存在,但此时求弦长时,需将下面弦长公式中的k 用m1替换. (3)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).【本节练习】1.(2014·高考安徽卷)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.2. (2015·豫西五校联考)已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆于A 、B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1B . 2C .32 D . 33.(2015·宜昌调研)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.5.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.5’.已知椭圆)0(12222>>=+b a by a x 的离心率为23,右焦点到直线06=++y x 的距离为32. (1)求椭圆的方程;(2)过点)1,0(-M 作直线l 交椭圆于A ,B 两点,交x 轴于N 点,满足57-=,求直线l 的方程.6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且长轴长为12,过点P(4,2)的直线l 与椭圆交于A,B 两点.(1)求椭圆方程;(2)当直线l 的斜率为21时,求AB 的值;(3)当点P 恰好为线段AB 的中点时,求直线l 的方程.7. 平面直角坐标系xoy 中,过椭圆M :)0(12222>>=+b a b y a x 的右焦点F 作直线03=-+y x 交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.8. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列.(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程.9. 设F 1 ,F 2分别是椭圆C :12222=+by a x (a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .10. 如图,点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.11.已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB , (文)求线段AB 长度的最小值.(理)试判断直线AB 与圆222=+y x 的位置关系.圆锥曲线在高考中的考查主要体现“一条主线,五种题型”,所谓一条主线:是指直线与圆锥曲线的综合.五种题型是指“最值问题;定点问题;定值问题;参数的取值范围问题;存在性问题”.一、 最值问题 【规律方法】:(1)最值问题有两大类:距离、面积的最值以及与之有关的一些问题;求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)两种常见方法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解题;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法;若是分式函数则可先分离常数,再求最值;若是二次函数,可用配方法;若是更复杂的函数,还可用导数法. (3)圆锥曲线的综合问题要四重视: ①重视定义在解题中的作用;②重视平面几何知识在解题中的作用;③重视根与系数的关系在解题中的作用;④重视曲线的几何特征与方程的代数特征在解题中的作用.如定值中2014江西文科考题,范围中的题6、7.1.已知椭圆C :1222=+y ax (a >0)的焦点在x 轴上,右顶点与上顶点分别为A 、B .顶点在原点,分别以A 、B 为焦点的抛物线C 1、C 2交于点P (不同于O 点),且以BP 为直径的圆经过点A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若与OP 垂直的动直线l 交椭圆C 于M 、N 不同两点,求△OMN 面积的最大值和此时直线l 的方程.2.已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1),且离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:过椭圆)0(12222>>=+n m ny m x 上一点),(00y x Q 的切线方程为12020=+nyy m x x ; (Ⅲ)从圆1622=+y x 上一点P 向椭圆C 引两条切线,切点分别为A 、B ,当直线AB 分别与x 轴、y 轴交于M 、N 两点时,求MN 的最小值.3.已知动点P 到定点F (1,0)和到定直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :n mx y +=与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆122=+y x 相切时,四边形ACBD 的面积是否有最大值.若有,求出其最大值及相应的直线l 的方程;若没有,请说明理由.4. 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.5.平面直角坐标系xOy 中,已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且点)21,3(在椭圆C 上,(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆144:2222=+b y a x E ,P 为椭圆C 上任意一点,过点P 的直线m kx y +=交椭圆E 于B A ,两点,射线PO 交椭圆E 于点Q .(ⅰ)求OPOQ 的值;(ⅱ)求ABQ ∆面积的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
椭圆的几何性质
一、离心率问题
1、(2016全国3,11,5分)已知O为坐标原点, F是椭圆C:012222babyax的左
焦点,BA,分别是C的左右顶点,P为C上一点,且xPF轴,过点A的直线l与线段
PF
交于点M,与y轴交于点E,若直线BM经过OE的中点,求C的离心率
解法1、
解法2、
2
2、(2015福建,11,5分)
已知椭圆E:012222babyax的右焦点为F,短轴的一个端点为M,直线
043:yxl交椭圆E于BA,
两点,若4BFAF,点M到直线啊l的距离不小于54,
求椭圆E的离心率的取值范围
3、已知椭圆012222babyax的左右焦点分别为21,FF,过1F且与x轴垂直的直线交
椭圆于BA,两点,直线2AF与椭圆的另一个交点为C,若BCFABCSS3求椭圆的离心率
3
二、直线与椭圆相交的问题
4、已知椭圆C:012222babyax的一个顶点为0,2,离心率为22,直线
1xky
与椭圆C交于不同的两点NM,
(1)求椭圆C的方程
(2)当AMN的面积为310时,求k的值
4
5、(2016北京19,14分)已知椭圆C过10,02,,BA两点
(1)求椭圆C的方程及离心率
(2)设P为第三象限内一点,且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴
交于点N,求证:四边形ABNM的面积为定值
5
三、中点弦问题及点差法
6、椭圆122byax与直线01yx相交于BA,两点,C是AB的中点,若
22AB
,OC的斜率为22,求椭圆的方程。
6
7、(2015全国2,20,12分)已知椭圆2229:myxC0m,直线l不过原点且不平行
与坐标轴,l与C有两个交点BA,,线段AB的中点为M
(1)证明:直线OM的斜率与l的斜率的乘积为定值
(2)若l过点mm,3,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若
能,求此时l的斜率,若不能,说明理由