纵联保护
13-14-2输电线路纵联保护解析

电力系统继电保护原理主讲教师:刘青电自教研室第六章输电线路的纵联保护6.1 输电线路纵联保护概述一、反应单侧电气量保护的缺陷(电流保护和距离保护)•无法区分本线路末端短路与相邻线路出口短路。
•无法实现全线速动。
二、输电线路纵联保护的概念输电线路纵联保护:就是利用通信通道将线路两端的保护装置纵向联结起来,将各端的电气量(电流、功率方向等)传送到对端,将两端的电气量进行比较,判断故障在区内还是在区外,从而决定是否切断被保护线路。
单端电气量保护:仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护(三段式)。
纵联保护:利用被保护元件的各侧电气量,可以识别:内部和外部的故障,作为主保护。
继电保护装置继电保护装置TA TATVTV 输电线路纵联保护结构框图在设备的“纵向”之间,进行信号交换通信设备通信设备通信通道三、通信通道的类型1.导引线通道----导引线纵联差动保护它只适用于< 15-20公里的短线路。
它在发电机、变压器、母线保护中应用得更广泛。
2. 电力线载波通道----载波(高频)保护利用输电线路本身作为通道在工频电流上叠加载波信号(30~500kHZ)传送两侧电气量的信息。
3. 微波通道(150MHZ~20GHZ)--微波保护频带宽,需采用脉冲编码调制,适合于数字式保护,不经济。
4. 光纤通道----光纤保护采用脉冲编码调制PCM方式,光信号不受干扰。
四、高频通道的构成高频收发信机接入输电线路的方式有:✓“相-相”制:连接在两相导线之间;✓“相-地”制:连接在输电线一相导线和大地之间。
电气量继电保护发信机收信机收信机发信机继电保护电气量通道高频保护由继电保护、高频收发信机和高频通道组成。
GFX GSX GFXGSX 123456782346758“相-地”制高频通道示意图输电线“相-地”制高频通道示意图GFX GSX GFXGSX 123456782346758阻波器并联谐振回路,其谐振频率为载波频率。
6输电线路纵联保护

• 上述的接线只能用于发电机、变压器、母线和大型电动机的保护中,不能用于输电线路,因为线路有一 定的长度,必须有导引线通道。
7
6.1 输电线路纵联差动保护
• 导引线纵联差动保护
• 利用敷设在输电线路两端变电所之间的二次电缆传递被保护线路各侧信息的通 信方式称之为导引线通信,以导引线为通道的纵联保护称为导引线纵联保护( 简称导引线保护)。
3 连接滤波器 • 连接滤波器与耦合电容器共同组成一个 带通滤波器,使所需频带的电流能够顺 利通过。
20
6.2 高频保护
4 高频电缆 • 它用来连接室内继电保护屏、高频收发信 机到室外变电站的连接滤波器。
5 高频收、发信机 • 高频收发信机由高频收信机和高频发信机 两部分组成,用来发送和接收高频信号。 发信机发出的高频信号通过高频通道传送 到对端,被对端和本端的收信机所接受, 两端的收信机既接收来自本侧的高频信号 又接收来自对侧的高频信号,两个信号经 比较判断后,确定继电保护动作跳闸或闭锁。
17
6.1 输电线路纵联差动保护
• 整定计算
• 纵差保护是瞬时保护,应按躲过保护区外短路时最大不平衡电流来整定差动继电器的动
作电流,即
Iop.r K I rel unb.max
• 当正常运行时,为防止电流互感器二次回路一相断线而导致保护误动作, 应大于被保 护线路可能流过最大负荷电流 ,即
Iop.r K I rel L.max nTA
• 纵联差动保护是基于比较被保护线路始端和末端电流 的大小和相位的原理构成的。
• 在线路两端安装了具有相同型号和变比的电流互感器, 将线路两端电流互感器二次侧带 • 号的同极性端子(远 离保护线路两端)连接在一起。把线路两端电流互感器 二次侧不带 • 号的端子连接在一起,差动继电器KD接 在差流回路上。
纵联差动保护的原理

纵联差动保护的原理
纵联差动保护是一种用于保护电力系统中高压线路、变压器等设备的电气保护装置。
它的原理是通过比较保护范围内各个设备的电流,来检测是否有设备发生故障,并及时地切断故障电路,以避免故障扩大。
纵联差动保护装置通常由一台差动继电器和多个电流互感器组成。
电流互感器用于采集各个设备的电流信号,差动继电器则将这些信号进行比较,从而检测是否有设备故障。
当差动继电器检测到设备故障时,它会向保护范围内的断路器或隔离开关发送信号,使其切断故障电路。
需要注意的是,为了避免误动作,纵联差动保护装置还需要进行一系列的参数设置和测试,以确保其能够准确地检测故障并及时切断电路。
纵联电流差动保护意义

纵联电流差动保护意义纵联电流差动保护是电力系统中常用的一种保护方式,它的作用是检测电力系统中的电流差异,当电流差异超过设定值时,发出保护信号,切断故障电路,保护电力设备的安全运行。
本文将从纵联电流差动保护的原理、应用和发展趋势等方面进行探讨。
纵联电流差动保护是一种基于电流差异的保护方式,它通过比较电流差动值与设定值的大小来判断系统是否存在故障。
在电力系统中,各个相位的电流值应该是相等的,但当系统存在故障时,电流的分布会发生变化,导致电流差异产生。
纵联电流差动保护利用这种差异来进行故障检测和保护动作。
纵联电流差动保护的主要应用是在变电站和输电线路中。
在变电站中,电流差动保护可以用于保护变压器、发电机和母线等设备,及时切断故障电路,防止故障扩大。
在输电线路中,电流差动保护可以用于保护线路的安全运行,检测和切除故障电流,保证电力系统的可靠性。
纵联电流差动保护具有以下几个优点。
首先,它可以实现快速的动作,及时切断故障电路,减小故障损失。
其次,它具有灵敏度高、可靠性好的特点,可以检测到微弱的电流差异,有效保护电力设备的安全运行。
此外,纵联电流差动保护还具有自适应性,可以根据系统的变化自动调整保护参数,提高保护的准确性和稳定性。
纵联电流差动保护在近年来得到了广泛的应用和发展。
随着电力系统规模的不断扩大和电力设备的不断更新,对保护技术的要求也越来越高。
纵联电流差动保护作为一种成熟的保护方式,具有较高的可靠性和适应性,受到了广大电力工程师的青睐。
然而,纵联电流差动保护也存在一些问题和挑战。
首先,纵联电流差动保护对系统的接地方式有一定要求,需要保证系统的中性点接地可靠。
其次,纵联电流差动保护对系统的接线方式和电流互感器的布置也有一定的要求,需要满足一定的准确性和可操作性。
此外,纵联电流差动保护在应对复杂故障情况时可能出现误动作或漏动作的情况,需要进一步提高保护的灵敏度和准确性。
为了解决以上问题,纵联电流差动保护的发展方向主要有以下几个方面。
浅谈输电线路的纵联保护

浅谈输电线路的纵联保护摘要:本文首先就输电线路纵联保护原理、概念、分类进行了介绍,而后进一步深入,对纵联差动保护应解决的主要问题及解决措施展开了剖析。
关键字:纵联保护;故障;光纤纵联差动保护一、纵联保护(一)基本原理纵联保护是将线路两侧测量信息进行判断实现全线速动保护,其基本原理有如下三种:(二)概念和分类将线路两侧测量信息传到对侧进行比较构成的全线速动保护,称作线路纵联保护。
线路纵联保护不需与其他保护配合,不受负荷电流的影响,不反应系统震荡,有良好的选择性。
通常用高频通道组成的纵联保护称高频保护,用光纤通道组成的纵联保护称光纤纵联差动保护。
二、纵联差动保护应解决的主要问题及措施(一)纵联差动保护应解决的主要问题1、输电线路电容电流的影响电容电流是从线路内部流出的电流,因此它构成动作电流。
由于负荷电流是穿越性的电流,它只产生制动电流。
所以在空载或轻载下电容电流最容易造成保护误动。
2、外部短路或外部短路切除时产生的不平衡电流外部短路或外部短路切除时,由于两端电流互感器的变比误差不一致、暂态过程中由于两端电流互感器的暂态特性不一致、二次回路的时间常数的不一致产生不平衡电流。
3、重负荷线路区内经高阻接地时灵敏度不足的问题4、正常运行时电流感器(TA)断线造成纵联电流差动保护误动作正常运行时当输电线路一端的TA断线时差动继电器的动作电流和制动电流都等于未断线一端的负荷电流。
由于差动继电器的制动系数小于1,起动电流值又较小,因此工作点将落在比率制动特性的动作区内造成差动继电器动作。
5、弱电端拒动的问题当线路有一端背后无电源或为小电源时该端称为弱电端。
6、输电线路两端保护采样时间不一致所产生的不平衡电流的问题引起两侧采样不同步的原因:(1)两侧装置上电时刻的不一致;(2)一侧数据传送到另一侧有通道时延和数据接收时延;(3)两侧装置晶振存在固有偏差;(二)解决措施1、防止电容电流造成保护误动的措施(1)提高差动继电器比率制动曲线中的起动电流Iqd的定值来躲电容电流的影响。
线路保护纵联保护

“零序高频”是指其方向元件由零序功率方向元件充当。 同样其零序功率方向元件应保证对本线范围内的所有接地 故障有绝对灵敏度。(如LFP901中的O++)
“方向高频”,从字面上理解可以指所有的基于两侧方向 判别的高频保护。但是有一种方向元件是由工频突变量方 向元件充当的高频保护,我们习惯称其为“方向高频” 。 (如LFP901中的D++)
(4)关于闭锁式的两个关键元件的说明:
1.启动元件 (1)高定值启动元件起动后,终止主程序,执行故处理程
序,开放保护。
(2)低定值启动元件动作,控制收发信机启动发信。 (3)启动元件无方向性,灵敏度高。 2.方向元件 (1)有明确的方向性。 (2)正方向元件要确保在本线路全长范围内的短路都能可
靠动作(超范围闭锁式)。
最大的优点就是可以瞬时切除本线路全长范围 内的短路。这种综合反应两端电气量变化的保
护就叫做纵联保护。纵联保护的优点是明显的,
但它的缺点是不能保护在相邻线路上的短路, 不能作相邻线路上的短路的后备。
小结:
纵联保护既然是反应两端电气量 变化的保护,那就一定要把对端电气 量变化的信息告诉本端,同样也应把 本端电气量变化的信息告诉对端,以 便每侧都能综合比较两端电气量变化 的信息做出是否要发跳闸命令的决定。 这必然涉及到通信的问题,而通信需 要通道。
纵联保护第03讲
4.5.1 纵联电流相位差动
电流差动的主要问题: • 数据同步 • 传输数据量大,对通道要求高 • 易受互感器饱和的影响
纵联电流相位差动保护在以上几方面具有优势
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(一)基本原理
仅利用输电线路两端电流相位 在区外短路时相差180°区内短 路时相差为0°,也可以区分区 内、外短路,这就是纵联电流相 位差动保护原理。 此时只需要两端传递各自的相 位信息,即可构成电流相位比 较式纵联差动保护。
.
I m
Rg
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
4.5 纵联电流差动保护
4.5.4 影响纵联电流差动保护的因素及其措施 (三)影响因素之三:负荷电流
解决措施: 故障分量差动保护 差动电流:
制动电流:
M
.
Im
Im In Im In K Im In Im In Im In Im In
当该电流为正(或负)半波时,操作发信机 发出连续的高频电流, 而当该电流为负(或正)半波时,则不发高 频电流。
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(二)原理框图
收信比较时间t3元件
时间t3 元件对收到的高频电流进行整流并延时t3 后有输出,并展宽t4 时间。 区外短路时高频电流间断的时间短,小于t3 延时, 收信机回路无输出,保护不能跳闸。 区内短路时高频电流间断时间长, t3 延时满足, 收信机回路有输出,保护跳闸。 实际上考虑短路前两侧电势的相角差、分布电 容的影响、高频信号的传输延迟等因素,在区外 短路时收到的高频信号不完全连续,会有一定的 间断时间,同样在区内短路时收到的高频电流间 断时间也会小于半周波,因而对t3 要进行整定。
电力系统各种保护特点
电力系统各种保护特点在电力系统中,为了确保电力设备的安全稳定运行,各种保护措施被广泛应用。
以下是七种主要的保护特点:一、差动保护差动保护是一种利用比较电力系统中两个或多个相同类型电气元件的电流或电压来实现保护的装置。
它具有反应速度快、保护范围明确、灵敏度高等优点,广泛应用于变压器、发电机、电动机等设备的保护。
二、纵联保护纵联保护是一种通过比较电力系统中两个或多个不同类型电气元件的电流或电压来实现保护的装置。
它具有保护选择性好、灵敏度高、动作速度快等优点,广泛应用于输电线路、母线等设备的保护。
三、距离保护距离保护是一种通过测量电力系统中两个或多个不同类型电气元件之间的距离来实现保护的装置。
它具有反应速度快、保护范围大、可靠性高等优点,广泛应用于输电线路、配电线路等设备的保护。
四、方向保护方向保护是根据电力系统中电流或电压的方向来确定故障位置并实现保护的装置。
它具有反应速度快、灵敏度高、可靠性高等优点,广泛应用于输电线路、配电线路等设备的保护。
五、零序保护零序保护是一种利用电力系统中三相电流或电压不平衡产生的零序电流或电压来实现保护的装置。
它具有反应速度快、灵敏度高、可靠性高等优点,广泛应用于变压器、发电机等设备的保护。
六、低频保护低频保护是一种利用电力系统中频率降低来检测故障并实现保护的装置。
它具有反应速度快、灵敏度高、可靠性高等优点,广泛应用于大型发电机组、炼油厂等设备的保护。
七、过电压保护过电压保护是一种利用电力系统中电压升高来检测故障并实现保护的装置。
它具有反应速度快、灵敏度高、可靠性高等优点,广泛应用于变压器、电动机等设备的保护。
纵联保护分类
纵联保护的分类:
一般纵联保护可以按照通道类型或保护动作原理进行分类:
按照信息通道可以分四类
1,导引线纵联保护(Wire pilot)(简称导引线保护)
2.电力线载波纵联保护(Power line carrier pilot)(简称载波保护)
3.微波纵联保护(Microwave Pilot)(简称微波保护)
4.光纤纵联保护(Fiber -Optic pilot)(简称光纤保护)
按照动作原理,纵联保护分类
1.方向比较式纵联保护
2.纵联电流差动保护
扬州市科发电气是生产微机继电保护测试仪的专业厂家,生产的三相微机继电保护测试仪,六相微机继电保护测试仪,以及数字式继电保护测试仪可以满足各种继电保护类型的试验,联系电话:17092552832。
主变纵联差动保护误跳闸几种原因分析
主变纵联差动保护误跳闸几种原因分析误跳闸是指在正常操作条件下,保护装置错误地将电力系统的一部分或全部切除电源。
主变纵联差动保护是一种常用的保护方式,用于保护电力系统的主变压器。
误跳闸的原因可能是多方面的。
以下是几种常见的主变纵联差动保护误跳闸的原因分析:1.外部干扰:当电力系统中存在外部干扰时,可能会导致差动保护误跳闸。
例如,周围环境中的闪电放电、强电磁场干扰等都可能引起保护装置的误动作。
这种情况下,应采取防雷措施或在保护装置周围设置屏蔽装置,以减小外部干扰对保护的影响。
2.信号误差:主变差动保护装置通过测量主变压器的高压侧和低压侧电流,进行差动计算并与设定值进行比较,从而判断系统是否存在故障。
然而,由于测量设备的精度限制、传输线路的质量等原因,测量的电流值可能存在误差。
当这些误差超过设定值时,差动保护可能会误动作。
因此,应定期校准测量设备,检查传输线路的质量并及时更换老化设备,以降低信号误差。
3.被保护设备故障:差动保护的作用是保护主变压器免受内部故障的损害。
然而,在主变压器内部发生故障时,例如主绕组短路、绝缘击穿等,电流分布会发生改变,导致差动保护误判为故障。
因此,在主变压器内部进行定期检查和维护,及时处理潜在的故障,可以减少误动作的概率。
4.设备参数变化:保护装置对电力系统进行保护时,需要设定一些参数,例如差动电流阈值等。
然而,由于主变压器的负载变化、温度变化等原因,电气参数可能会发生变化。
如果设定值与实际值不匹配,保护装置可能会误判为故障并跳闸。
因此,应定期检查和校准保护装置的参数,并根据实际情况进行调整。
5.人为操作错误:人为操作错误也可能导致差动保护误跳闸。
例如,误操作了与差动保护装置相关的设备,或者误操作了与主变压器相关的设备。
此外,对主变压器进行维护或检修时,可能会因为未按规定程序进行操作而引起保护装置的误动作。
因此,在操作保护装置前,应进行必要的培训和演练,并按照操作规程进行操作,以减少人为操作错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线路纵联保护
线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主
保护。它以线路两侧判别量的特定关系作为判据。即两侧均将判别量借助通道传送到对侧,
然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障。因此,判别
量和通道是纵联保护装置的主要组成部分。
(1)方向高频保护是比较线路两端各自看到的故障方向,以判断是线路内部故障还是外部故
障。如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,
总有一侧看到的是反方向。其特点是: 1)要求正向判别启动元件对于线路末端故障有足够
的灵敏度; 2)必须采用双频制收发信机。
(2)相差高频保护是比较被保护线路两侧工频电流相位的高频保护。当两侧故障电流相位相
同时保护被闭锁,1)能反应全相状态下的各种对称和不对称故障,装设比较简单; 2)不反
应系统振荡。在非全相运行状态下和单相重合闸过程中保护能继续运行; 3)不受电压回路
断线的影响, 4)对收发信机及通道要求较高,在运行中两侧保护需要联调;5)当通道或收
发信机停用时,整个保护要退出运行,因此需要配备单独的后备保护。
(3)高频闭锁距离保护是以线路上装有方向性的距离保护装设作为基本保护,增加相应的发
信与收信设备,通过通道构成纵联距离保护。其特点是: 1)能足够段敏和快速地反应各种
对称与不对称故障; 2)仍保持后备保护的功能; 3)电压二次回路断线时保护将会误动,需
采取断线闭锁措施,使保护退出运行。
纵联保护的信号
有以下三种:
(1) 闭锁信号。它是阻止保护动作于跳闸的信号。换言之,无闭锁信号是保护作用于跳
闸必要条件。只有同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳
闸。
(2) 允许信号。它是允许保护动作于跳闸的信号。换言之,有允许信号是保护动作于跳
闸的必要条件。只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳
闸。
(3) 跳闸信号。它是直接引起跳闸的信号。此时与保护元件是否动作无关,只要收到跳
闸信号,保护就作用于跳闸,远方跳闸式保护就是利用跳闸信号。