新人教版七年级上册数学期中测试题

合集下载

【6套精选】七年级上册数学期中考试单元综合练习题(含答案解析)(1)

【6套精选】七年级上册数学期中考试单元综合练习题(含答案解析)(1)

人教版七年级(上)期中模拟数学试卷(答案)一、选择题(本大题共10小题,每小题3分,共30分)1.气温由-5 ℃上升2 ℃后是( C ) A .1 ℃B .3 ℃C .-3 ℃D .-7 ℃2.-⎪⎪⎪⎪⎪⎪-23的相反数是( C )A .-32B.32C.23D .-233.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展.据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万.请将780 000用科学记数法表示为( B )A .78×104B .7.8×105C .7.8×106D .0.78×106 4.在3.14,25,3.333 3…,0,0.41· 2·,-π,0.101 101 110 111 10…(每相邻两个0之间1的个数逐次加1)中,是无理数的有( A )A .2个B .3个C .4个D .5个5.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为( C )A .6.4x 元B .(6.4x +80)元C .(6.4x +16)元D .(144-6.4x)元6.下列说法错误的有( C )①单项式-2πab 的次数是3;②-m 表示负数;③54是单项式;④m +1m +3是多项式.A .1个B .2个C .3个D .4个7.下列结果是负数的是( B ) A .-[-(-6)]+6B .-|-5|-(+9)C .-32+(-3)2-(-5)D .[(-1)3+(-3)2]×(-1)48.已知2a 6b 2和13a 3m b n 是同类项,则式子9m 2-mn -36的值为( D )A .-1B .-2C .-3D .-49.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被( C )A .9整除B .10整除C .11整除D .12整除10.(易错题)如图①,是长为a ,宽为b 的长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为4,宽为3)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和为( C )A .8B .10C .12D .14二、填空题(本大题共8小题,每小题3分,共24分)11.近似数4.03×104精确到__百__位,895 000精确到万位的结果为__9.0×105__.12.规定a △b =a +b -3,则(-4)△6=-1. 13.比较大小:-(-5)2>-|-62|.14.如图所示是一个简单的数值计算程序,当输入的数据为5,则输出的结果为 32.15.如果代数式-2a 2+3b +8的值为1,那么代数式-4a 2+6b +2的值等于__-12__.16.如图所示,一只蚂蚁从点A 沿着数轴向右爬了2个单位到达点B ,点A 表示的数为-112,设点B 表示的数为m ,则代数式|m -1|+(m +6)的值为 7 .17.若多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x +2的和不含二次项,则m 的值为 4 .18.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌的张数相同;第二步:从左边一堆拿出3张,放入中间一堆; 第三步:从右边一堆拿出2张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数. 你认为中间一堆牌现有的张数是 8 . 三、解答题(本大题共7小题,共66分) 19.(8分)计算: (1)215×⎝ ⎛⎭⎪⎫12-13÷114×311;解:原式=115×16×45×311=225.(2)⎝ ⎛⎭⎪⎫-3122+612×413-(-2)4÷(-12). 解:原式=494+132×413+16÷12=494+2+43 =15712.20.(8分)化简下列各式: (1)-2(2x 2-x -7)+32(4x 2-8x -2);解:原式=-4x 2+2x +14+6x 2-12x -3 =2x 2-10x +11.(2)-3a 2-⎣⎢⎡⎦⎥⎤5a -⎝ ⎛⎭⎪⎫12a -3+2a 2-1. 解:原式=-3a 2-⎣⎢⎡⎦⎥⎤5a -12a +3+2a 2-1=-3a 2-92a -3-2a 2-1=-5a 2-92a -4.21.(8分)已知|x |=4,|y |=12,且xy >0.求x -y 的值. 解:因为|x|=4,|y|=12,所以x =±4,y =±12.又因为xy >0,所以x ,y 同号.当x ,y 同为正时,x -y =312;当x ,y 同为负时,x -y =-312.22.(8分)先化简,再求值: 3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy 七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分) 1.下列各组数中,互为相反数的是 ( )A .2和-2B .-2和C .-2和-D .和22.如图QZ 2-1,点M 表示的数可能是 ( )图QZ 2-1A .1.5B .-1.5C .2.5D .-2.53.一个圆的面积是 πa 2b m ,如果这个单项式是一个六次单项式,那么指数m 等于 ( ) A .1 B .2 C .3 D .44.化简m+n-(m-n )的结果为 ( ) A .2mB .-2mC .2nD .-2n5.下列计算结果中,正确的是 ( )A .(-9)÷(-3)2=1B .(-9)2÷(-32)=-9C .-(-2)3×(-3)2=1D .-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为 ( ) A .0.245×104 B .2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(七年级上册数学期中考试题【含答案】一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是()A.2和-2B.-2和C.-2和-D.和22.如图QZ2-1,点M表示的数可能是()图QZ2-1A.1.5B.-1.5C.2.5D.-2.53.一个圆的面积是πa2b m,如果这个单项式是一个六次单项式,那么指数m等于()A.1B.2C.3D.44.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n5.下列计算结果中,正确的是()A.(-9)÷(-3)2=1B.(-9)2÷(-32)=-9C.-(-2)3×(-3)2=1D.-(-2)6×(-3)2=-86.2017年某市生产总值约2450亿元,将2450....亿.用科学记数法表示为()A.0.245×104B.2.45×103C.24.5×1010D.2.45×10117.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式-x3y2的系数是-1D.3x2-y+5xy2是二次三项式8.某种商品原价是m元,第一次降价打八折,第二次降价每件又减15元,第二次降价后的售价是()A.0.8m元B.0.2m元C.(0.8m-15)元D.(0.2m-15)元9.若整式2x2+3x+7的值是8,则整式4x2+6x+15的值是()A.2B.17C.3D.1610.若a<-1,下面4个结论:①|a|>a;②a>-a;③<a;④>a,其中不正确的有()A.0个B.1个C.2个D.3个请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.-的绝对值的相反数是.12.比较大小:--(填“>”“=”或“<”).13.点A在数轴上距原点5个单位长度,且位于原点左侧,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是.14.按照如图QZ2-2所示的操作步骤,若输入的x的值为2.5,则输出的值为.图QZ2-215.若一个长方形的周长为2a-4b+6,长比宽多a-3,则这个长方形的宽是.16.图形表示运算a-b+c,图形x my n表示运算x+n-y-m,则×4 567=.三、解答题(共52分)17.(6分)计算:(1)(-24)÷-2+×--0.25;(2)--×|-24|-×-×(-8).18.(6分)化简:(7x2-4xy+2y2)-2-,并求当x=1,y=-1时,其值为多少.19.(6分)电力工人开车沿着一条南北方向的公路来回行驶,某天早晨从A地出发,晚上到达了B地,约定向北为正,向南为负,当天行驶的各段路程记录如下(单位:千米):-17,+8,+6,-14,-8,+17,+5,-6.(1)问B地在A地何处,相距多少千米?(2)若汽车每千米耗油0.2升,那么这一天共耗油多少升?20.(6分)某食品厂从生产的袋装食品中抽出样品8袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这8袋样品的总质量比标准质量多还是少?多或少几克?(2)若标准质量为500克,则抽样检测这8袋的总质量是多少?21.(6分)邮购一种图书,每本定价为m元,不足100本时,另加总书价的5%作为邮费.(1)当邮购x(x<100且为正整数)本书时,总计金额是多少元?(2)当一次邮购超过100本时,本店除免付邮费外,同时还给予优惠10%,计算当m=3.2,x=120时的总计金额是多少元.22.(6分)已知两个关于x,y的单项式mx a y3与-2nx3y3b-6是同类项(其中xy≠0).(1)求a,b的值;(2)如果它们的和为零,求(m-2n-1)2017的值.23.(8分)明明在计算机中设计了一个有理数运算的程序:a*b=a2-b2-2(a3-1)-÷(a-b).当输入a,b的数据时,屏幕会根据运算程序显示出结果.(1)求(-2)*的值;(2)芳芳在运用这个程序计算时,输入a,b的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?24.(8分)将连续的奇数1,3,5,7,9,…,排列成如图QZ2-3所示的数表:图QZ2-3(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和.(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2015吗?若能,请写出这五个数;若不能,请说明理由.阶段综合测试二(期中)1.A2.D3.D4.C5.B6.D7.C8. C9.B10.C11.-12.<13.-214.2015. -b+316.017.解:(1)原式=-16×-×-=---=-.(2)原式=-×24-×24+×24-××8=-6-12+16-25=-43+16=-27.18.解:原式=5x2-4xy+5y2.当x=1,y=-1时,原式=5×12-4×1×(-1)+5×(-1)2=14.19.解:(1)∵(-17)+(+8)+(+6)+(-14)+(-8)+(+17)+(+5)+(-6)=-9,∴B地在A地南边9千米处.(2)|-17|+|+8|+|+6|+|-14|+|-8|+|+17|+|+5|+|-6|=81(千米),81×0.2=16.2(升).答:这一天共耗油16.2升.20.解:(1)由题意,得-3×1+(-1)×2+0×3+2×2=-1(克).答:这8袋样品的总质量比标准质量少,少1克.(2)500×8+(-1)=4000-1=3999(克).答:抽样检测这8袋的总质量是3999克.21.解:(1)邮购的本数不足100本时,总计金额为(1+5%)mx=1.05mx(元).(2)邮购的本数超过100本时,总计金额为(1-10%)mx=0.9mx(元).当m=3.2,x=120时,0.9mx=0.9×3.2×120=345.6(元).答:当m=3.2,x=120时的总计金额为345.6元.22.解:(1)依题意,得a=3,3b-6=3,解得a=3,b=3.(2)∵mx3y3+(-2nx3y3)=0,∴m-2n=0,∴(m-2n-1)2017=(-1)2017=-1.23.解:(。

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试题一、单选题1.在有数理12,3-,1-,0中,最小的数是( )A .12B .3-C .1-D .02.下列计算中,正确的是( ) A .331-⨯= B .1313⎛⎫-⨯-= ⎪⎝⎭C .1313-⨯= D .()331-⨯-=3.-5的相反数是( )A .15-B .15C .5D .-54.下列各式中,不是整式的是( )A .1x B .x y - C .6xy - D .4x5.下列各组中的两项是同类项的是( ) A .2a b 和2ab - B .214x y 和5xy - C .a 和3a D .m 和7n6.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab > 7.一个有理数的平方等于36,则这个数是( )A .6B .6或6-C .36D .6- 8.下列各式正确的是( ) A .2->1+ B .30-> C .()0.3--13-> D .53147--> 9.下列说法:①绝对值最小的有理数是0;①无限小数是无理数;①数轴上原点两侧的数互为相反数;①a ,5,2y都是单项式;① 2341x y x -+- 是三次三项式中,正确的个数有( )A .2个B .3个C .4个D .5个10.对于有理数a ,b ,定义a ①b 2a b =-,则[(x y +) ①(x y -)] ①3x 化简后得 A .-+x y B .2x y -+ C .6x y -+ D .4x y -+二、填空题11.小亮家冰箱冷冻室的温度为-5①,调低3①后的温度为______①.12.在地理课本中,我国最长的河流长江约为6300千米,用科学记数法表示为___千米. 13.单项式312xy -的次数是___. 14.已知33x y +=-,则263x y ++=______.15.在一次数学活动课上,第一小组同学尝试用大小相等的小正方形拼大正方形,拼第1个大正方形需要4个小正方形,拼第2个大正方形需要9个小正方形,拼第3个大正方形需要16个小正方形,…,按着这样的方法拼下去,第(1n -)个大正方形比第99个大正方形多_______个小正方形(100n >且n 是正整数).16.若代数式5x -5与2x -9的值互为相反数,则x =________. 17.若式子()333394mxx x nx -+--的值与x 无关,则mn 的值是________.18.如图是用大小相等的小正方形拼成的一组图案:观察并探索:第(100)个图案中有小正方形的个数是________.三、解答题19.计算:25(1)24312--⨯20.计算:()32-÷43⨯(13-)2-(24-)÷621.计算:()()()33242a b b a a b ----+22.把下列各数填在相应的集合里: 32-,1-,5,0,23.2-,2+,500-,45⎛⎫-- ⎪⎝⎭. 正有理数集合:{ …} 负有理数集合:{ …}23.先化简,再求值:()()()3223322353x y x y x yx -++--+,其中3x =-,12y =24.小组课外活动时,第一小组设置了这样一个活动:1号组员在操场上从O 点出发,向正东方向前进了10米,到达A 点;然后继续向正东方向前进了20米到达B 点,又从B 点向正西方向前进50米到达点C .(1)以O 为原点,正东方向为正方向,用1cm 表示10米画数轴,并在数轴上表示出A 、B 、C 三个点;(2)C 点离A 点有 米. (3)1号组员共走了 米.25.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y 米,宽都是x 米.(1)若一用户需①型的窗框2个,①型的窗框3个,求共需这种材料多少米(接缝忽略不计)? (2)已知y >x ,求一个①型的窗框比一个①型的窗框节约这种材料多少米?26.学习了正负数,第一小组组长调查了本组6名同学的身高,与全班同学平均身高做了对比之后,列出了下面的表格,作为本组同学的一个活动课作业. 请你完成这道题:(1)将表格中的空白部分填上正确的数字;(2)他们6人中最高身高比最矮身高高多少cm ?请列式计算.(3)如果身高达到或超过平均身高时叫达标身高,这6个同学身高的达标率约为 (结果写成%a 的形式,其中a 保留到小数点后一位).27.(1)观察下列单项式:x -,23x ,35x -,47x ,59x -,…,写出第n 个单项式. 请认真阅读下面的解题思路 请注意:①——①小题不.需作答: ①这组单项式中不变的是什么?直接写下来;①这组单项式中系数的符号规律是什么? ①这组单项式中系数的绝对值规律是什么?①这组单项式的次数的规律是什么?探究:n的式子表示,①根据上面的归纳,猜想出第n个单项式是(只用一个..含n是正整数).①第2019个单项式是;第2020个单项式是.拓展:(2)请先观察下面的等式:①22-==⨯;① 22973284752483-==⨯;….按31881-==⨯;① 22-==⨯;① 22531682上面的规律填空:第①个等式是;第①个等式是;第n个等式;(3)请你用(2)的规律计算22-的值.20212019参考答案1.B2.B3.C4.A5.C6.B7.B8.D9.A10.C11.-8【详解】解:根据题意得:-5+(-3)=-8①,故答案为:-8.12.3⨯.6.310【详解】解:6300=36.310⨯. 故答案为36.310⨯. 【点睛】用科学记数法表示一个数的方法是 (1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零). 13.4. 【解析】 【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案. 【详解】312xy -的次数是4, 故答案为:4. 【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中,所以字母的指数和叫做这个单项式的次数. 14.-3 【解析】 【分析】将2x +6y +3变形成2(x +3y)+3,代入即可求值. 【详解】解:①33x y +=-()()2632332333x y x y ++=++=⨯-+=-.故答案是:-3. 【点睛】本题考查了代数式的求值,正确进行代数式的变形是关键.15.()210000n -【解析】 【分析】首先根据图形中小正方形的个数规律得出第n 个图形有(n+1)2个正方形组成,从而得出第(1n -)个大正方形和第99个大正方形的所含小正方形的个数,再相减即可得出答案. 【详解】解:①第一个图形有22=4个正方形组成, 第二个图形有32=9个正方形组成, 第三个图形有42=16个正方形组成,… ①第n 个图形有(n+1)2个正方形组成, ①第(n -1)个图形有n 2个正方形组成, 第99个大正方形有2100个正方形组成,①第(1n -)个大正方形比第99个大正方形多()22210010000n n -=-个小正方形. 故答案为:()210000n -.【点睛】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键. 16.2 【解析】 【分析】由5x -5的值与2x -9的值互为相反数可知:5x -5+2x -9=0,解此方程即可求得答案. 【详解】解:由题意可得:5x -5+2x -9=0, 移项,得7x =14, 系数化为1,得x =2. 故答案为:2 【点睛】本题考查了相反数的性质以及一元一次方程的解法. 17.4【解析】 【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =. 4343mn ∴=⨯=.故答案为:4. 【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握. 18.397 【解析】 【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形. 【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形, 第(2)个图案中有4115⨯+=个小正方形, 第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=. 故答案为:397. 【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形. 19.-18 【解析】 【分析】先运用乘法分配律展开,再计算乘法,最后计算减法即可得出答案. 【详解】解:25(1)24312--⨯252412424312=⨯-⨯-⨯ 162410=--18=-.【点睛】本题考查了乘法的运算律,熟练掌握运算法则是解题的关键. 20.103【解析】 【分析】含乘方的有理数的混合运算,注意先计算乘方,然后计算乘除,最后加减. 【详解】解:()32-÷43⨯(13-)2-(24-)÷6318449=-⨯⨯+243=-+ 103=. 【点睛】本题考查了有理数的混合运算,掌握运算顺序及计算法则正确计算是解题关键.21.38a b -- 【解析】 【分析】先去括号再合并同类项即可得出答案. 【详解】解:原式33284a b b a a b =--+--38a b =--.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键. 22.正有理数集合:{32-,5,2+,4()5--,…};负有理数集合:{1-,23.2-,500-,…} 【解析】 【分析】根据有理数的分类法则以及正负数的定义即可得出结论. 【详解】解:①大于0的有理数称为正有理数, ①正有理数有32-,5,2+,4()5--, ①小于0的有理数称为负有理数, ①负有理数有1-,23.2-,500-, 故答案为:正有理数集合:{32-,5,2+,4()5--,…};负有理数集合:{1-,23.2-,500-,…}. 【点睛】本题主要考查有理数的分类,关键是要牢记有理数的分类方法.23.242x y y -++,152【解析】 【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】 解:原式32233324353xy x y x y x =-++-+-242x y y =-++当3x =-,12y =时 原式211(3)42()22=--+⨯+⨯ 152=. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)见解析;(2)30;(3)80【解析】【分析】(1)根据题意画出图形即可;(2)利用两点之间的距离公式求解即可;(3)求出路程的总和即可求出答案.【详解】解:(1)如图即为所求.(2)C 点离A 点有:10()12⎡⎤⨯--⎣⎦=30(米);故答案为:30;(3)1号组员共走了:10+20+50=80(米);故答案为:80.【点睛】本题考查了数轴与数轴上两点间的距离,有理数的运算,在数轴上正确确定点的坐标是解题的关键.25.(1)1213x y +;(2)y x -【解析】【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个①型的窗框的用料减去1个①型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个①型窗框用料(32x y +)米;1个①型窗框用料(23x y +)米;(1)2个①型窗框和3个①型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y =+++1213x y =+;(2)1个①型窗框和1个①型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y =+--y x =-.【点睛】本题考查了列代数式的应用,整式的加减运算,能正确列出代数式是解此题的关键. 26.(1)0、165、160、+10、+2;(2)16cm ;(3)66.7%【解析】【分析】(1)先根据学生A 的数据求出全班平均身高,再根据关系式分别计算其他学生的身高和身高与全班平均身高的差值;(2)由表找出最高身高的学生和最矮身高的学生,再相减即可得出答案;(3)先找出达标身高的人数,再根据总人数为6人即可得出答案.【详解】解:(1)学生A 的身高为157cm ,与全班平均身高差-6,∴全班平均身高为157-(-6)=163cm ,∴学生B 与全班平均身高差163-163=0;学生C 的身高为163+2=165cm ;学生D 的身高为163-3=160cm ;学生E 与全班平均身高差173-163=+10;学生F 与全班平均身高差165-163=+2;故填表为:(2)解:由表可知,最高身高为学生E 为173cm ,最矮身高为学生A 为157cm ,17315716-=(cm ),答:他们6人中最高身高比最矮身高高16cm ;(3)他们6人中,学生B 、C 、E 、F 的身高为达标身高,∴这6个同学身高的达标率约为4100%66.7%6⨯≈. 27.(1)①(1)(21)n n n x --;20194237x -;20204039x ;(2)2213114886-==⨯;2219177289-==⨯;(21)(21)8n n n -+=(n 是正整数);(3)8080【分析】(1)①根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;①根据①中得出规律将2019n =及2020n =代入化简即可;(2)列出4个式子中的关系即可得出变化规律:两个连续奇数的平方差等于8的倍数; (3)根据(2)中数据规律得出即可.【详解】解:(1)①由x -,23x ,35x -,47x ,59x -,…,可得出:各项系数的符号分别为:-,+,-,+,…,-,+,…,这组单项式的系数的符号规律是(-1)n ,各数的系数的绝对值分别为:1,3,5,7,…,则系数的绝对值规律是2n -1.这组单项式的次数分别为:1,2,3,4,5,…则次数的规律是从1开始的连续自然数.所以单项式的次数的规律是从1开始的连续自然数所以第n 个单项式是(1)(21)n n n x --;①由①可知第n 个单项式是(1)(21)n n n x --;∴当2019n =时,原式=()()201920191220191x -⨯⨯-=20194237x -; 当2020n =时,原式=()()202020201220201x -⨯⨯-=20204039x ; ∴第2019个单项式是20194237x -;第2020个单项式是20204039x ; (2)2231881-==⨯;当1n =时,213n +=,211n -=22531682-==⨯;当2n =时,215n +=,213n -=22752483-==⨯;当3n =时,217n +=,215n -=22973284-==⨯;当4n =时,219n +=,217n -=…∴第n 个等式为()()2221218+--=n n n (n 是正整数)∴第①个等式是()()2226126186⨯+-⨯-=⨯即2213114886-==⨯;第①个等式是()()2229129189⨯+-⨯-=⨯即2219177289-==⨯;(3)解:2220212019-()()22210101210101=⨯+-⨯-81010=⨯8080=.。

人教版七年级上册数学期中考试试题含答案

人教版七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷一、单选题 1.−12016的相反数是( )A .2016B .﹣2016C .12016D .−120162.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.013.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108B .4.40×108C .4.4×109D .4.4×10104.下列各对数中,相等的一对数是( ) A .(﹣2)3与﹣23B .﹣22与(﹣2)2C .﹣(﹣3)与﹣|﹣3|D .223与22()35.下列说法中,正确的是( )A .24m n 不是整式B .﹣32abc的系数是﹣3,次数是3C .3是单项式D .多项式2x 2y ﹣xy 是五次二项式6.若a 是有理数,则a+|a|( ) A .可以是负数 B .不可能是负数 C .必是正数 D .可以是正数也可以是负数7.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( ) A .abcB .a+10b+100cC .100a+10b+cD .a+b+c8.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A .b <aB .|b|>|a|C .a+b >0D .a-b >09.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是( )A .2B .4C .6D .8二、填空题 10.31232n mx y xy m n --+=若与是同类项,则_________11.若|y+6|+(x﹣2)2=0,则y x=_____.12.若a 、b 互为相反数,c 、d 互为倒数,m=2,4a b m++m 2-3cd= __13.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn ﹣3m )﹣3(2n ﹣mn )的值为 .14.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.三、解答题 15.计算:(1)25÷5×(﹣15)÷(﹣34);(2)(79﹣56+518)×(﹣18);(3)﹣42+112÷ |﹣113|×(12﹣2)2.16.化简:(1)222121863234a a a a --+-+(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)17.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=13.18.已知|x|=7,|y|=12,求代数式x+y的值.19.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?20.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b=a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣12)⊗(﹣25)]﹣(34⊗43)÷(﹣68).21.已知:A=2a2+3ab-2a-1,B=-a2+ab-1(1)求3A+6B的值;(2)若3A+6B的值与a的取值无关,求b的值.22.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2 016吗?如能,写出这五个数,如不能,说明理由.参考答案1.C【解析】−12016的相反数是-(−12016)=12016.故答案是:C.2.B【解析】【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9不在该范围之内,∴不合格的是B.故选B.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.4.A【解析】试题解析::∵(-2)3=-8,-23=-8,∴(-2)3=-23,∴选项A正确.∵-22=-4,(-2)2=4,∴-22≠(-2)2,∴选项B不正确.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,∴选项C不正确.∵224=33,(23)2=49,∴223≠(23)2,∴选项D不正确.故选A.5.C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.6.B【解析】试题分析:分三种情况:当a>0时,a+|a|=a+a=2a>0;当a<0时,a+|a|=a-a=0;当a=0时,a+|a|=0+0=0;∴a+|a|是非负数,故选B.点睛:本题主要考查了有理数的分类和绝对值的性质,对a分三种情况进行讨论是解决此题的关键.7.B【解析】百位上的数字是c表示:100×c=100c;十位的数字是b表示:10×b=10b;个位上的数字a表示:1×a=a;这个数就可以表示为:100c+10b+a;故选B.8.C【解析】【分析】由数轴可知b<-1,0<a<1,【详解】A、b是负数,a是正数,所以b<a,故该项正确;B、由数轴可知,b离远点较远,所以|b|>|a|,故该项正确;C、根据绝对值不等的异号两数相加,取绝对值较大加数的符号可知a+b<0,故此项错误;D、根据两数相乘,异号得负可知ab<0,故此项正确.故选C,9.D【解析】21=2,22=4,23=8,24=16,25=32,26=64,27=128′′′可知,2n的个位数字以“2,4,8,6…”重复出现,2011÷4=502…3,所以22011的个位数字是8;故选:D.【点睛】此题主要考查数字的规律探索,根据已知确定数字的周期规律是解题的关键.10.0【解析】【分析】根据相同字母的指数相等列方程求解即可.【详解】由题意得,n=1,1-2m=3,∴m=-1,∴m+n=-1+1=0.故答案为0.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可. 11.36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,y x=(﹣6)2=36.故答案是:36.12.1【解析】由题意得:a+b=0,cd=1,m2=4,原式=0+4−3=1.故答案为1.13.﹣8.【解析】试题分析:∵m+n=﹣2,mn=﹣4,∴原式=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣20+12=﹣8.故答案为﹣8.考点:整式的加减—化简求值.14.6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.15.(1)原式=43;(2)原式=﹣4;(3)原式=﹣1478.【解析】试题分析:(1)原式从左到右依次计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.试题解析:解:(1)原式=25×15×15×43=43;(2)原式=﹣14+15﹣5=﹣4;(3)原式=﹣16+98=﹣1478. 16.(1)﹣2a ﹣14;(2)x 2﹣3xy+2y 2. 【解析】试题分析:利用整式的混合运算顺序求解即可;试题解析:(1)222121863234a a a a --+-+ =222211863324a a a a -+--+ =﹣2a ﹣14(2)(3x 2﹣xy ﹣2y 2)﹣2(x 2+xy ﹣2y 2)=3x 2﹣xy ﹣2y 2﹣2x 2﹣2xy+4y 2=x 2﹣3xy+2y 2.17.原式=11x 2﹣11xy ﹣y=51.【解析】试题分析:原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.试题解析:原式=3x 2﹣xy+y ﹣10xy+8x 2﹣2y=3x 2+8x 2﹣xy ﹣10xy+y ﹣2y=11x 2﹣11xy ﹣y当x=﹣2,y=13 时,原式=44+223﹣13=51 18.±19,±5【解析】试题分析:依据绝对值的性质求得x、y的值,然后代入求解即可.试题解析:解:∵|x|=7,|y|=12,∴x=±7,y=±12.当x=7,y=12时,x+y=7+12=19;当x=﹣7,y=12时,x+y=﹣7+12=5;当x=7,y=﹣12时,x+y=7﹣12=﹣5;当x=﹣7,y=﹣12时,x+y=﹣7+(﹣12)=﹣19.所以代数式x+y的值为±19或±5.点睛:本题主要考查的是求代数式的值,依据绝对值的性质求得x、y的值是解题的关键.19.(1)见详解;(2)7千米;(3)这辆货车此次送货共耗油25.5升.【解析】【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【详解】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.考点:数轴.20.﹣514.【解析】【分析】原式利用已知的新定义计算即可求出值.【详解】解:根据题中的新定义得:原式=﹣1+5×(﹣12﹣25)﹣(81﹣64)÷(﹣68)=﹣1﹣92+14=﹣514.21.(1)5ab-2a-3;(2)b的值为25【解析】试题分析:(1)将A与B代入3A+6B中去括号,合并同类项即可得到结果;(2)把(1)中a看成是字母,b看成是已知数,合并同类项,因为结果与a无关,所以a的系数等于0,即可求出b的值.试题解析:(1)3A+6B=3(2a2+3ab-2a-1)+6(-a2+ab-1)=6a2+9ab-6a-3-6a2+6ab-6=15ab-6a-9;(2)3A+6B=15ab-6a-9=(15b-6)a-9,因为3A+6B的值与a的取值无关,所以15b-6=0,所以b=25.22.(1)十字框中的五个数的和为中间的数16的5倍;(2)十字框中的五个数的和为5x;(3)不能框住五个数,使它们的和等于2016,理由见解析.【解析】试题分析:(1)将5个数相加,找出其与16的关系即可;(2)设中间的数为x,则另外四个数分别为x-10、x-2、x+2、x+10,将五个数相加即可得出结论;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)的结论可得出关于x的一元一次方程,解之即可得出x的值,由x不为整数即可得出假设不成立,即不能框住五个数,使它们的和等于2016.试题解析:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍.(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x.(3)假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【点睛】运用了一元一次方程的应用以及规律型中数字的变化类,解题的关键是:(1)求出十字框中的五个数的和;(2)根据中间数为x,用含x的代数式表示出其它四个数;(3)结合(2)的结论列出一元一次方程.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。

人教版数学七年级上册《期中考试试卷》及答案

人教版数学七年级上册《期中考试试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各数中,其相反数等于本身的是( )A. B. 0 C. 1 D.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A 56℃ B. ﹣56℃ C. 310℃ D. ﹣310℃ 3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元 4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或57.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 9.若关于x ,y 多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 010. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102二、填空题11.比较大小:23- ____45- (填“>、< 或 =”). 12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.14.若24m n +=,则代数式642m n --的值为_______.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-= ⎪⎝⎭______ 三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 18.数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}20.某工厂第一车间有人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km ):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费元,超过3km 的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含 m,n 的代数式表示地面的总面积;(2)已知 n 1.5=,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 100 元,那么小王铺地砖的总费用为多少元?23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|值.(2)若|x ﹣2|=5,求x 的值是多少?(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,写出求解的过程.答案与解析一、选择题1.下列各数中,其相反数等于本身的是()A. B. 0 C. 1 D.【答案】B【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】A.的相反数是1,故不符合题意;B.0的相反数是0,故符合题意;C.1的相反数是-1,故不符合题意;D.的相反数是-a,当a=0时,符合题意;当a≠0时,不符合题意;故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃【答案】C【解析】试题解析:127-(-183)=127+183=310℃,故选C.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元【答案】D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 【答案】A【解析】分析】根据单项式、多项式、乘方的定义及有理数的大小比较方法逐项分析即可.【详解】A . 315x -不是单项式,正确; B . 没有最大的负有理数,故不正确;C . 432x x +是四次二项式,故不正确;D . 2(4)-中4-是底数,2是指数,故不正确;故选A .【点睛】本题考查了单项式、多项式、乘方的定义及有理数的大小比较方法,熟练掌握各知识点是解答本题的关键.5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 【答案】D【解析】【分析】根据同类项及合并同类项的方法逐项分析即可.【详解】A . 496x x x x -+=,故不正确;B . 2xy xy xy -=-,故不正确;C .x 3与x 2不是同类项,不能合并,故不正确;D . 1122a a a --=-,正确; 故选D .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或5【答案】C【解析】正数的绝对值有两个,且互为相反数,所以|±5|=5. 故选C.7.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 【答案】B【解析】【分析】化简后,根据相反数的定义【详解】A . ∵|3|--=-3,∴3-与|3|--相等,故不符合题意;B . ∵(25)--=25,25-=-25,∴(25)--与25-是互为相反数,故符合题意;C . ∵2(3)-=9,23=9,∴2(3)-与23相等,故不符合题意;D . ∵31-=-1,3(1)-=-1,∴31-或3(1)-相等,故不符合题意;故选B .【点睛】本题考查了相反数、绝对值、乘方的意义,熟练掌握各知识点是解答本题的关键.8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 【答案】C【解析】【分析】由数轴上点的位置,判断出a-b 和b 的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:由数轴上点的位置得:a-b 大于0,b 小于0,∴|a-b|+2|b|-a=a-b-2b-a=-3b ,故选C.【点睛】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 0【答案】B【解析】【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.10. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102【答案】C【解析】试题分析:先根据题中所给的规律,把式子中的1×2,2×3,…,99×100,分别展开,整理后即可求解.解:根据题意可知,3×(1×2+2×3+3×4+…+99×100)=3×[13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+…+13(99×100×101−98×99×100)]=1×2×3−0×1×2+2×3×4−1×2×3+3×4×5−2×3×4+…+99×100×101−98×99×100=99×100×101.故选C.点睛:本题是一道找规律题.解题的关键要找出所给式子的规律,并应用于后面求解的式子中.二、填空题11.比较大小:23-____45-(填“>、< 或=”).【答案】>【解析】【分析】比较两个负数的大小关系,可以比较这两个负数的绝对值,绝对值大的反而小.【详解】解:∵210412, 315515 ==∴24 35 <∴24 35 ->-【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.【答案】千万位【解析】【分析】根据精确度的定义解答即可,近似数的最后一个数字实际在什么位上,即精确到了什么位.【详解】∵16.9亿中的9在千万位上,∴似数16.9亿精确到千万位.故答案为:千万位.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.【答案】或12-【解析】【分析】由||a b a b +=+,可知a 与b 是平行向量,根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分两种情况计算可求得答案.【详解】∵||a b a b +=+,∴a 与b 是平行向量,∴a =5,b =7或a =-5,b =7,∴a b -=5-7=-2或a b -=-5-7=-12.故答案为:或12-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键. 14.若24m n +=,则代数式642m n --的值为_______.【答案】【解析】【分析】把642m n --变形为()622m n -+,将24m n +=代入计算即可.【详解】∵24m n +=,∴642m n --=()622m n -+=6-8=-2.故答案为:-2.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.如果给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.【答案】(0.3b-0.2a)【解析】【分析】首先表示出成本价是0.4a 元,再表示出买了b 份报纸的钱数,和退回的钱数,用卖的钱数+退回的钱数-成本可得赚的钱数.【详解】∵每份0.4元的价格购进了a 份报纸,∴这些报纸的成本是0.4a 元,∵每份0.5元的价格出售,一天共售b 份报纸,∴共卖了0.5b 元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a-b )元,他一天工赚到的钱数为:0.5b+0.2(a-b )-0.4a=0.3b-0.2a (元),故答案为(0.3b-0.2a ).【点睛】此题主要考查了列代数式,关键是正确理解题意,准确表示出各项的钱数.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-=⎪⎝⎭______ 【答案】1;【解析】【分析】根据所给新定义运算的例子求出12019g ⎛⎫ ⎪⎝⎭与(2019)f 的值,代入1(2019)2019g f ⎛⎫-= ⎪⎝⎭计算即可. 详解】∵(1)0f =,(2)1f =,(3)2f =,(4)3f =,…,∴(2019)f =2018. ∵122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,…, ∴12019g ⎛⎫ ⎪⎝⎭=2019, ∴1(2019)2019g f ⎛⎫-= ⎪⎝⎭2019-2018=1. 故答案为:1.【点睛】本题考查了新定义运算,以及有理数的减法,明确新定义的运算方法是解答本题的关键.三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 【答案】(1)-19;(2)113-;(3)24a a - 【解析】【分析】 (1)根据新定义的运算法则计算即可;(2)根据乘方法则计算第一项,根据绝对值计算第二项,根据乘除混合运算法则计算第三项,然后计算加减即可;(3)去括号合并同类项即可.【详解】(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭182021=-+-=19-; (2)原式8114333=-+-=-; (3)原式=()222255226a a a a a a -+--+=222255226a a a a a a --++-24a a =-.【点睛】本题考查了有理数的混合运算、以及整式的加减运算,熟练掌握运算法则是解答本题的关键. 18.在数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【解析】分析:在数轴上表示出各数,再从左到右用“<”连接起来即可.本题解析:如图所示, ,故−1.5<+(−1)<0<2<|−3|.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}【答案】见解析.【解析】【分析】根据有理数的分类方法解答即可.【详解】(1)正整数:{32,… }(2)整数:{4-,0,32 ,... }(3)负分数:{ 3.14-,35,… } (4)有理数:{0.618, 3.14-,4-,35,13-,6%,0,32,…} 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.20.某工厂第一车间有人,第二车间比第一车间人数45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?【答案】(1)9305x-;(2)10x+,4405x-;(3)1505x+【解析】【分析】(1)先表示出调动前第二车间人数,再相加可得;(2)把第一车间的人数加10,第二车间的人数减10即可;(3)将调动后第一车间人数减去第二车间人数可得.【详解】解:(1)调动前第二车间有(45x-30)人,∴两个车间共有x+(45x-30)= (9305x-)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(45x-30-10)=(4405x-)人;(2)根据题意得:(x+10)-(4405x-)= (1505x+)人,则调动后,第一车间的人数比第二车间的人数多(1505x+)人.【点睛】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费元,超过3km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?【答案】(1)在公司的东边10千米处;(2)共耗油4.8升;(3)共收到车费68元.【解析】【分析】(1)由题意把接送批客人的行驶路程相加,并进行计算即可;(2)根据题意先计算出总行驶路程,再乘以出租车每千米耗油0.2升即可求出在这过程中共耗油多少升;(3)根据题意分别计算出各个批次所收到的车费,再进行相加即可.【详解】解:(1)5+2+(-4)+(-3)+10=10(km).由题意可知规定向东为正,向西为负,答:接送完第5批客人后,该驾驶员在公司的东边10千米处.(2)由题意出租车每千米耗油0.2升可得:(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是理解题意并熟练运用正负数的意义进行分析求解.22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;,且客厅面积是卫生间面积的倍,如果铺平方米地砖的平均费用为100元,那么小王(2)已知n 1.5铺地砖的总费用为多少元?【答案】(1)S=6m+2n+18;(2) 铺地砖的总费用4500元【解析】【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m,n 的值代入计算即可.【详解】(1)S=2n+6m+3×4+2×3=6m+2n+18. (2)n=1.5时2n=3根据题意,得6m=8×3=24, ∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?【答案】(1)510;(2)0.9x ;0.830x +;(3)0.1 686a +【解析】【分析】(1)让300元部分按9折付款,剩下的300按8折付款即可;(2)等量关系为:购物款×9折;300×9折+超过300的购物款×8折; (3)两次购物王老师实际付款=第一次购物款×9折+300×9折+(总购物款-第一次购物款-第二次购物款300)×8折,把相关数值代入即可求解.【详解】解:(1)3000.9(600300)0.8510⨯+-⨯=(元).(2)当低于300元但大于100元时,他实际付款:0.9x 元;当大于300元时,他实际付款:300×0.9+(x-300)×0.8=(0.8x+30)元; (3)因为100300a <,所以第一次实际付款为0.9a 元,第二次付款超过300元,超过300元部分为(820300)a --元,所以两次购物王老师实际付款为()0.93000.90.8(820--300)0.1686a a a +⨯+=+元.【点睛】本题考查了列代数式,解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)6;(2) x=﹣3或7 ;(3)整数是﹣2、﹣1、0、1、2、3、4【解析】分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.【详解】(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x-a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.。

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册期中模拟卷一考试范围:第1-2章 ;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.(2022·河南·商水县希望初级中学七年级阶段练习)下列等式正确的是( ) A .99-=- B .133-= C .77--=D .()22-+=-A .2365x y -π的系数是65-B .233x y 的次数是6C .2.46万精确到百分位D .222x xy y ++是二次三项式A .一个有理数不是正数就是负数B .最小的整数是0C .有理数包括正有理数、零和负有理数D .数轴上的点都表示有理数【答案】C【分析】根据有理数的定义对各选项分析判断求解.【详解】解:A 、一个有理数,不是正数,有可能是负数或零,故本选项错误; B 、整数分为正整数,0,负整数,所以没有最小的整数,故本选项错误; C 、有理数包括正有理数、零和负有理数,故本选项正确;D 、有理数可以用数轴上的点表示,但数轴上的点不一定都表示有理数,故本选项错误. 故选:C .【点睛】本题考查了有理数的定义,是基础题,熟记概念是解题的关键.4.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)用四舍五入法对0.1508按不同要求取近似数,其中错误的是( ) A .0.2(精确到0.1) B .0.16(精确到0.01) C .0.151(精确到千分位) D .0.15(精确到百分位)【答案】B【分析】根据近似数的精确度对各选项进行判断.【详解】解:A .0.15080.2≈(精确到0.1),所以A 选项的计算正确; B .0.15080.15≈(精确到0.01),所以B 选项的计算错误; C .0.15080.151≈(精确到千分位),所以C 选项的计算正确; D .0.15080.15≈(精确到百分位),所以D 选项的计算正确. 故选:B .【点睛】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.(2022·湖南·长沙市开福区青竹湖湘一外国语学校七年级阶段练习)下列各对数中,是互为相反数的是( ) A .()0.01--与1100⎛⎫- ⎪⎝⎭B .12-与(0.5)+-C .(5)-+与(5)+-D .13-与0.3的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,……则第2022次输出的结果为()A.3B.6C.9D.18形的数量是()A.2019B.2020C.3032D.30338.(2020·浙江杭州·七年级期末)若230-+-=,则b a=()a bA.9B.9-C.8D.8-+-+-时运算律用9.(2021·山西·介休市第三中学校七年级阶段练习)计算3(2)5+(7)4545得恰当的是()A .13323(2)5(7)4545⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦B .133235274455⎡⎤⎛⎫⎛⎫⎛⎫++-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦C .12333(7)(2)54554⎡⎤⎡⎤++-+-+⎢⎥⎢⎥⎣⎦⎣⎦D .3312(2)53(7)5445⎡⎤⎡⎤-+++-⎢⎥⎢⎥⎣⎦⎣⎦滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .2πB .4-πC .4+1-πD .41-π-【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:滚动两周的距离为221=4ππ⨯⨯, ∵点B 表示的数是41-π-, 故选:D .【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.第II 卷(非选择题)二、填空题11.(2021·山东·青岛爱迪学校七年级期中)若单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣,则m +n =_____. 【答案】8【分析】根据题意可知单项式23m n x y ﹣与单项式22n n x y 是同类项,根据同类项的特点,列出方程组,解方程即可求解.【详解】解:∵单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣, ∵单项式23m n x y ﹣与单项式22n n x y 是同类项,∵22m n n n -=⎧⎨=⎩,解得62m n =⎧⎨=⎩,∵m +n =6+2=8. 故答案为:8.【点睛】本题考查了同类项的定义以及整式的加法等知识,掌握同类项的定义是解答本题的关键.同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 12.(2022·黑龙江·兰西县红星乡第一中学校期中)若a ,b 互为相反数,m ,n 互为倒数,则2020(a +b )﹣9mn 的值为 _____. 【答案】﹣9【分析】根据互为相反数、互为倒数的概念得到a +b =0,mn =1,代入2020(a +b )﹣9mn 计算即可得到答案.【详解】解:∵a 与b 互为相反数, ∵a +b =0, ∵m 和n 互为倒数, ∵mn =1,∵2020(a +b )﹣9mn =2020×0﹣9×1 =0﹣9 =﹣9, 故答案为:﹣9.【点睛】本题考查互为相反数及互为倒数的概念、有理数的计算,熟练掌握知识点是解题的关键.13.(2021·江苏·涟水县第四中学七年级阶段练习)如果代数式225a a +=,则代数式2243a a +-=_____.【答案】7【分析】首先提公因式把2243a a +-变形为()2223a a +-,然后将225a a +=整体代入求值即可得到答案.【详解】解:()22243223a a a a +-=+-,∴将225a a +=代入可得,原式2537=⨯-=,故答案为:7.【点睛】本题考查了求代数式的值,运用整体代入求值法:整体代入求值法是将已知条件适当变形,然后作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 14.(2021·江苏·无锡市华庄中学七年级期中)点A 在数轴上表示数﹣3,点B 距离点A 有2个单位长度,则点B 表示的数为___________. 【答案】﹣1或﹣5#-5或-1【分析】设点B 表示的数为x ,再由数轴上两点间的距离公式即可得出结论. 【详解】解:设点B 表示的数为x ,则 |x +3|=2,解得x =﹣1或x =﹣5. 故答案为:﹣1或﹣5.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.三、解答题15.(2021·辽宁·大连市第八十中学七年级阶段练习)把下列各数在数轴上表示,并从小到大的顺序用<连接起来.+(-4),122,0, 1.5--,-(-5).1(1)4.7(8.9)7.4(6)---+-; (2)311(1)2824-⨯÷.(1)222322(3())a a a a a +---; (2)2237(43)2[]x x x x ----. 【答案】(1)5a (2)2533--x x【分析】(1)直接去括号进而合并同类项得出答案; (2)直接去括号进而合并同类项得出答案. (1)解:222322(3())a a a a a +---2223223a a a a a -+=+-5a =;(2)解:2237(43)2[]x x x x ---- 22374[]32x x x x =-+-- 2237432=-+-+x x x x 2533=--x x .【点睛】此题考查整式的加减,掌握整式的加减混合运算法则是解题关键.18.(2022·全国·七年级课时练习)用黑白两种颜色的正六边形地面砖中力所示的规律,拼成若干图案.(1)第1个图形中有白色地砖 块; 第2个图形中有白色地砖 块; 第3个图形中有白色地砖 块; 第4个图形中有白色地砖 块;(2)求第n 个图案中有白色地砖的块数,并求出n =100时白色地砖的块数. 【答案】(1)6;10;14;18; (2)402块.【分析】(1)观察前3个图形的变化即可得结论; (2)结合(1)得到规律,进而运用规律即可得结论. (1)解:第1个图形中有白色地砖6块,即4×1+2=6; 第2个图形中有白色地砖10块,即4×2+2=10; 第3个图形中有白色地砖14块,即4×3+2=14. 第4个图形中有白色地砖4×4+2=18(块); 故答案为:6;10;14;18; (2)解:根据(1)可知:第n 个图案中,白色地砖共(4n +2)块. 所以n =100时,白色地砖共4×100+2=402(块).【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.(2020·安徽安庆·七年级期中)小丽放学回家后准备完成下面的题目:化简()()226+8+652x x x x ---,发现系数“□”印刷不清楚 (1)她把“□”猜成3,请你化简()()2236+8+652x x x x ---(2)她妈妈说:你猜错了.我看到该题的答案是6.通过计算说明原题中“□”是几? 【答案】(1)226x -+ (2)5【分析】(1)去括号,合并同类项即可;(2)设“□”为a ,去括号化简,可知化简结果与二次项无关,即可求解. (1)解:()()2268652x x x x 3-++--22368652x x x x =-++--226x =-+;(2) 设“□”为a ,即有:()()()2226865256ax x x x a x -++--=-+,∵化简的结果为6,∵()256a x -+的结果与二次项无关,即二次项的系数为0,∵50a -=,即5a =, 答:“□”是5.【点睛】本题主要考查了整式的加减以及合并同类项的知识,灵活运用合并同类项的知识是解答本题的关键.20.(2021·内蒙古·霍林郭勒市第五中学七年级阶段练习)某电路检修小组在东西方向的一道路上检修用电线路,检修车辆从该道路P 处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下(单位:千米):(1)问检修小组收工时在P 的哪个方位?距P 处多远?(2)若检修车辆每千米耗油0.2升,每升汽油需6元,问这一天检修车辆所需汽油费多少元? 【答案】(1)检修小组收工时在P 的正东方,距P 处2千米 (2)50.4元【分析】(1)通过计算这七次车辆行驶记录结果的和就能得到答案;(2)计算出该天检修车辆走的路程之和,再乘以每千米耗油量和每升汽油的价格. (1)解:389104622-+-++--=(千米),答:检修小组收工时在P 的正东方,距P 处2千米.(2) 解:()60.2|3||8||9||10||4||6||2|⨯⨯-+++-+++++-+-()60.238910462=⨯⨯++++++=6×0.2×42=50.4(元).答:这一天检修车辆所需汽油费50.4元.【点睛】此题考查正负号的实际应用、绝对值的应用以及有理数的混合运算,理解正负号的意义是解题的关键.21.(2022·全国·七年级专题练习)观察下列等式:112⨯=1−12,123⨯=12−13,134⨯=13−14 将以上三个等式两边分别相加得:112⨯+123⨯+134⨯=1−12+12−13+13−14=1−14=34 (1)猜想写出()11n n += ; (2)直接写出下列各式的计算结果112⨯+123⨯+134⨯+…+()11n n += ; (3)探究计算1123⨯⨯+1234⨯⨯+1345⨯⨯+…+1201820192020⨯⨯.11111111223341n n111n =-+ 1n n =+; (3)解题的关键.22.(2021·河北唐山·七年级期中)已知:222232,432A a b ab abcB a b ab abc=--=--(1)求A B+的结果:(2)说明2A B-的结果和c的取值无关,并求1,62a b=-=时,2A B-的值(1)按图示规律完成下表:(2)按照这种方式搭下去,搭第n 个图形需要多少根火柴棒?(3)搭第2020个图形需要多少根火柴棒?(2)搭第n 个图形需要火柴棒根数为:5(1)41n n n --=+.(3)当2020n =时,414202018081n +=⨯+=,所以搭第2020个图形需要8081根火柴棒.【点睛】考查了规律型:图形的变化.注意:∵本题是规律性题目,要求具备较高的观察总结能力,合理利用所学知识求解.∵在做题过程中要合理利用转换思想,可以简化求解.。

人教版七年级上册数学《期中考试试卷》附答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54-D. 54 2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3 3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元4.下列各式不是同类项是( )A. 24x y 与22xy -B.与C. 12xy -与yx - D. 25m n 与23nm -5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A. 0B. 1C. 2D. 36.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B. a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为08.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定9.下列去括号正确的是( )A. ﹣3(b ﹣1)=﹣3b ﹣3B. 2(2﹣a )=4﹣aC. ﹣3(b ﹣1)=﹣3b +3D. 2(2﹣a )=2a ﹣4 10.下列说法正确的是( )A. 单项式a 的系数是0B. 单项式﹣35xy 的系数和次数分别是﹣3和2C. x 2﹣2x +25是五次三项式D. 单项式﹣3πxy 2z 3的系数和次数分别是﹣3π和6 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.16.计算:()3222---=________. 17.多项式3x 2y ﹣3xy 2的次数为_____.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95 正整数集合:( )整数集合:( )负整数集合:( )正分数集合:( )21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 22.化简:(1)2272241x x x x ---+-;(2)222217(64)(3)2a a ab b ab a -+--+-. 23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车耗油量.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,什么?26.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+2(a ﹣b )2的结果是 .(2)已知x 2﹣2y =4,求3x 2﹣6y ﹣21的值;拓广探索:(3)已知a ﹣2b =3,2b ﹣c =﹣5,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.答案与解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54- D. 54 【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】∵|45-|=45, ∴|45-|的相反数是45-. 故选A.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3【答案】C【解析】根据0大于负数,小于正数,可得0在﹣1和2之间,故选C .3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,要看把原数变成a 时,小数点移动的位数.【详解】易知 2.946a =,把原数变成2.946时,小数点移动了2位,所以2n = ,∴294.6亿元=22.94610⨯亿元.故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键,注意本题中的单位.4.下列各式不是同类项的是( )A. 24x y 与22xy -B.与C. 12xy -与yx -D. 25m n 与23nm - 【答案】A【解析】【分析】根据同类项的概念:所含字母相同,相同字母的指数也相同,逐一进行判断即可.【详解】A. 24x y 与22xy -,相同字母的指数不同,不是同类项,故符合题意;B.与,都是常数,是同类项,故不符合题意;C. 12xy -与yx -,所含字母相同,相同字母的指数也相同 ,是同类项,故不符合题意; D. 25m n 与23nm -,所含字母相同,相同字母的指数也相同,是同类项,故不符合题意;故选:A .【点睛】本题主要考查同类项,掌握同类项的概念是解题的关键.5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A 0B. 1C. 2D. 3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点表示的数是-1,∴点表示的数是:2故选D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.6.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--【答案】C【解析】【分析】将各个加数的括号及其前面的加号省略即可写成省略加号的和的形式.【详解】6(3)(5)(2)6352-+--+-=-+-故选:C .【点睛】本题主要考查有理数加减法统一成加法,掌握将有理数加减法统一成加法的方法是解题的关键. 7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为0【答案】D【解析】【分析】每一种情况都举出例子,再判断即可.【详解】解:A 、当a 、b 的绝对值相等时,如11a b ==-,,|a |+|b |=2,|a +b |=0,即|a |+|b |≠|a +b |,故本选项不符合题意;B 、当a 、b 异号时,如a =1,b =-3,|a |+|b |=4,|a +b |=2,即|a |+|b |≠|a +b |,故本选项不符合题意;C 、当a +b 的和是非负数时,如:a =﹣1,b =3,|a |+|b |=4,|a +b |=2,即即|a |+|b |≠|a +b |,故本选项不符合题意;D 、当a 、b 同号或a 、b 其中一个为0时,|a |+|b |=|a +b |,故本选项符合题意;故选D .【点睛】本题考查了绝对值、有理数的加法等知识点,能根据选项举出反例是解此题的关键8.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定【答案】B【解析】【分析】根据题意确定出a,b,c的值,代入原式计算即可得到结果.【详解】由题意知:a=﹣1,b=0,c=1,则a﹣b+c=﹣1﹣0+1=0.故选B.【点睛】本题考查了有理数的相关知识.最大的负整数是﹣1,绝对值最小的有理数是0,最小的正整数是1.9.下列去括号正确的是( )A. ﹣3(b﹣1)=﹣3b﹣3B. 2(2﹣a)=4﹣aC. ﹣3(b﹣1)=﹣3b+3D. 2(2﹣a)=2a﹣4【答案】C【解析】【分析】根据去括号法则进行解答即可得到正确选项.【详解】A、原式=﹣3b+3,故本选项错误.B、原式=4﹣2a,故本选项错误.C、原式=﹣3b+3,故本选项正确.D、原式=4﹣2a,故本选项错误.故选C.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.10.下列说法正确的是( )A. 单项式a的系数是0B. 单项式﹣35xy的系数和次数分别是﹣3和2C. x2﹣2x+25是五次三项式D. 单项式﹣3πxy2z3的系数和次数分别是﹣3π和6 【答案】D【解析】【分析】单项式的系数是数字因数,次数是所有字母次数之和,多项式中有包含几个单项式,就称这个多项式是几项式,多项式的次数是由次数最高的单项式决定,根据概念逐项判断.【详解】A .a 的系数是1,故A 错误;B .单项式﹣35xy 的系数和次数分别是35和2,故B 错误; C .x 2﹣2x +25是二次三项式,故C 错误;D .正确;故选D.【点睛】本题考查单项式和多项式的概念,注意区别单项式的次数和多项式的次数,熟记概念是解题的关键. 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 【答案】C【解析】【分析】原式各项计算得到结果,即可作出判断.【详解】①0-(-1)=1;故正确; ②11122⎛⎫÷-=- ⎪⎝⎭,故正确; ③111236-+=-,故正确; ④()201811-=,故错误;所以一共做对了3题.故选C.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--【答案】D【解析】【详解】解:根据题意可知:2月份的价格为24(1-a%),则3月份的价格为24(1-a%)(1-b%),故选D .13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔【答案】D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利.【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b +⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚.故答案为D.【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键.14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020 【答案】B【解析】【分析】根据条件求出前几个数的值,得出n 是奇数时,结果等于-12n +,n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解.【详解】a 0=0,a 1=﹣|a 0+1|=﹣|0+1|=﹣1,a 2=﹣|a 1+2|=﹣|﹣1+2|=﹣1,a 3=﹣|a 2+3|═﹣|﹣1+3|=﹣2,a 4=﹣|a 3+4|═﹣|﹣2+4|=﹣2,a 5=﹣|a 4+4|=﹣|﹣2+5|=﹣3,a 6=﹣|a 5+4|=﹣|﹣3+6|=﹣3,a 7=﹣|a 6+7|=﹣|﹣3+7|=﹣4,……,∴当n 为奇数时,a n =-12n +,当n 为偶数时,a n =-2n , ∴a 2019=-201912+=-1010. 故选B .【点睛】此题主要考查了数字类变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.【答案】-0.25米【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.以4.00米为标准,小东跳出了4.23米,可记做+0.23米,所以超过这个标准记为正数,3.75米,不足这个标准记为负数,又4.00-3.75=0.25,故记作-0.25米.故答案为-0.25米.16.计算:()3222---=________. 【答案】4【解析】【分析】根据有理数的乘方运算法则进行计算即可得解.【详解】()32224(8)484---=---=-+=,故答案为:4.【点睛】本题主要考查了有理数的乘方计算,熟练掌握乘方的运算法则是解决本题的关键.17.多项式3x 2y ﹣3xy 2的次数为_____.【答案】3【解析】【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得答案.【详解】解:多项式223x y 3xy -的次数是3,故答案为3.【点睛】本题考查了多项式,利用了多项式次数的定义.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.【答案】8.【解析】【分析】首先可判断单项式12m a b -与22n a b 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【详解】∵单项式12m a b -与22n a b 的和仍是单项式,∴单项式12m a b -与22n a b 是同类项,∴m−1=2,n=2,∴m=3,n=2,∴n =8.故答案为8【点睛】此题考查单项式,同类项,解题关键于掌握其定义.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.【答案】31n+【解析】【分析】通过分析前3个图形,找到规律,利用规律即可得出答案.【详解】通过观察可知,第一个图形中有4个,4311=⨯+;第二个图形中有7个,7321=⨯+;第三个图形中有10个,10331=⨯+;……则第n个图形中有31n+个;故答案为:31n+.【点睛】本题主要考查图形的规律,找到规律是解题的关键.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应的大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95正整数集合:( ) 整数集合:( ) 负整数集合:( ) 正分数集合:( )【答案】(1). +6,1;(2). ﹣15,+6,﹣2,1,0;(3). ﹣15,﹣2;(4). 35,314,0.63.【解析】【分析】根据负分数,整数以及有理数概念分别填空即可. 【详解】正整数集合:(+6,1…),整数集合:(﹣15,+6,﹣2,1,0,…),负整数集合:(﹣15,﹣2,…),正分数集合:(35,314,0.63…),【点睛】本题考查了有理数,熟记相关概念是解题的关键.21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 【答案】(1)1511-;(2)11- 【解析】【分析】(1)利用同分母结合法,将同分母的分数结合可简便运算;(2)按照有理数混合运算的顺序和法则进行计算即可,先算乘方运算,然后再算乘除,最后算加减.【详解】(1)24332(3)()(1)511511--++--- =2433231511511---+ =2343(2)(31)551111--+-+ =13(2)11-+- =1511- (2)32201820.25(2)[4()1](1)3⨯--÷-++- 40.25(8)(41)19=⨯--÷++ =201890.258(41)4(1)⨯--++-⨯() =2(91)1--++=11-【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则以及加法运算律是解题的关键.22.化简:(1)2272241x x x x ---+-; (2)222217(64)(3)2a a ab b ab a -+--+-. 【答案】(1)233x x ---;(2)22333a ab b ---【解析】【分析】(1)直接合并同类项即可;(2)去括号,合并同类项即可.【详解】解:(1)2272241x x x x ---+-=233x x ---(2)222217(64)(3)2a a ab b ab a -+--+- =22227323a a ab b ab a -+---+=22333a ab b ---.【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 【答案】(1)273a ab -,13;(2)2565+-x y xy ,21-【解析】【分析】(1)先利用去括号,合并同类项进行化简,然后将a,b 的值代入化简后的式子中即可求解;(2)先利用去括号,合并同类项对括号内进行化简,然后再对括号外进行化简,最后将x,y 的值代入化简后的式子中即可求解.【详解】解:(1)22(37)(427)a ab a ab -+--++=2237427a ab a ab -++--=273a ab -当1,2a b =-=时,原式=27(1)3(1)27613⨯--⨯-⨯=+=(2)224[63(42)1]x y xy xy x y -----=22461261x y xy xy x y --+--()=22465x y xy x y ---+()=22465x y xy x y ++-=2565+-x y xy 当12,2x y ==-时, 原式=5212()2⨯⨯-+6×2×(12-) =1065---=21-【点睛】本题主要考查整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.【答案】(1)答案见解析;(2)7.5千米;(3)1.6升【解析】【分析】(1)由已知得:从家向东走了5千米到超市,则超市A 表示5,又向东走了2.5,则爷爷家B 表示的数为7.5,从爷爷家出发向西走了10千米到姥爷家,所以姥爷家C 表示的数为7.5﹣10=﹣2.5,画数轴如图;(2)右边的数减去左边的数即可;(3)计算总路程,再根据耗油量=总路程×0.08即可求解.【详解】(1)点A ,B ,C 即为如图所示;(2)5﹣(﹣2.5)=7.5(千米),故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升),故小轿车的耗油量是1.6升..【点睛】本题考查了数轴,此类题的解题思路为:利用数形结合的思想,先根据条件找到超市、爷爷家和外公家的位置,再依次解决问题.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,为什么?【答案】(1)甲店:5125x +(元);乙店: 4.5135x +(元);(2)当购买15盒乒乓球时,应该在甲店购买;当购买30盒乒乓球时,应该在乙店购买.理由见解析【解析】【分析】(1)分别利用两家店的优惠政策,用乒乓球拍的钱数加上乒乓球的钱数即可得出总钱数;(2)分别计算出购买15盒和30盒乒乓球时在甲、乙两个店所支付的费用,进行比较即可得出答案.【详解】解:(1)根据题意得:甲店: 3055(5)x ⨯+-=5125x +(元);乙店:(3055)90% 4.5135x x ⨯+⨯=+(元);(2)当购买15盒乒乓球时,若在甲店购买,则费用是:5×15+125=200(元), 若在乙店购买,则费用是:4.5×15+135=202.5(元). 200202.5<∴应该在甲店购买;当购买30盒乒乓球时,若在甲店购买,则费用是:30×5+125=275(元), 若在乙店购买,则费用是:30×4.5+135=270(元),270275∴应该在乙店购买.【点睛】本题主要考查代数式的应用,读懂题意是解题的关键.26.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2;(2)-9;(3)8.【解析】【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.【详解】(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题考查整式的加减,解决问题的关键是读懂题意,运用整体思想解题.。

人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。

人教版数学七年级上册期中同步测练练习试题(部分含答案)共3份

广东省惠州市博文学校2020年七年级上册期中考试试数学卷(附答案)考试范围:第1-3章时间90分钟分值:120分一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.4B.﹣4C.2D.﹣22.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等4.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.5a2b﹣5ba2=05.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位6.已知等式2a=3b+4,则下列等式中不成立的是()A.2a﹣3b=4B.2a+1=3b+5C.2ac=3bc+4D.a=b+27.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>08.解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x9.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为()A.80元B.100元C.150元D.180元10.a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则|a|>|b|D.若|a|>|b|,则a>b二.填空题(共7小题,满分28分,每小题4分)11.若a、b是互为倒数,则2ab﹣5=.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为.14.买一个篮球需要x元,买一个排球需要y元,则买3个篮球和2排球共需元.15.绝对值不大于5的所有整数的和是.16.已知x=3是方程3x﹣2a=5的解,则a=.17.定义运算“@”的运算法则为:x@y=xy﹣1,则(2@3)@4=.三.解答题(一)(共3小题,满分18分)18.(6分)计算:﹣32+(﹣12)×||﹣6÷(﹣1).19.(6分)解方程:(1)5x+4=3(x﹣4)(2)﹣1=.20.(6分)化简求值:(﹣3x2﹣4y2+2x)﹣(2x2﹣5y2)+(5x2﹣8)+6x,其中x,y满足|y ﹣5|+(x+4)2=0.四.解答题(二)(共3小题,满分24分)21.(8分)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?22.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.23.(8分)肖坝社区惠民水果店第一次用615元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为735元,求第二次乙种苹果按原价打几折销售?五.解答题(三)(共2小题,满分20分)24.(10分)先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.25.(10分)如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=1时,点P所表示的数是;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时PR相距2个单位长度?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:|﹣2|=2,即﹣2的绝对值是2,故选:C.2.解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a和字母b的指数都不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选:A.3.解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.4.解:A、3a+2b无法计算,故此选项错误;B、2a3+3a2无法计算,故此选项错误;C、5a2﹣4a2=a2,故此选项错误;D、5a2b﹣5ba2=0,正确.故选:D.5.解:1.36×105精确到千位.故选:D.6.解:∵2a=3b+4,∴2ac=3bc+4c,故C不成立故选:C.7.解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.8.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.9.解:设这件商品的进价为x元,依题意,得:0.8×(1+50%)x﹣x=30,解得:x=150.故选:C.10.解:A.1≠﹣1,但|1|=|﹣1|,此选项错误;B.|a|≠|b|,则a≠b,此选项正确;C.如1>﹣2,但|1|<|﹣2|,此选项错误;D.|﹣2|>|+1|,但﹣2<+1,此选项错误;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:316000000=3.16×108.故答案为3.16×108.14.解:∵买一个篮球需要x元,买一个排球需要y元,∴买3个篮球和2排球共需:(3x+2y)元.故答案为:(3x+2y).15.解:绝对值不大于5的所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,它们的和为0.故答案为:0.16.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.17.解:根据题意,得:(2@3)@4=(2×3﹣1)×4﹣1=19.故答案是19.三.解答题(一)(共3小题,满分18分)18.解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.19.解:(1)5x+4=3(x﹣4),去括号,得5x+4=3x﹣12,移项,得5x﹣3x=﹣12﹣4,合并同类项,得2x=﹣16,系数化成1,得x=﹣8;(2)﹣1=,去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化成1,得x=7.20.解:原式=﹣3x2﹣4y2+2x﹣2x2+5y2+5x2﹣8+6x=y2+8x﹣8,∵|y﹣5|+(x+4)2=0,∴x=﹣4,y=5,则原式=25﹣32﹣8=﹣15.四.解答题(二)(共3小题,满分24分)21.解:(1)10﹣3+4+2﹣8+13﹣2﹣12+8+5=17(千米).答:收工时距O地17千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|﹣12|+|+8|+|+5|=67,67×0.2=13.4(升).答:从O地出发到收工时共耗油13.4升.22.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.23.解:(1)设惠民水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=615,解得:x=30,∴2x+15=75.答:惠民水果店第一次购进甲种苹果75千克,乙种苹果30千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×75+(15×﹣8)×30×3=735,解得:y=8.答:第二次乙种苹果按原价打8折销售.五.解答题(三)(共2小题,满分20分)24.解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.25.解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=1时,OP=6.故答案为:﹣4,6;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,依题意有8x=4+6x﹣2,解得x=1;如图3,另一种情况是当点R在点P的右侧时,依题意有8x=4+6x+2,解得x=3.综上所述R运动1或3秒时PR相距2个单位.2019—2020学年第一学期期中检测七年级数学试题(无答案)一、选择题(本大题共12小题)1. 如果高出海平面30米,记作30+米,那么20-米表示( ) A. 高出海平面20米 B. 低于海平面20米 C. 不足20米D. 低于海平面30米2. 一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A . 50.0千克 B. 50.3千克C. 49.7千克D. 49.1千克3. 下列说法中,正确的是( ) A 最大的负整数是﹣1B. 有理数分为正有理数和负有理数C. 如果两个数的绝对值相等,那么这两个数相等D. 零没有相反数4. 在112-,12,20-,0 ,()5--,- 1.5-中,负数的个数有( ); A. 2个B. 3 个C. 4 个D. 5 个5. 有理数a,b 在数轴上所对应的点如图所示,下列各选项中错误的是( )A .a 0b -<B. a 0b +<C. a 0b <D. >b a6. 下列各数中互为相反数的是( ) A. 7--和()7+- B. ()10+-和()10-+ C. ()43-和43-D. 54-和54-7. 下列语句:①一个数绝对值一定是正数; ②-a 一定是一个负数;③没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小;正确的有( )个.A. 0B. 3C. 2D. 48. 2015年在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元,这个数据用科学记数法可表示为( )美元.A. 101.5510⨯B. 111.5510⨯C. 121.5510⨯D.131.5510⨯9. 单项式243x y-的系数和次数分别是( )A. 4,3B.43,3 C. 43-,3 D. 43-,2 10. 下列判断正确的是( ). A. 23a b 与2ba 不是同类项B. 23m nπ不是整式C. 单项式32x y -的系数是1-D. 2235x y xy -+是二次三项式11. 在式子:35ab -,225x y ,2x y+,2a bc -,1,231x x -+中,单项式的个数为( ). A. 2个B. 3个C. 4个D. 5个12. 若关于x 、y 的多项式()222358735nx x x x y x -++---+的值与x 无关,则(n = )A. 2B. -2C. 3D. -3二、填空题13. 比较大小:710-______35(“>”,“<”连接). 14. 近似数1.31×810 精确到______位.15. 数轴上点A 所对应的数是-2,则与点A 的距离等于4的点B 所表示的数是 _____,如果点C 所表示的数是-3,则线段BC 的长度______.16. 若|x ﹣2|与(y+3)2互为相反数,则(x+y )2017=_____. 17. 若23x -=,则x 的值为______. 18. 若单项式212m x y -与313n x y -是同类项,则n m 的值是__________. 19. 在①xy ,②5x -,③75ab -,④2a b -+⑤0,⑥2415x -+,⑦2x y +-,⑧4x-,⑨2b π中,单项式有:________,多项式有:________,整式有:________ (填序号)20. 如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖数为______.三、解答题21. 画出数轴,把下列各数:5-、132、0、52-、2-在数轴上表示出来,并用“<”号从小到大连接.22. 请把下列各数填入相应的集合中:59-,-2,+72,-0.6,61,0,0.101,-8,-3.14,710负分数集合:{ …} 分数集合:{ …} 整数集合:{ …} 23. 计算 (1)113512682424⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭(2)()2018211(1)13223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦(3)()()()()322019234221-⨯-+-÷---(4)()()112524 2.584234⎛⎫--+⨯--⨯-⨯- ⎪⎝⎭(5)()225431x y x y +---(6)()()223432241x x x x -+--++24. (1)先化简,再求值,()()22225335a b ab ab a b --+其中13a =,12b =-.(2)已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.25. 某出租车一天下午以车站为出发地在东西方向的大街上营运,规定向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+,3-,5-,4+,8-,6+,3-,6-,4-,+10.(1)将最后一名乘客送到目的地,出租车离车站出发点多远?在车站的什么方向? (2)出租车在行驶过程中,离车站最远的距离是多少?(3)出租车按物价部门规定,起步价(不超过3千米)为8元,超过3千米的部分每千米的价格为1.5元,司机一个下午的营业额是多少?26. 如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.。

【人教版】数学七年级上学期《期中测试题》及答案

2020-2021学年度第一学期期中测试人教版七年级数学试题一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在3,1,1,3--这四个数中,比2-小的数是( )A. 3-B. 1-C. 1D. 32.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A. 点A 和点CB. 点B 和点DC. 点A 和点DD. 点B 和点C3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为( )A. 130.810⨯B. 12810⨯C. 18810⨯D. 118010⨯4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b 5.老师让同学们写出单项式3x 2y 3的同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x y D. ﹣13y 3 6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.13.已知代数式234x x -的值为9,则2686x x --的值为__________.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 16.计算()2213602210--÷⨯+-. 17.计算:()()232323243x y x y x y +---. 18.计算:()()223221a a a a ----. 四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 21.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A 站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米? 24.如图,长为50,cm 宽为xcm 的大长方形被分割为8小块,除阴影A B 、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm .()1由图可知,每个小长方形较长的一边长是__ cm (用含a 的式子表示);()2当40x =时,求图中两块阴影,A B 周长和.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).()1当0.5t时,求点Q到原点O的距离;=()2当 2.5t=时,求点Q到原点O的距离;()3当点Q到原点O的距离为4时,求点P到原点O的距离.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x 的代数式表示)(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x=100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?答案与解析一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.--这四个数中,比2-小的数是()1.在3,1,1,3A. 3-B. 1-C. 1D. 3【答案】A【解析】【分析】根据有理数的大小关系求解即可.【详解】在这四个数中-<-32故答案为:A.【点睛】本题考查了比较有理数大小的问题,掌握比较有理数大小的方法是解题的关键.2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A和点CB. 点B和点DC. 点A和点DD. 点B和点C【答案】C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为()A. 13810⨯ C. 18⨯ B. 120.810⨯ D. 11810⨯8010【答案】B【解析】【分析】根据科学记数法的定义以及性质进行表示即可.【详解】128000000000000810=⨯故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键.4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b【答案】D【解析】【分析】根据同类项的定义及合并同类项的方法进行判断即可.【详解】解:A :2a a a +=,故A 错误;B :36x 与25x -不是同类型,故不能合并,故B 错误;C :23x 与32x 不是同类型,故不能合并,故C 错误;D :22234-=-a b ba a b ,故D 正确;故选择D . 【点睛】本题考查了同类项,合并同类项.解题的关键是掌握同类项的定义:所含字母相同,相同字母的指数相同;合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.5.老师让同学们写出单项式3x 2y 3同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x yD. ﹣13y 3 【答案】C【解析】【分析】根据同类项的定义进行判断即可.【详解】A.3x 2y 3与2x 5中,所含字母不尽相同,不是同类项,故本选项错误;B.3x 2y 3与3x 3y 2中,相同字母的指数不相同,不是同类项,故本选项错误;C.3x 2y 3与2312x y -中,x 、y 的指数均相同,是同类项,故本选项正确; D.3x 2y 3与313y -中,所含字母不尽相同,不是同类项,故本选项错误. 故选:C .【点睛】本题考查同类项,熟记同类项的定义是解题的关键.6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c【答案】B【解析】【分析】 根据图形,不难看出:打包带的长有长方体的两个长、四个宽、六个高.【详解】两个长为2a ,四个宽为4b ,六个高为6c.∴打包带的长是2a+4b+6c.故答案选B.【点睛】本题考查了列代数式,解题的关键是根据题中的等量关系列出代数式.二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 【答案】>【解析】【分析】根据有理数比较大小的法则进行比较即可.【详解】∵4|1|5-<-, ∴415->-. 故答案为:>.【点睛】本题考查有理数比较大小,掌握负数比较大小的法则:绝对值越大,这个数本身越小,是解题的关键.8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.【答案】5.61【解析】【分析】把千分位上的数字4 进行四舍五入即可.【详解】5.614精确到百分位,得到的近似数为5.61.故答案为5.61.【点睛】本题考查近似数,掌握“四舍五入”法是解题的关键.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)【答案】410a b +【解析】由题意得总价为410a b +.10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 【答案】32 【解析】【分析】根据单项式的系数与次数的定义得出a 、b 的值,再代入计算即可. 【详解】单项式-2xy 的系数为:-12,次数为:2, 则a +b =-12+2=32. 故答案为:32. 【点睛】本题考查单项式的系数和次数,熟记系数及次数的定义是解题的关键.11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.【答案】3【解析】【分析】根据同类项的定义列方程得出m 、n 的值,再代入计算即可.【详解】∵3x 3y m +1与6x n +1y 2是同类项,∴n +1=3,m +1=2,解得m =1,n =2.∴m +n =1+2=3.故答案为:3.【点睛】本题考查了同类项,掌握同类项的定义:所含字母相同,相同字母的指数也相同,是解题的关键. 12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.【答案】﹣2+5x +x 2﹣3x 3【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】多项式x 2﹣2﹣3x 3+5x 的各项是x 2,﹣2,﹣3x 3,5x ,按x 升幂排列为﹣2+5x+x 2﹣3x 3.故答案为﹣2+5x+x 2﹣3x 3.【点睛】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 13.已知代数式234x x -的值为9,则2686x x --的值为__________.【答案】12【解析】【分析】根据已知得出3x2-4x=9,再将原式变形得出答案.【详解】∵2349x x -=,∴26818x x -=,∴268618612x x --=-=.故答案为12.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.【答案】16【解析】【分析】根据题目规定的新运算进行列式计算即可.【详解】∵x ≤y 时,x ★y =x 2;x >y 时,x ★y =y ,∴(-2★-4)★1=-4★1=(-4)2=16,故答案为:16.【点睛】本题考查有理数的运算,明确题目给出的新运算是解题的关键.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 【答案】﹣4【解析】【分析】先凑成整数,再相加即可求解.【详解】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点睛】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.计算()2213602210--÷⨯+-. 【答案】9.5.【解析】分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【详解】解:原式=9﹣60÷4×110+2=9﹣60×14×110+2=9﹣1.5+2=9.5. 【点睛】考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.17.计算:()()232323243x y x yx y +---. 【答案】23x y【解析】【分析】先去括号,再合并同类项即可.【详解】()()232323243x y x y x y +--- 232323243x y x y x y =-+23x y =.【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键. 18.计算:()()223221a a a a ----.【答案】22+a【解析】【分析】先去括号,再合并同类项即可. 【详解】解:原式222322222a a a a a =--++=+【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键.四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .【答案】﹣x 2+2xy ﹣2y 2【解析】【分析】先把A 、B 代入,再去括号合并即可【详解】解:∵A =3x 2+4xy ,B =x 2+3xy -y 2,∴2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )=2x 2+6xy -2y 2-3x 2-4xy=-x 2+2xy -2y 2.【点睛】本题考查整式加减的应用,注意代入时要加括号,掌握去括号、合并同类项法则是解题的关键.20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 【答案】226x x -+-,-6.【解析】【详解】解:22532(23)7x x x x ⎡⎤---+⎣⎦22532(23)7x x x x =-+--2253467x x x x =-+--226x x =-+-当12x =时,原式=2112622⎛⎫-⨯+- ⎪⎝⎭ =11622-+- =-621.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.【答案】(1)见解析;(2) 19227,过程见解析. 【解析】【分析】根据有理数混合运算的运算顺序及运算法则进行判断计算即可.【详解】解:(1)-34÷(-27)-[(-2)×(-43)+(-2)]3(2)正确的解法如下所示:-34÷(-27)-[(-2)×(-43)+(-2)]3 =-81÷(-27)-(83-2)3 =81×127-(23)3 =3-827=19227. 【点睛】本题考查有理数的混合运算,熟练掌握运算顺序及运算法则是解题关键.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.【答案】(1)甲减乙不能使实验成功;(2)丙的代数式为2352x x -+.【解析】【分析】(1)根据整式减法,计算甲减乙即可,然后与丙比较即可判定;(2)根据题意,让甲加乙即可得出丙的代数式.【详解】(1)由题意,得()2222223123231234x x x x x x x x x x ----+=---+-=--则甲减乙不能使实验成功;(2)由题意,得()22223123352x x x x x x --+-+=-+∴丙的代数式为:2352x x -+.【点睛】此题主要考查整式的加减,解题关键是弄清题意,进行计算即可.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A站是繁荣路站;(2)这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【详解】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3 =45×1.3 =58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点睛】考查了正数和负数,根据题意列出算式是解题的关键.24.如图,长为50,cm宽为xcm的大长方形被分割为8小块,除阴影A B、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.()1由图可知,每个小长方形较长的一边长是__ cm(用含a的式子表示);()2当40x =时,求图中两块阴影,A B 的周长和.【答案】(1)()503a -;(2)160cm .【解析】【分析】(1)根据图形写出代数式即可;(2)根据图形列出代数式可得阴影部分的周长和为4x ,再代入求值即可.【详解】(1)由图形得,每个小长方形较长的一边长是()503a -;(2)阴影部分的周长和为:()()5022325034x a x a x ⨯+-+-⎤⎣⎦=⎡-. 当40x =时,周长和为160cm .【点睛】本题考查了图形与代数式的问题,掌握长方形周长公式是解题的关键.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).()1当0.5=t 时,求点Q 到原点O 的距离;()2当 2.5t =时,求点Q 到原点O 的距离;()3当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.【答案】(1)6;(2)2;(3)点P 到原点的距离为2或6.【解析】【分析】(1)求出AQ 的长度,再根据OQ OA AQ =-求解即可;(2)求出点Q 运动的距离,再根据OQ=点Q 运动的距离-OA 求解即可;(3)分两种情况:①Q 向左运动时;②Q 向右运动时,分别求出运动时间t ,即可求出OP 的长度.【详解】(1)由题意得440.52AQ t ==⨯=∵8OA =∴826OQ OA AQ =-=-=;(2)由题意得,点Q 运动的距离是44 2.510t =⨯=∵8OA =∴102OQ OA =-=;(3)①Q 向左运动时,∵8OA =,4OQ =,∴4AQ OA OQ =-=,∴441t =÷=,∴212OP =⨯=;②Q 向右运动时,∵8OA =,4OQ =,∴Q 的运动距离是8412+=,∴运动时间是1243t =÷=,∴236OP =⨯=.综上,点P 到原点的距离为2或6.【点睛】本题考查了数轴上的动点问题,掌握数轴的特点是解题的关键.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x 筒(x >30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付 元;方案二:到乙商店购买,需要支付 元(用含x 的代数式表示)(2)若x =100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x =100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?【答案】(1)(20x+2400),(18x+2700);(2)甲商店购买合算,理由见解析;(3)能,能省140元【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=100代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先在甲商店购买30支球拍,送30筒球,另外70筒球在乙商店购买即可.【详解】解:(1)甲商店购买需付款30×100+(x-30)×20=3000+20x-600=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x=(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x=100时,甲商店需20×100+2400=4400(元);乙商店需18×100+2700=4500(元);∵4400<4500,∴甲商店购买合算;(3)先在甲商店购买30支球拍,送30筒球需:100×30=3000(元),差70筒球在乙商店购买需:20×90%×70=1260(元),共需3000+1260=4260(元),∵4260<4400,且4400-4260=140(元).∴比方案一省钱,省140元钱.【点睛】本题考查列代数式及代数式求值,正确理解题意是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学期中试卷
七年级数学-1-共4页
七年级数学期中考试模拟试题
一、选择题(每小题3分,共30分)。
1、下列说法中,错误的有 ( )
①742是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统
称为有理数;⑤0是最小的有理数;⑥3.14不是有理数。
A、1个 B、2个 C、3个 D、4个
2、下列说法正确的是 ( )
A、符号不同的两个数互为相反数 C、432与2.75都是411的相反数
B、一个有理数的相反数一定是负有理数 D、0没有相反数
3、已知aa,则a是 ( )
A、正数 B、负数 C、负数或0 D、正数或0
4、用“>”连接032,,正确的是 ( )

A、032 B、302
C、023 D、203
5.若3A.2a-7 B.2a-1 C.1 D.7
6.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是
A.4 B.5 C.7 D.不能确定
7、52表示 ( )
A、5与-2相乘的积 B、-2与5相乘的积
C、2个5相乘的积的相反数 D、5个2相乘的积
8、下列写法正确的是 ( )
A、x5 B、nm4 C、43)1(xx D、ab21
9、下列各式中,是二次三项式的是 ( )
A、31a22a B、1332 C、aba23 D、yxyx22

10、将代数式2525222xyyxxy合并同类项,结果是 ( )
A、yx221 B、22521xyyx C、yx2211 D、222521xyyxyx
人教版七年级上册数学期中试卷
七年级数学-2-共4页
二、填空题(每小题3分,共30分)
11、小明、小芳同时从A处出发,如果小明向东走50米记作+50米,则小芳向西
走70米记作_________米。
12、数轴上距离原点2.4个单位长度的点有 个,它们分别是 。
13、37的相反数是_______,它的倒数是_________。
14、绝对值小于2的非负整数有__________________。
15、27ºC比-5ºC高_______ºC,比5ºC低9ºC的温度 是_______ºC。
16、比较大小:|5.2|______2)5(。
17、用代数式表示:买一个球拍需要a元,买一根跳绳需要b元,则分别购买50个
球拍和50根跳绳,共需 元。
18、用科学记数法表示39万千米是____________千米。
19、代数式2x-4y-3中,y的系数是______,常数项是__________。
20、如果nyx23与yxm21是同类项,那么m=_________,n=__________。

三、解答题(共60分)
(1)、23-37+3-52 (2)、)51(30)2132(

(3)、])3(2[141223 (4)、232)212(|18.0|)4(2-
(5) -3.5÷78 ×(-87 )×|-364 | (6)3212(10.5)2(3)3
人教版七年级上册数学期中试卷

七年级数学-3-共4页
22、(6分)画一根数轴,用数轴上的点把如下的有理数-2,-0.5,0,-4表示
出来,并用“<”把它们连接起来。

23、(8分)用简便方法计算:
(1)34.075)13(317234.03213 (2))60()125157514131(

24、合并同类项(每小题4分,共8分)
(1)、2235213xxxx (2)、222432132babaaba

25、(6分)已知a、b互为相反数,m、n互为倒数,求mnmnba)(的值。
人教版七年级上册数学期中试卷

七年级数学-4-共4页
26、先化简,再求值:22222ab+2ab-2ab-1+3ab+2,其中a=2,b=-2

26、已知2(3)2xy与互为相反数,z是绝对值最小的有理数,求()yxyxyz的
值.

27、 (8分)某校大礼堂第一排有a个座位,后面每一排都比前一排多2个座位,
求第n排的座位数。若该礼堂一共有20排座位,且第一排的座位数也是20,请
你计算一下该礼堂能容纳多少人?

28、 (8分)振子从一点A开始左右来回振动8次,如果规定向右为正,向左为
负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求振子停止时所在位置距A点有多远?
(2)如果每毫米需时间0.02秒,则共用时间多少秒?

相关文档
最新文档