2019-2020学年甘肃省静宁县第一中学高二上学期期末考试数学试题(文)数学试题(解析版)

合集下载

2021-2022学年甘肃省兰州市第一中学高二上学期期末考试数学(文)试题解析

2021-2022学年甘肃省兰州市第一中学高二上学期期末考试数学(文)试题解析

2021-2022学年甘肃省兰州市第一中学高二上学期期末考试数学(文)试题一、单选题1.抛物线28y x =的焦点坐标为 A .(0,2) B .(2,0) C .1(,0)32D .1(0,)32答案:D解:抛物线28y x =可化为218x y =,∴抛物线28y x =的焦点在y 轴上,∵128=p ,∴11 232p =,∴抛物线的焦点坐标为10,32⎛⎫⎪⎝⎭,故选D . 2.双曲线221416y x -=的渐近线方程为( )A .12y x =± B .2y x =± C .14y x =±D .4y x =±答案:A令双曲线方程得右边为0,可得双曲线的渐近线方程.解:解:令双曲线方程得右边为0,可得220416y x -=,可得12y x =±,即:双曲线221416y x -=的渐近线方程为12y x =±,故选:A.点评:本题主要考查双曲线的渐近线方程,注意牢记双曲线渐近线的求法. 3.若方程2212x y m m+=-表示椭圆,则实数m 的取值范围为( ) A .()0,1 B .()1,2 C .()0,2 D .()()0,11,2答案:D由题知0202m m m m >⎧⎪->⎨⎪≠-⎩,解不等式组即可得答案.解:解:因为方程2212x y m m+=-表示椭圆 所以0202m m m m >⎧⎪->⎨⎪≠-⎩,解得021m m m >⎧⎪<⎨⎪≠⎩,所以实数m 的取值范围为()()0,11,2故选:D4.命题“00x ∃>,00sin x x <”的否定是( ) A .00x ∃≤,00sin x x < B .00x ∃≥,00sin x x > C .0x ∀>,sin x x ≥ D .0x ∀>,sin x x >答案:C特称命题否定为全称命题即可解:命题“00x ∃>,00sin x x <”的否定是“0x ∀>,sin x x ≥”, 故选:C5.如果质点A 按照规律23s t =运动,则在3t =时的瞬时速度为 A .6 B .18C .54D .81答案:B对23s t =求导,再把3t =代入,从而可得3t =时的瞬时速度. 解:质点A 按照规律23s t =运动,'6s t ∴=,∴根据导数的物理意义可得,在3t =时的瞬时速度为6318⨯=,故选B.点评:本题主要考查导数的物理意义,意在考查利用所学知识解决实际问题的能力,属于简单题.6.设函数y =f (x )=x 2-1,当自变量x 由1变为 1.1时,函数的平均变化率为( ) A .2.1 B .1.1 C .2 D .0答案:A由平均变化率的定义计算.解:22(1.1)(1)(1.11)(11) 2.11.110.1y f f x ∆----===∆- 故选:A .7.已知0a >,0b >,则“4a b +=1a =,4b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案:B根据基本不等式确定等式成立的条件,然后由充分必要条件的定义判断.解:0a >,0b >时,4a b +≥=4a b =.因为4a b =时,不一定有1a =,4b = 故选:B.8.椭圆与双曲线2213y x -=有相同的焦点1F ,2F ,离心率互为倒数,P 为椭圆上任意一点,则角12F PF ∠的最大值为( ) A .5π6B .2π3 C .π2D .π3答案:D设椭圆方程为22221x y a b+=,根据条件列方程求出,a b ,即可求出椭圆方程,当点P 为椭圆短轴端点时角12F PF ∠最大,利用余弦定理可求得该角. 解:设椭圆方程为22221x y a b+=,则222213211c c a a b c ⎧=+⎪⎪⋅=⎨⎪=+⎪⎩,解得2216,12a b ==, 则椭圆方程为2211612x y +=, 当点P 为椭圆短轴端点时角12F PF ∠最大,此时()22212221616161cos 22162a a c F PF a +-+-∠===⨯, 因为()120,F PF π∠∈,12π3F PF ∴∠= 故选:D.9.已知点P 是抛物线22y x =-上的一个动点,则点P 到点()0,2M 的距离与点P 到该抛物线准线的距离之和的最小值为( ) AB .3 CD .92答案:A求出抛物线的焦点F 的坐标,分析可知点P 到点()0,2M 的距离与点P 到准线12x =的距离之和等于点P 到点()0,2M 的距离与点P 到点F 的距离之和,利用当点P 为线段MF 与抛物线的交点时,即M 、P 、F 三点共线时取PM PF +取最小值可得结果.解:抛物线22y x =-的焦点为1,02F ⎛⎫- ⎪⎝⎭,准线方程为12x =,如下图所示,由抛物线的定义知,点P 到准线12x =的距离PD 等于点P 到焦点F 的距离PF ,因此点P 到点()0,2M 的距离与点P 到准线12x =的距离之和等于点P 到点()0,2M 的距离与点P 到点F 的距离之和,其最小值为点()0,2M 到点1,02F ⎛⎫- ⎪⎝⎭的距离(当点P 为线段MF 与抛物线的交点时,即M 、P 、F 三点共线时)11744+ 故选:A.10.已知点1F ,2F 为椭圆22142x y+=的左右焦点,过点1F 与x 轴垂直的直线与椭圆交于A ,B 两点,则三角形2ABF 的内切圆的半径为( )A .2B .1C 2D 2答案:C根据题意得2ABF 的周长为48a =,2AB =,进而等面积法求解即可. 解:解:根据题意得2,2a b c ===()12,0F , 因为过点1F 与x 轴垂直的直线与椭圆交于A ,B 两点 所以()()2,1,2,1A B ---,2AB = 根据椭圆定义得2ABF 的周长为48a =, 不妨设三角形2ABF 的内切圆的半径为r ,所以根据等面积法得21211422ABF S a r AB F F =⨯⋅=△,代入数据得22r故选:C11.已知椭圆C :22221x y a b +=()0a b >>的右焦点为(),0F c ,右顶点为A ,以OA 为直径的圆交直线cy x b=于点B (不同于原点O ),设OBF 的面积为S .若S AB AF =⋅,则椭圆C 的离心率为( ) A .12 B .13C .34D .35答案:D由题可得Rt OAB 的三边长,再结合三角形面积公式及向量数量积公式可得,,a b c 的关系式,即求.解:依题意,得OB AB ⊥, ∴点A 到直线c y x b =的距离22||AB c b c==+, 在Rt OAB 中,∵OA a =,AB c =, ∴OB b =, ∵S AB AF =⋅,∴1sin ()cos 2bc BOA c a c BAO ∠=-∠,其中sin cos BOA BAO ∠=∠, ∴()2b a c =-,∴()224b a c =-,即225830c ac a -+=, 得2583e e -+=(53)(1)0e e --=,∴35e =或1e =(舍)∴离心率为35.故选:D.12.下列结论正确的个数为( )①已知1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,点P 为椭圆C 上的动点,则12PF F △的重心G 的轨迹方程为()2293104x y y +=≠②若动点(),P x y2,则点P 的轨迹为双曲线;③动点P 到直线40x +=的距离减去它到()2,0M 的距离之差是2,则点P 的轨迹是抛物线;④点2F 为椭圆2212516x y +=的右焦点,点P 为椭圆上任意一点,点()1,3M ,则2PF PM+的最小值为5;⑤斜率为2的直线与椭圆()222210x y a b a b+=>>交于A ,B 两点,点M 为AB 的中点,直线OM 的斜率为14-(O 为坐标原点)A .1B .2C .3D .4答案:D设()G x y ,,由重心坐标公式可得(3,3)P x y ,代入椭圆方程化简即可判断①,根据两点间的距离公式及双曲线的定义可判断②,由抛物线的定义判断③,根据椭圆的定义转化为动点到两定点间距离差的最大值,数形结合求解即可判断④,由点差法建立,a b 关系,求出离心率判断⑤.解:设椭圆的动点坐标00(,)P x y ,12PF F △的重心()G x y ,,则003003x c c x y y +-⎧=⎪⎪⎨++⎪=⎪⎩, 所以03x x =,030y y =≠,代入椭圆方程可得()2293104x y y +=≠,故①正确; 动点(),P xy24<,即动点到定点(2,0)-与(2,0)的距离之差为定值且小于两定点间的距离,所以动点轨迹为双曲线一支,故②错误; 动点P 到直线40x +=的距离减去它到()2,0M 的距离之差是2,即动点P 到直线20x +=的距离与P 到()2,0M 的距离相等,所以点P 的轨迹是抛物线,故③正确; 由M 在椭圆内,如图,22211||||10(||||)10||10(13)(30)1055PM PF PF PM F M ∴+=--≥-=++-=-=当且仅当1,,P F M 共线时,2||||PM PF +取得最小值,即最小值为5成立,故④正确;设1122,,()()A x y B x y ,,可得22221122222211,,x y x y a b a b+=+=两式相减可得1212121222()()()()x x x x y y y y a b -+-+=-,由题意可得12122y y x x --=,且1212(,)22x x y y M ++,121214y y x x +=-+,所以22112(),42b a -=⨯-=-则22121122c b e a a ==--=故⑤正确. 所以正确的结论有4个, 故选:D 二、填空题13.下列各结论中,正确的是______.①“p q ∧为真”是“p q ∨为真”的充分不必要条件; ②“p q ∧为假”是“p q ∨为假”的充分不必要条件; ③“p q ∨为真”是“p ⌝为假”的必要不充分条件; ④“p ⌝为真”是“p q ∧为假”的必要不充分条件. 答案:①③利用充分条件和必要条件结合复合命题的真假判断方法分析判断即可解:对于①,当p q ∧为真时,,p q 都为真,所以p q ∨为真,当p q ∨为真时,,p q 至少有一个为真,则p q ∧不一定为真,所以“p q ∧为真”是“p q ∨为真”的充分不必要条件,所以①正确,对于②,当p q ∧为假时,,p q 中至少有一个为假,则p q ∨不一定为假,当p q ∨为假时,,p q 都为假,则p q ∧一定为假,所以“p q ∧为假”是“p q ∨为假”的必要不充分条件,所以②错误,对于③,当p q ∨为真时,,p q 至少有一个为真,所以p ⌝不一定为假,而当p ⌝为假时,p 为真,所以p q ∨一定为真,所以“p q ∨为真”是“p ⌝为假”的必要不充分条件,所以③正确,对于④,当p ⌝为真时,p 为假,则p q ∧为假,当p q ∧为假时,,p q 中至少有一个为假,所以p 不一定为假,则p ⌝不一定为真,所以“p ⌝为真”是“p q ∧为假”的充分不必要条件, 所以④错误, 故答案为:①③14.与双曲线221916x y -=有共同的渐近线,且经过点()3,23-的双曲线方程是______. 答案:224194x y -=解:设22916x y λ-=,将()3,23-代入求得14λ=. 双曲线方程是224 1.94x y -= 15.在平面直角坐标系xoy 中,点M 是椭圆()222210x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P 、Q 两点.若MPQ 为锐角三角形,则该椭圆离心率的取值范围是____________. 答案:6251,22⎛⎫-- ⎪ ⎪⎝⎭【解析】解:试题分析:∵△PQM 是锐角三角形, ∴∴2222cos cos 4MD c QMD ac a c b QMaπ∠==>=<- 22222,ac a c ac a c >-<- ∴22210,10e e e e +->+-< 解得6251e e --><∴该椭圆离心率的取值范围是6251--⎝⎭ 故答案为6251--⎝⎭16.已知抛物线C :2y 2px(p 0)=>的焦点为F ,过F 且倾斜角为60的直线l 与抛物线C在第一、四象限分别交于A 、B 两点,与它的准线交于点P ,则AB PB=_____.答案:2:1设出A 、B 坐标,利用焦半径公式求出|AB |,结合x 1x 2=24p ,求出A 、B 的坐标,然后求其比值.解:设A (x 1,y 1),B (x 2,y 2),则y 12=2px 1,y 22=2px 2, |AB |=x 1+x 2+p =2028sin 603p p =,即有x 1+x 2=53p , 由直线l 倾斜角为60°,则直线l 的方程为:y ﹣0x ﹣2p ), 联立抛物线方程,消去y 并整理,12x 2﹣20px +3p 2=0, 则x 1x 2=24p ,可得x 1=32p ,x 2=16p ,则|AP |=4p , ∴AB PB=2.故答案为:2:1.点评:本题考查直线的倾斜角,抛物线的简单性质,考查学生分析问题解决问题的能力,属于中档题.本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用. 三、解答题17.已知集合{}22A x a x a =-≤≤+,{}14B x x =<<. (1)当3a =时,求A B ;(2)“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围. 答案:(1){}15A B x x ⋃=-≤≤ (2){}1a a <(1)由3a =,得到{}15A x x =-≤≤,再利用并集的运算求解; (2)根据 “x A ∈”是“x B ∈”的充分不必要条件,得到AB ,然后分A =∅,A ≠∅讨论求解. (1)解:当3a =时,{}15A x x =-≤≤. 因为{}14B x x =<<, 所以{}15A B x x ⋃=-≤≤. (2)因为“x A ∈”是“x B ∈”的充分不必要条件, 所以AB .当A =∅时,符合题意,此时有22a a +<-,解得:0a <.当A ≠∅时,要使AB ,只需22,24,21,a a a a +≥-⎧⎪+<⎨⎪->⎩解得:01a ≤<,综上:1a <.所以实数a 的取值范围{}1a a <. 18.已知命题p :方程表示焦点在x 轴上的双曲线.命题:q 曲线2(23)1y x m x =+-+与x 轴交于不同的两点,若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围. 答案:522m <≤或12m <. 分别求出命题p 、q 为真命题时m 的范围,根据复合命题真值表可得命题p ,q 命题一真一假,分p 真q 假和p 假q 真求出m 的范围,再求并集. 解:解:方程22122x y m m -=-表示焦点在x 轴上的双曲线, ∴20220m m m >⎧⇒>⎨->⎩若p 为真时:2m >,曲线2(23)1y x m x =+-+与x 轴交于不同的两点, 则△25(23)402m m =-->⇒>或12m <, 若q 真得:52m >或12m <, 由复合命题真值表得:若p q ∧为假命题,p q ∨为真命题,p ,q 命题一真一假若p 真q 假:522m <; 若p 假q 真:12m <∴实数m 的取值范围为:522m<或12m <. 19.设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,113AF BF =(1)若24,AB ABF =∆的周长为16,求2AF ; (2)若23cos 5AF B ∠=,求椭圆E 的离心率.答案:(1)5;(2)2. 【解析】解:试题分析:(1)由题意113,4AF F B AB ==可以求得113,1AF F B ==,而2ABF ∆的周长为16,再由椭圆定义可得12416,28a AF AF a =+==.故212835AF a AF =-=-=.(2)设出1F B k =,则0k >且13,4AF k AB k ==.根据椭圆定义以及余弦定理可以表示出,a k 的关系()(3)0a k a k +-=,从而3a k =,2123,5AF k AF BF k ===,则22222||||BF F A AB =+,故12F A F A ⊥,12AF F ∆为等腰直角三角形.从而2c a =,所以椭圆E 的离心率2c e a ==. (1)由113,4AF F B AB ==,得113,1AF F B ==.因为2ABF ∆的周长为16,所以由椭圆定义可得12416,28a AF AF a =+==.故212835AF a AF =-=-=.(2)设1F B k =,则0k >且13,4AF k AB k ==.由椭圆定义可得2223,2AF a k BF a k =-=-.在2ABF ∆中,由余弦定理可得22222222||||2cos AB AF BF AF BF AF B =+-⋅∠,即2226(4)(23)(2)(23)(2)5k a k a k a k a k =-+---⋅-,化简可得()(3)0a k a k +-=,而0a k +>,故3a k =.于是有2123,5AF k AF BF k ===.因此22222||||BF F A AB =+,可得12F A F A ⊥,故12AF F ∆为等腰直角三角形.从而c =,所以椭圆E 的离心率c e a ==. 【解析】1.椭圆的定义;2.椭圆的离心率求解.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,椭圆的左、右焦点分别是12F F 、,点M 为椭圆上的一个动点,12MF F △(Ⅰ)求椭圆C 的方程:(Ⅱ)P 为椭圆上一点,1PF 与y 轴相交于Q ,且112F P FQ =,若1PF 与椭圆相交于另一点R , 求2PRF △的面积 .答案:(1)22143x y +=(2)157 【解析】解:试题分析:(Ⅰ)由已知条件:12c e a ==,122c b bc ⋅⋅==椭圆C 的方程;(Ⅱ) 由112F P FQ =,知Q 为1F P 的中点,设()0,Q y ,则()1,2P y ,由此利用韦达定理、弦长公式能求出2PRF ∆的面积. 试题解析:解:(I )由已知条件:12c e a ==,122c b bc ⋅⋅=∴2,1a b c === ∴椭圆C 的方程为22143x y += . (Ⅱ)由112F P FQ =,知Q 为1F P 的中点,所以设()0,Q y ,则()1,2P y , 又P 满足椭圆的方程,代入求得34y =. ∴直线1PF 方程为()314y x =+ . 由()22314{143y x x y =++= 得 276130x x +-= . 设()11,P x y ,()22,R x y ,则 1212613,77x x x x +=-=- .∴1212627,728y y y y +==- ,∴212115227PRF S c y y c ∆=⋅⋅-==. 说明:各题如有其它解法可参照给分.点睛:本题考查椭圆方程的求法,考查三角形面积的求法,是基础题,解题时要认真审题,注意椭圆性质、韦达定理、弦长公式的合理运用;当直线与圆锥曲线相交时,将三角形的面积转化为求弦长问题,即联立直线的方程与圆锥曲线的方程构成方程组,结合韦达定理12y y -=.21.已知双曲线()22122:10,0x y C a b a b -=>>与双曲线222:142x y C -=有相同的渐近线,且点(P 在1C 上. (1)求1C 的标准方程;(2)过点()1,1M 的直线l 与双曲线1C 交于,A B 两点,且M 恰好是线段AB 的中点,求直线l 的方程.答案:(1)2212x y -=;(2)210x y -+=.(1)设()221:042x y C λλ-=≠,将(P 代入可得λ,进而可得1C 的标准方程; (2)设直线():11l y k x =-+,将其与1C 联立得到关于x 的方程,根据根与系数的关系和中点坐标公式可解得k ,进而可得直线l 的方程.解:(1)因为1C 与2C 的渐近线相同,可设()221:042x y C λλ-=≠将(P 代入得831422λ=-=,所以1C 的标准方程为2212x y -=. (2)直线l 的斜率显然存在,设直线():11l y k x =-+, 联立方程组()221211x y y k x ⎧-=⎪⎨⎪=-+⎩,消去y 可得()()()22212412120k x k k x k -+----=,由221208(22)0k k k ⎧->⎨∆=-+->⎩得11k <<且2≠±k . 设()1122(),,,A x y B x y ,则()1224121k k x x k -+=-因为M 是线段AB 的中点,所以()122211221k k x xk -+==-,解得12k =,满足题意.所以直线l 的方程为()1112y x =-+,即210x y -+=.22.已知F 为抛物线C :x 2=2py (p >0)的焦点,点M 在抛物线C 上,O 为坐标原点,△OFM 的外接圆与抛物线C 的准线相切,且该圆面积为94π. (1)求抛物线C 的方程;(2)设A (2,1),B 是抛物线C 上异于A 的一点,直线AB 与直线y =x -2交于点P ,过点P 作x 轴的垂线交抛物线C 于点N ,证明:直线BN 恒过一定点,并求出该定点的坐标.答案:(1)x 2=4y ;(2)证明见解析,定点(2,2).(1)由题意知圆心必在4p y =,由相切即可知34pr =,结合已知圆的面积即可求出p =2,进而可求出抛物线的方程.(2) 设211(,)4x B x ,写出直线AB 的方程与y =x -2联立,求出P 的横坐标,即可知N 的横坐标,进而可求出N 的坐标,由直线的点斜式可写出直线BN 的方程,从而可求出所过定点.解:解:(1)设△OFM 外接圆的半径为r ,由题知圆心必在4py =, 且圆心到准线的距离3424p p p r +==,所以239()44p π⋅=π,解得p =2, 所以抛物线C 的方程为:x 2=4y .(2)设211(,)4xB x ,由题意知,12x ≠,则直线AB 的方程:211141(2)2x y x x --=--,化简得:121(2)4x y x +-=-,与y =x -2联立得121(2)42x y x y x +⎧-=-⎪⎨⎪=-⎩, 解得11282p x x x -=-,把112(4)2p x x x -=-代入x 2=4y 得:2114()2N x y x -=-, 即211112(4)4(,())22x x N x x ----,则直线BN 的方程:221121111114()42()2(4)42x x x x y x x x x x ----=----, 约分得:11211142()2()44x x x x y x x -+--=-,化简得111141()()422x x x y x x x --+--, 因为与x 1无关,所以当x =2,y =2时恒成立,所以直线BN 恒过定点(2,2).点评:关键点睛:本题第二问的关键是联立直线和直线求出P 的横坐标,写出N 的坐标后,写出直线BN 的方程.。

甘肃静宁县第一中学2019届高三上学期第一次模拟考试数学(文)试题(解析版)

甘肃静宁县第一中学2019届高三上学期第一次模拟考试数学(文)试题(解析版)

甘肃静宁县第一中学2019届高三上学期第一次模拟考试数学(文)试题一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x |-1<x <1},B ={x |x 2-x -2<0},则(∁R A )∩B =( )A. (−1,0]B. [−1,2)C. [1,2)D. (1,2]2. 已知命题p :“∀a >0,有e a ≥1成立”,则¬p 为( )A. ∃a ≤0,有e a ≤1成立B. ∃a ≤0,有e a ≥1成立C. ∃a >0,有e a <1成立D. ∃a >0,有e a ≤1成立3. 已知函数f(x)={3x (x ≤0)log 2x(x>0),则f[f(14)]的值是( ) A. 9 B. 19 C. −19 D. −94. 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A. p ∧qB. ¬p ∧¬qC. ¬p ∧qD. p ∧¬q5. 下列函数中,既是偶函数又在(0,+∞)上单调递增的是( )A. y =x 3B. y =cosxC. y =1x 2D. y =ln|x| 6. 函数f (x )=-1x +log 2x 的一个零点落在下列哪个区间( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)7. 已知a =log 23,b =log 123,c =3−12,则( ) A. c >b >aB. c >a >bC. a >b >cD. a >c >b 8. 曲线y =x x−2在点(1,-1)处的切线方程为( )A. y =x −3B. y =−2x +1C. y =2x −4D. y =−2x −3 9. 函数y =x 33x −1的图象大致是( )A. B.C. D.10. 若函数y =x 2-3x +4的定义域为[0,m ],值域为[74,4],则m 的取值范围是( ) A. (0,4] B. [32,4] C. [32,3]D. [32,+∞)11.若函数f(x)=−12(x−2)2+alnx在(1,+∞)上是减函数,则实数a的取值范围是()A. .[−1,+∞)B. (−∞,−1]C. (1,+∞)D. .(−∞,1]12.定义在R上的函数f(x)满足:f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2019)=()A. 336B. 337C. 338D. 339二、填空题(本大题共4小题,共20.0分)13.函数f(x)=ln(x2-2x-8)的单调递减区间是______.14.已知a>0且a≠1,函数y=log a(2x−3)+√2的图象恒过定点P,若P在幂函数f(x)的图象上,则f(8)=______.15.已知偶函数f(x)在[0,+∞)单调递减,若f(x-2)>f(3),则x的取值范围是______.16.(理科)若函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是______.三、解答题(本大题共6小题,共70.0分)17.(1)求值(√1212018−5)0+2−2⋅(214)−12−log43⋅log3√8;(2)函数f(x)=x2-m是定义在[-3-m,m2-m]上的奇函数,求f(m)的值.18.设f(x)=x3-x.(1)求曲线在点(1,0)处的切线方程;(2)设x∈[-1,1],求f(x)最大值.19.已知a∈R,命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.20.已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.21.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),(1)求f(x)的解析式;(2)若对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的取值范围.22.已知函数f(x)=2a ln x-x2+1.(Ⅰ)若a=1,求函数f(x)的单调递减区间;(Ⅱ)若a>0,求函数f(x)在区间[1,+∞)上的最大值.答案和解析1.【答案】C【解析】解:∵集合A={x|-1<x<1},B={x|x2-x-2<0}={x|-1<x<2},∴∁R A={x|x≤-1或x≥1},(∁R A)∩B={x|1≤x<2}=[1,2).故选:C.先求出集合A,B,从而求出∁R A,进而能求出(∁R A)∩B.本题考查补集、交集的求法,考查补集、交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:全称命题的否定是特称命题,则¬p:∃a>0,有e a<1成立,故选:C.根据全称命题的否定是特称命题即可得到结论.本题主要考查含有量词的命题的否定,比较基础.3.【答案】B【解析】解:=f(log2)=f(log22-2)=f(-2)=3-2=,故选:B.因为,所以f()=log2=log22-2=-2≤0,f(-2)=3-2=,故本题得解.本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.4.【答案】D【解析】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.5.【答案】D【解析】解:A.函数y=x3为奇函数,在(0,+∞)上单调递增,所以A不合适.B.函数y=cosx为偶数,但在(0,+∞)上不单调,所以B不合适.C.函数y=为偶函数,在(0,+∞)上单调递减,所以C不合适.D.函数y=ln|x|为偶函数,在(0,+∞)上单调递增,所以D合适.故选:D.分别判断每个函数的奇偶性和单调性.本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见基本函数的奇偶性和单调性.6.【答案】B【解析】解:根据函数的实根存在定理得到f(1)•f(2)<0.故选:B.根据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果.本题考查函数零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题.7.【答案】D【解析】解:由对数函数y=log2x的图象与性质,得log23>log22=1,∴a>1;由对数函数y=x的图象与性质,得3<1=0,∴b<0;又∵c==,∴0<c<1;∴a>c>b.故选:D.利用对数函数的图象与性质,得a>1,b<0;利用幂的运算法则,得出0<c<1;即可判定a、b、c的大小.本题考查了对数函数的图象与性质的应用问题,解题时应利用对数函数的图象与性质以及1与0等数值比较大小,是基础题.8.【答案】B【解析】解:对于函数y=,∵y′=,∴y在点(1,-1)处的导数为-2,故y=在点(1,-1)处的切线斜率为-2,故y=在点(1,-1)处的切线方程为y+1=-2(x-1),即y=-2x+1,故选:B.先求得y在点(1,-1)处的导数为-2,利用点斜式求得函数y在点(1,-1)处的切线方程.本题主要考查函数在某一点的导数的意义,求曲线在某一点切线的方程,属于中档题.9.【答案】C【解析】解:函数的定义域为{x|x≠0},排除A.当x→-∞时,y→+∞,排除B,当x→+∞时,x3<3x-1,此时y→0,排除D,故选:C.根据函数的定义域,取值范围和取值符号,进行排除即可.本题主要考查函数图象的识别,根据函数的性质结合极限思想是函数图象的基本方法.10.【答案】C【解析】解:y=x2-3x+4=x2-3x++=(x-)2+,定义域为〔0,m〕那么在x=0时函数值最大,即y最大=4,又值域为〔,4〕,根据二次函数的对称性,≤m≤3,故选:C.先配方利用定义域值域,分析确定m的范围.本题考查函数的定义域值域的求法,是一道基础题.11.【答案】B【解析】解:函数,x∈(1,+∞),可得f′(x)=x-2+,函数在(1,+∞)上是减函数,可得-x+2+<0,在x∈(1,+∞)上恒成立,即a<x2-2x在x∈(1,+∞)上恒成立,函数g(x)=x2-2x的对称轴为:x=1,在x∈(1,+∞)上是增函数,函数的最小值为:g(1)=1.可得a≤1.实数a的取值范围是:(-∞,1].故选:B.求出函数的导函数,利用导函数的符号,得到a的不等式,然后求解实数a的取值范围.本题考查函数的导数的综合应用,函数恒成立,考查计算能力以及转化思想的应用.12.【答案】C【解析】解:∵f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2当-1≤x<3时,f(x)=x,∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,∵f(x+6)=f(x),∴f(x)的周期为6,∴f(1)+f(2)+f(3)+…+f(2019)=336+f(1)+f(2)+f(3)=338.故选:C.根据函数的周期性,将函数值进行转化即可.本题主要考查函数值的计算,根据函数的周期性,进行转化是解决本题的关键.13.【答案】(-∞,-2)【解析】解:对于函数f(x)=ln(x2-2x-8),有x2-2x-8>0,求得x<-2,或x>4,故函数的定义域为{x|x<-2,或x>4},本题即求y=x2-2x-8在定义域内的减区间,再利用二次函数的性质可得y=x2-2x-8在定义域内的减区间为(-∞,-2),故答案为:(-∞,-2).由题意利用复合函数的单调性,对数函数、二次函数的性质可得,本题即求y=x2-2x-8在定义域内的减区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于基础题.14.【答案】2√2【解析】解:∵log a1=0,∴2x-3=1,即x=2时,y=,∴点P的坐标是P(2,).由题意令y=f(x)=x a,由于图象过点(2,),得=2a,a=∴y=f(x)=,f(8)=故答案为:2.由log a1=0,知2x-3=1,即x=2时,y=,由此能求出点P的坐标.用待定系数法设出幂函数的解析式,代入点的坐标,求出幂函数的解析式,然后求解函数值.本题考查对数函数的性质和特殊点,解题时要认真审题,熟练掌握幂函数的性质,能根据幂函数的性质求其解析式.仔细解答,避免出错,15.【答案】(-1,5)【解析】解:∵偶函数f(x)在[0,+∞)单调递减,∴不等式f(x-2)>f(3)等价为f(|x-2|)>f(3),则|x-2|<3,即-3<x-2<3,则-1<x<5,即不等式的解集为(-1,5).故答案为(-1,5).根据函数奇偶性和单调性之间的关系,将不等式进行转化即可.本题主要考查不等式的求解,利用函数奇偶性和单调性之间的关系进行转化是解决本题的关键.]16.【答案】(0,12【解析】解:①x∈[0,1]时,f(x)=x,g(x)=x-mx-m,要使g(x)有零点,则必须有g(0)g (1)<0,即m(2m-1)<0,∴0<m<,若m=0,g(x)=x,有一个零点0;若m=,g(x)=,有一个零点1,∴m∈[0,]②x∈(-1,0)时,x+1∈(0,1),f(x+1)=x+1,f(x)=,g(x)=-mx-m,g(0)=-mg'(x)=m=0,g(x)单调减,g(0)=0,此时无零点若m>0,则g′(x)<0恒成立,x∈(-1,0)时,x→-1,g(x)→+∞,x→0,g(x)=-m <0∴此时在(-1,0 )上必然有一个零点若m<0,令g′(x)=0,考虑到x∈(-1,0 ),此时没有零点,综上所述:0<m故答案为:确定分段函数的解析式,分别研究它们的零点,即可得到结论.本题考查分段函数的解析式,考查函数的零点,解题的关键是确定分段函数的解析式.17.【答案】解:(1)根据题意,(√1212018−5)0+2−2⋅(214)−12−log43⋅log3√8=1+14×23−1 2log23×32log32=1+16−34=512,(2)根据题意,函数f(x)=x2-m是定义在[-3-m,m2-m]上的奇函数,则有m2-m=3+m,解可得:m=3或m=-1.当m=3,时f(x)=x-1在x=0无意义,舍当m=-1时f(x)=x3符合,则f(x)=x-1,故f(m)=f(-1)=(-1)3=-1.【解析】(1)根据题意,由指数幂的运算性质分析,计算即可得答案;(2)根据题意,由奇函数的性质可得m2-m=3+m,解可得m的值,验证函数f(x)是否为奇函数可得m 的值,即可得函数的解析式,将m 的值代入解析式分析可得答案.本题考查幂函数的性质以及应用,(2)中关键是求出m 的值,属于基础题. 18.【答案】解:(1)f (x )=x 3-x ,f ′(x )=3x 2-1,切线斜率f ′(1)=2,∴切线方程y =2(x -1),即2x -y -2=0;(2)令f ′(x )=3x 2-1=0,x =±√33,列表:故x =-√33,f (x )max =2√39. 【解析】(1)求出函数的导数,求出切线的斜率,然后求解切线方程.(2)求出导函数,得到极值点,判断导函数的符号,利用函数的单调性求解函数的极值与端点值,即可得到函数的最大值.本题考查了导数的综合应用及函数的最值问题,属于中档题. 19.【答案】解:(1)∵命题p :“∀x ∈[1,2],x 2-a ≥0”,令f (x )=x 2-a ,根据题意,只要x ∈[1,2]时,f (x )min ≥0即可, 也就是1-a ≥0,解得a ≤1,∴实数a 的取值范围是(-∞,1];(2)由(1)可知,当命题p 为真命题时,a ≤1,命题q 为真命题时,△=4a 2-4(2-a )≥0,解得a ≤-2或a ≥1. ∵命题“p ∨q ”为真命题,命题“p ∧q ”为假命题, ∴命题p 与命题q 必然一真一假,当命题p 为真,命题q 为假时,{−2<a <1a≤1⇒−2<a <1, 当命题p 为假,命题q 为真时,{a ≤−2或a ≥1a>1⇒a >1, 综上:a >1或-2<a <1. 【解析】(1)由于命题p :“∀x ∈[1,2],x 2-a≥0”,令f (x )=x 2-a ,只要x ∈[1,2]时,f (x )min ≥0即可;(2)由(1)可知,当命题p 为真命题时,a≤1,命题q 为真命题时,△=4a 2-4(2-a )≥0,解得a 的取值范围.由于命题“p ∨q”为真命题,命题“p ∧q”为假命题,可知:命题p与命题q必然一真一假,解出即可.本题考查了简易逻辑的有关知识、函数的性质、方程的解、不等式组等基础知识与基本技能方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于中档题.20.【答案】解:(1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.(3')因为f(x)的定义域是[0,3],所以{0≤x+2≤30≤2x≤3,解之得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(或写成[0,1],否则扣1分)(6')(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.(8')∵x∈[0,1],即2x∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4;(10')当2x=1即x=0时,g(x)取得最大值-3.(12')【解析】(1)由f(x)=2x,知g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以,由此能求出g(x)的定义域.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.由2x∈[1,2],能求出函数g(x)的最大值和最小值.本题考查指数函数的综合题,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.21.【答案】解:(1)f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),∴2x2+bx+c<0的解集是(0,5),∴0和5是方程2x2+bx+c=0的两个根,由韦达定理知,−b2=5,c2=0,解得b=-10,c=0,∴f(x)=2x2-10x;(2)f(x)+t≤2恒成立等价于2x2-10x+t-2≤0恒成立,∴2x2-10x+t-2的最大值小于或等于0.设g(x)=2x2-10x+t-2≤0,则由二次函数的图象可知,g(x)=2x2-10x+t-2在区间[-1,1]为减函数,∴g(x)max=g(-1)=10+t≤0,解得t≤-10.【解析】(1)由题意可得,0和5是方程2x2+bx+c=0的两个根,然后利用根与系数的关系列式求得b,c的最值,则f(x)的解析式可求;(2)把问题转化为2x2-10x+t-2≤0在x∈[-1,1]上恒成立,即g(x)=2x2-10x+t-2在[-1,1]上的最大值小于等于0恒成立,由二次函数的图象可知,g(x)=2x2-10x+t-2在区间[-1,1]为减函数,求其最大值后利用最大值小于等于0列关于t的不等式求解.本题考查恒成立问题,考查数学转化思想方法,训练了利用函数单调性求二次函数的最值,是中档题.22.【答案】解:(Ⅰ)当a=1时,f(x)=2ln x-x2+1,f′(x)=2x −2x=−2(x2−1)x,x>0.令f′(x)=−2(x2−1)x<0,解得:x>1或x<-1,因为x>0,所以x>1,所以函数f(x)的单调递减区间是(1,+∞).(Ⅱ)f′(x)=2ax −2x=−2(x2−a)x,x>0.令f'(x)=0,由a>0,解得x1=√a,x2=−√a(舍去).当√a≤1,即0<a≤1时,在区间[1,+∞)上f'(x)≤0,函数f(x)是减函数.所以函数f(x)在区间[1,+∞)上的最大值为f(1)=0;当√a>综上所述:当0<a≤1时,函数f(x)在区间[1,+∞)上的最大值为f(1)=0;当a>1时,函数f(x)在区间[1,+∞)上的最大值为f(√a)=alna−a+1.【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的最大值即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.。

静宁县高中2019-2020学年高二上学期第一次月考试卷数学

静宁县高中2019-2020学年高二上学期第一次月考试卷数学

静宁县高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)2. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny3. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .34. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.5. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=( )A .2或0B .0C .﹣2或0D .﹣2或26. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D . 7. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 8. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)9. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .10.集合{}1,2,3的真子集共有( )A .个B .个C .个D .个11.设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .312.下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )二、填空题13.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)14.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .15.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .16.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.17.如图,在矩形ABCD 中,AB =3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________18.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)三、解答题19.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).21.化简:(1).(2)+.22.(本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =2,求DE 的长.23.本小题满分10分选修44-:坐标系与参数方程选讲在直角坐标系xoy中,直线的参数方程为322x y ⎧=-⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C 的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;Ⅱ设圆C 与直线交于点A B 、,若点P 的坐标为(3,,求PA PB +.24.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.静宁县高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.2.【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】C5.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.6.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.7.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

甘肃省静宁县第一中学2019-2020学年高二数学下学期第一次月考试题 理 答案

甘肃省静宁县第一中学2019-2020学年高二数学下学期第一次月考试题 理 答案
.
第 5 题答案 C 第 5 题解析 第一次执行, 第二次执行, 第三次执行, 第四次执行, 满足条件,则退出循环,所以输出 的值为 .故选
第 6 题答案 B 第 6 题解析
由抛物线
上的点 到其焦点 的距离比点 到 轴的距离大 ,根据抛物线
的定义可得
,∴
,所以抛物线的标准方程为:
.
第 7 题答案 C 第 7 题解析



.
第 8 题答案 B 第 8 题解析
由条件
,即
线的渐近线方程为
,得 .
,所以
,所以双曲
第 9 题答案 D 第 9 题解析 因为
所以
因为 所以
,
, ,即
, ,
,而
,
则有
,即
,由于
,所以
,
故选 D.
第 10 题答案
C
第 10 题解析
函数有两个极值点:

,但
函数在

上单调递增,在
不是函数的极值点,所以 D 错误,故选:C.

,所以二面角
的余弦值为
.
第 21 题答案 (1) 的方程为
.(2)见解析.
第 21 题解析
(1)由题意有
解得
所以 的方程为
(2)证明:设直线

代入
故 即
,
得 . 于是直线 的斜率 所以直线 的斜率与直线 的斜率的乘积为定值.
第 22 题答案 见解析. 第 22 题解析
(1)由题意知,要证
,只需证
,焦点坐标是
.
第 15 题解析 由题意得
,∴

第 16 题答案
第 16 题解析

甘肃省平凉市静宁县第一中学2020-2021学年高二上学期期中数学(文)试题

甘肃省平凉市静宁县第一中学2020-2021学年高二上学期期中数学(文)试题
(1)求椭圆 的标准方程;
(2)矩形 的四个顶点均在椭圆 上,求矩形 面积的最大值.
参考答案
1.C
【解析】
因为“若 ,则 ”的逆否命题为“若 ,则 ”,所以“若α= ,则tanα=1”的逆否命题是“若tanα≠1,则α≠ ”.
【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.
若p: , ,则 : , ;
命题“设a, ,若 ,则 或 ”为真命题;
“ ”是“函数 在 上单调递增”的充要条件.
其中所有正确结论的序号为______.
三、解答题
17.在下列条件下求双曲线标准方程
(1)经过两点 ;
(2) ,经过点 ,焦点在 轴上.
18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据
A.10B.12C.16D.20
8.已知命题 :直线 与直线 垂直, :原点到直线 的距离为 ,则()
A. 为假B. 为真C. 为真D. 为真
9.焦点在 轴上的椭圆 的离心率为 ,则 ( )
A. B. C. D.
10.下列说法中正确的是( )
A.“ ”是“ ”成立的充分不源自要条件B.命题 ,则C.为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40
C.若tanα≠1,则α≠ D.若tanα≠1,则α=
2.如图是容量为150的样本的频率分布直方图,则样本数据落在 内的频数为()
A.12B.48C.60D.80
3.命题“ 都有 ”的否定是()
A. ,使得 B. ,使得
C. ,都有 D. ,都有

【地理】甘肃省静宁县第一中学2019-2020学年高二上学期期末考试试题(解析版)

【地理】甘肃省静宁县第一中学2019-2020学年高二上学期期末考试试题(解析版)

甘肃省静宁县第一中学2019-2020学年高二上学期期末考试地理试题第Ⅰ卷(选择题)一、选择题读甲、乙两区域简图,完成下面小题。

1. 下列有关甲、乙两区域自然环境特征的叙述,正确的是( )A. 甲地区位于温带季风气候区B. 乙地区典型植被为亚热带常绿阔叶林C. 两地区河湖众多,河流径流季节变化都较小D. 甲地区矿产资源贫乏,乙地区矿产资源丰富2. 甲、乙两区域社会经济特征的共同点是( )A. 农业生产的限制性因素是热量不足B. 水陆交通便利,交通通达度高C. 加工制造业都接近原料、燃料产地D. 城市高度密集,城市化速度快【答案】1. D 2. B【解析】【1题详解】根据图示的海陆轮廓和重要的城市分布判断:甲表示我国长江三角洲地区,位于秦岭—淮河以南地区,为亚热带季风气候;乙地区为美国东北部工业区,受温带大陆性气候影响,自然植被为温带落叶阔叶林。

甲地区受季风气候影响,降水量的季节变化大,故河流径流量的季节变化较大。

我国长江三角洲地区主要的限制性条件即资源和能源不足;而乙地区附近有丰富的煤炭、铁矿资源。

综上所述,D正确。

故选D。

【2题详解】甲地区为我国长江三角洲地区,水热条件充足;两地都位于河流下游地区,且沿海,水陆交通便利,利于区域发展;长江三角洲地区主要的限制性条件为资源和能源不足,故加工制造业主要为市场指向型和劳动力指向型工业;两地区的城市高度密集,但乙地城市化水平高,城市化速度慢。

综上所述,B正确。

故选B。

“海草房”零星分布在胶东半岛的自然村中,屋顶用海草等覆盖,外面紧绷着渔网,屋顶呈50度角的“人”字坡形。

海草主要是用大叶海苔等野生藻类晒干后制成,含有大量卤盐和胶质。

海草房最大的特点是冬暖夏凉。

20世纪90年代以来,新建的海草房越来越少,旧的海草房大都弃之不用,一些经改良后仍然保留海草房特点的新式民居陆续出现。

下图为海草房景观图。

据此完成下面小题。

3. 古代海草房的建筑工艺的最主要作用是( )A. 海草为天然建筑材料,废弃后容易降解B. 呈50度角的人字坡形屋顶,整齐美观C. 海草含有大量卤盐和胶质,可防蚊虫D. 外面紧绷着渔网,可防盗、防风、防鸟4. 20世纪90年代以来,新建的海草房越来越少,旧的海草房大都弃之不用,一些经改良后仍然保留海草房特点的新式民居陆续出现。

甘肃省静宁县第一中学2019-2020学年高二数学下学期第一次月考试题 文 答案

甘肃省静宁县第一中学2019-2020学年高二数学下学期第一次月考试题 文 答案

,解得
,所以椭圆的方程为
.
(2)证明:由题设知,直线 的方程为
,代入
,得
,由已知
,设
,

,从而直线 与 的斜率之和
的斜率之和为定值.
第 22 题答案 见解答. 第 22 题解析
(1)
依题意得
,所以直线 与
,解得
.
所以
,
,

,得

;令
,得
,

的单调递增区间为

,
的单调递减区间是
.
(2)因为任意的
使得
,因此
第 12 题答案
D
第 12 题解析

时,
第 13 题答案 5
,故选 C.
,所以
.
第 13 题解析 ∵ ∴z 的实数是 5.
第 14 题答案 ,
第 14 题解析
命题“
,
,
”是特称命题,所以其否定为:
,
.
第 15 题答案
第 15 题解析 因为
,所以
,令
,得
,所以当
时,
,

上单调递增;

时,
,

上单调递减;当
(2)


,

时,
;当
时,
;当
时,
所以
的单调递增区间为

,单调递减区间为
;

时,
.
第 20 题答案 见解析
第 20 题解析
(1)因为
,∴
.
,即
①,因为 , , 成等比数列,即
,所以
,化简得:

【解析】甘肃省平凉市静宁县第一中学2019-2020学年高一上学期期末考试数学试卷

【解析】甘肃省平凉市静宁县第一中学2019-2020学年高一上学期期末考试数学试卷

静宁一中2019-2020学年度第一学期高一级第三次试题(卷)数 学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项填涂在答题卡上指定位置.)1.已知集合{|0A x x =<<,{}|12B x x =≤<,则()R C A B =I ( )A. {|1x x ≤≤B. {|1x x ≤<C. {}|2x x ≤<D. {}|2x x << 【答案】C【分析】先写出A 的补集,再根据交集运算求解即可.【详解】因为{|0R C A x x x =≤≥或,所以()R C A B ⋂={|2}x x ≤<,故选C.【点睛】本题主要考查了集合的补集,交集运算,属于容易题.2.设122a =,133b =,3log 2c =,则( ) A. b a c << B. a b c << C. c b a << D. c a b <<【答案】D试题分析:由已知1221a =>,1331b =>,且616228a ⎛⎫== ⎪⎝⎭,616339b ⎛⎫== ⎪⎝⎭,1b a ∴>>, 而3log 2c =<1,所以c<a<b考点:指数的幂运算.3.已知函数()()22231m m f x m m x +-=--幂函数,且其图象与两坐标轴都没有交点,则实数(m = )A. 1-B. 2C. 3D. 2或1-【答案】A【分析】根据幂函数的定义,求出m 的值,代入判断即可. 【详解】函数()()22231m m f x m m x +-=--是幂函数,211m m ∴--=,解得:2m =或1m =-,2m =时,()f x x =,其图象与两坐标轴有交点不合题意,1m =-时,()41f x x=,其图象与两坐标轴都没有交点,符合题意, 故1m =-,故选A . 【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题.4.如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A. 2+B. 2+C. 6D. 8【答案】D试题分析:还原实际图形如图所示,,,,所以周长就是,故选D.考点:直观图5.若斜率为2的直线经过()3,5,(),7a ,()1,b -三点,则a ,b 的值是( ) A. 4a =,0b =B. 4a =-,3b =-C. 4a =,3b =-D. 4a =-,3b =【答案】C【分析】根据两点间斜率公式列方程解得结果. 【详解】斜率为2的直线经过()3,5,(),7a ,()1,b -三点,∴7552313b a --==---,解得4a =,3b =-.选C.【点睛】本题考查两点间斜率公式,考查基本求解能力,属基础题.6.如图,在正方体1AC 中,异面直线AC 与1A B 所成的角为( )A. 90B. 60C. 45D. 30【答案】B【分析】 由11//A B D C ,得1ACD ∠是异面直线AC 与1A B 所成的角(或所成角的补角),由此能求出异面直线AC 与1A B 所成的角.【详解】11//A B D C ,1ACD ∴∠是异面直线AC 与1A B 所成的角(或所成角的补角),11AC CD AD ==,160ACD ∴∠=,∴异面直线AC 与1A B 所成的角为60.故选B .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.7.函数()3log 3f x x x =+-的零点所在的区间是( )A. ()0,2B. ()1,2C. ()2,3D. ()3,4【答案】C由于3(2)log 210,(3)10f f =-=,故选C .8.对于空间中的直线m ,n 以及平面α,β,下列说法正确的是( )A. 若//αβ,m α⊂,n β⊂,则//m nB. 若//αβ,m α⊥,m n ⊥,则//n βC. 若αβ⊥,//m α,//n β,则m n ⊥D. 若m n ⊥,//αβ,m α⊥,则n β⊥【答案】D【分析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A 选项,m ,n 可能异面,故A 错误;对于B 选项,可能有n β⊂,故B 错误;对于C 选项,m ,n 的夹角不一定为90°,故C 错误;故对D 选项,因为//αβ,m α⊥,故m β⊥,因为//m n ,故n β⊥,故D 正确. 故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.9.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体得体积是( 2)c m .A. 43B. 83C. 2D. 4【答案】B【分析】先根据三视图得到几何体的形状,然后再根据条件中的数据求得几何体的体积.【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,如下图中的四棱锥P ABCD -.由题意得其底面面积S 224=⨯=,高h 2=, 故几何体的体积18V Sh 33==. 故选B .【点睛】由三视图还原几何体的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体.(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线.(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体.10.已知偶函数()f x 在区间(],0-∞单调递减,则满足()()21f x f x -≤的x 取值范围是( )A. [)1,+∞B. (],1-∞ C. ][1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭D. 1,13⎡⎤⎢⎥⎣⎦【答案】D【分析】 根据题意,结合函数的奇偶性与单调性分析可得()()22f 2x 1f x 2x 1x (2x 1)x -≤-≤-≤,即,即,解不等式可得x 的取值范围,即可得答案.【详解】根据题意,偶函数()f x 在区间(],0-∞单调递减,则()f x 在[)0,+∞上为增函数, 则()()()()22212121(21)f x f x fx f x x x x x -≤⇒-≤⇒-≤⇒-≤, 解可得:113x ≤≤, 即x 的取值范围是1,13⎡⎤⎢⎥⎣⎦;故选D .【点睛】本题考查函数奇偶性与单调性综合应用,注意将()()21f x f x -≤转化为关于x 的不等式,属于基础题.11.已知函数()f x ax b =+的图象如图所示,则函数()x b f x a -+=的图象为( )A B. C. D.【答案】A【分析】根据函数()f x ax b =+的图象,可得a ,b 的范围,结合指数函数的性质,即可得函数()x b f x a -+=的图象.【详解】解:通过函数()f x ax b =+的图象可知:10b -<<,当1x =时,可得0a b +<,即01a b <<-<.函数()1()x b x b f x a a-+-==是递增函数;排除C ,D .当0x =时,可得()0b f a =,10b -<<,01a b <<-<,()01b f a ∴=>.故选A .【点睛】本题考查了指数函数的图象和性质,属于基础题.12.用{,min a b ,}c 表示a ,b ,c 三个数中的最小值.设函数(){}()2,1,90x f x min x x x =+-≥,则函数()f x 的最大值为( )A. 4B. 5C. 6D. 7 【答案】B【分析】在同一坐标系内画出三个函数9y x =-,1y x =+,2x y =的图象,以此确定出函数()f x 图象,观察最大值的位置,通过求函数值,解出最大值.【详解】(){}()2,1,90x f x min x x x =+-≥如图所示:则()f x 的最大值为1y x =+与9y x =-交点的纵坐标,由19y x y x =+⎧=-⎨⎩,得()4,5A 即当4x =时,5y =.故选B .【点睛】本题考查了函数的概念、图象、最值问题.利用了数形结合的方法.关键是通过题意得出()f x 的简图.二、填空题(本题共4小题,共20分,将正确答案填写在答题卡上)13.设函数()ln ,13,1x x f x x x >⎧=⎨-≤⎩,则()()f f e =____________. 【答案】2【分析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知()ln 1f e e ==,所以()1312f =-=,故答案为:2.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.14.0.258+(1258-)0+323log =_____. 【答案】5【分析】根据根式、指数和对数运算化简所求表达式. 【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.15.如果用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是_____.【分析】通过半圆的弧长得到圆锥底面的圆的半径,从而得到圆锥筒的高.【详解】设圆锥底面的半径为r ,高为h ,则22ππ=r ,故1r =,h ==. 【点睛】一般地,圆锥侧面展开图为扇形,其半径就是圆锥的母线长,其弧长就是圆锥底面的周长.16.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)①PB ⊥AD ;②平面P AB ⊥平面PBC ;③直线BC ∥平面P AE ;④sin ∠PDA =.【答案】④【分析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】∵P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,∴①不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,∵P A ⊥BC ,∴BC ⊥平面P AB ,∴BC ⊥AB ,矛盾,所以②不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以③不正确;在R t △P AD 中,由于AD =2AB =2P A ,∴sin ∠PDA 5=,所以④正确;故答案为: ④【点睛】本题考查线面位置关系的判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直. 三、解答题(本大题共6小题,共70分) 17.已知集合()(){|2220}A x x m x m =--+≤,其中m R ∈,集合1{|0}2x B x x -=≤+. ()1若1m =,求A B ⋃;()2若A B A ⋂=,求实数m 的取值范围.【答案】(1){|22}x x -<≤;()120.2m ≤≤ 【分析】()1解出二次不等式以及分式不等式得到集合A 和B ,根据并集的定义求并集;()2由集合A 是集合B 的子集,可得A B ⊆,根据包含关系列出不等式,求出m 的取值范围.【详解】集合{|222}A x m x m =-≤≤,由102x x -≤+,则()()12020x x x -+≤⎧+≠⎨⎩, 解得21x -<≤, 即{|21}B x x =-<≤,()11m =,则[]0,2A =,则{|22}A B x x ⋃=-<≤.()2A B A ⋂=,即A B ⊆,可得{22212m m -≤-≥,解得102m ≤≤, 故m 的取值范围是10.2m ≤≤【点睛】本题考查集合的交并运算,以及由集合的包含关系求参数问题,属于基础题.在解有关集合的题的过程中,要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇. 18.已知()1,1M -,()2,2N ,()3,0P.(1)求点Q 的坐标,满足PQ MN ⊥,//PN MQ ;(2)若点Q 在x 轴上,且NQP NPQ ∠=∠,求直线MQ 的倾斜角. 【答案】(1)()0,1Q ;(2)90︒. 【分析】(1)设(),Q x y ,根据PQ MN ⊥得出313y x ⨯=--,然后由//PN MQ 得出121y x +=--,解方程组即可求出Q 的坐标;(2)设(),0Q x 由NQP NPQ ∠=∠得出NQ NP k k =-,解方程求出Q 的坐标,然后即可得出结果.【详解】解:(1)设(),Q x y ,由已知得:3MN k =, 又PQ MN ⊥,可得:1PQ MN k k ⋅=-, 即:313yx ⨯=-- ① 由已知得:2PN k =-,又//PN MQ ,可得:PN MQ k k =,即:121y x +=-- ② 联立①②求解得:0x =,1y =, 即()0,1Q ;(2)设(),0Q x ,∵NQP NPQ ∠=∠, ∴NQ NP k k =-, 又∵22NQ k x=-,2NP k =-, ∴222x=-, 即1x =, ∴()1,0Q , 又∵()1,1M -, ∴MQ x ⊥轴, 故直线MQ倾斜角为90︒.【点睛】本题主要考查了的斜率以及与倾斜角的关系,熟练掌握斜率公式是解题的关键,属于中档题.19.设函数()()log 01a f x x a a =>≠且,函数2()g x x bx c =-++,且(4)(2)1f f -=,()g x 的图象过点(4,5)A -及(25)B --,. (1)求()f x 和()g x 的解+析式; (2)求函数()f g x ⎡⎤⎣⎦的定义域和值域.【答案】(1)()2log f x x =,()223g x x x =-++;(2)()1,3-,(],2-∞.【分析】(1)根据()()421f f -=得出关于a 方程,求解方程即可;(2)根据()g x 的图象过点()4,5A -及()25B ,--,列方程组求得()g x 的解+析式,可得()()223f g x log x x ⎡⎤=-++⎣⎦,解不等式2230x x -++>可求得定义域,根据二次函数的性质,配方可得(]2230,4x x -++∈,利用对数函数的单调性求解即可.【详解】(1)因为()()442log 1,2a f f -== 2a ∴= , ()2l o g f x x= ; 因为()g x 的图象过点()4,5A -及()25B ,--, 所以164524253b c b b c c -++=-=⎧⎧⎨⎨--+=-=⎩⎩,得, ()223g x x x ∴=-++ ;(2)()()22log 23,f g x x x ⎡⎤=-++⎣⎦由2230x x -++>,得13,x -<<∴函数()f g x ⎡⎤⎣⎦的定义域为()1,3-()(]221,3,23410,4x x x x ∈-∴-++=--∈() ,()(]22log 23,2x x ∴-++∈-∞,即()f g x ⎡⎤⎣⎦的值域为(],2-∞.【点睛】本题主要考查函数的解+析式、定义域与值域,属于中档题. 求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间 ,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.20.在三棱锥P ABC -中,PAC ∆和PBC ∆的等边三角形,2AB =,,O D 分别是,AB PB 的中点.(1)求证://OD 平面PAC ; (2)求证:OP ⊥平面ABC ; (3)求三棱锥D ABC -的体积. 【答案】(1)见解+析(2)见解+析(3)13. 【分析】()1由三角形中位线定理,得出//OD PA ,结合线面平行的判定定理,可得//OD 平面PAC ;()2等腰PAB △和等腰CAB △中,证出1PO OC ==,而PC =理,得PO OC ⊥,结合PO AB ⊥,可得PO ⊥平面ABC ;()3由()2易知PO 是三棱锥P ABC -的高,算出等腰ABC 的面积,再结合锥体体积公式,可得三棱锥P ABC -的体积.【详解】() 1O ,D 分别为AB ,PB 的中点,//OD PA ∴又PA ⊂平面PAC ,OD ⊄平面PAC//OD ∴平面.PAC()2如图,连接OCAC CB ==,O 为AB 中点,2AB =,OC AB ∴⊥,且1OC ==.同理,PO AB ⊥, 1.PO = 又2PC =,2222PC OC PO ∴==+,得90POC ∠=.PO OC ∴⊥.OC 、AB ⊆平面ABC ,AB OC O ⋂=, PO ∴⊥平面.ABC()3PO ⊥平面ABC ,OP ∴为三棱锥P ABC -的高,结合1OP =,得棱锥P ABC -的体积为1111211.3323P ABC ABCV S OP -=⋅=⨯⨯⨯⨯= 【点睛】本题给出特殊三棱锥,求证线面平行、线面垂直并求锥体体积,考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.21.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:AEC PDB ⊥平面平面;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【答案】(1)见解+析 (2)4π 【分析】(Ⅰ)欲证平面AEC ⊥平面PDB ,根据面面垂直的判定定理可知在平面AEC 内一直线与平面PDB 垂直,而根据题意可得AC ⊥平面PDB ;(Ⅱ)设AC∩BD=O ,连接OE ,根据线面所成角的定义可知∠AEO 为AE 与平面PDB 所的角,在Rt △AOE 中求出此角即可. 【详解】(1)证明:∵底面ABCD 是正方形 ∴AC ⊥BD 又PD ⊥底面ABCD PD ⊥AC所以AC ⊥面PDB 因此面AEC ⊥面PDB(2)解:设AC 与BD 交于O 点,连接EO 则易得∠AEO 为AE 与面PDB 所成的角 ∵E 、O 为中点 ∴EO =12PD ∴EO ⊥AO∴在Rt △AEO 中 OE =12PD =2AB =AO ∴∠AEO =45° 即AE 与面PDB 所成角的大小为45° 【此处有视频,请去附件查看】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.22.定义在[]3,3-上的奇函数()f x ,已知当[]3,0x ∈-时,()()143x xaf x a R =+∈. ()1求实数a 的值;()2求()f x 在(]0,3上的解+析式;()3若存在[]2,1x ∈--时,使不等式()1123xx m f x -≤-成立,求实数m 的取值范围. 【答案】(1)1a =-;(2)()34xxf x =-;(3)5m ≥. 【分析】()1根据题意,由函数奇偶性的性质可得()010f a =+=,解可得a 的值,验证即可得答案;()2当(]0,3x ∈时,[]3,0x -∈-,求出()f x -的解+析式,结合函数的奇偶性分析可得答案;()3根据题意,若存在[]2,1x ∈--,使得()1123x x m f x -≤-成立,即11114323x x x x m --≤-在[]2,1x ∈--有解,变形可得122()23xxm ≥+⋅在[]2,1x ∈--有解.设()122()23xx g x =+⋅,分析()g x 的单调性可得()g x 的最小值,从而可得结果.【详解】() 1根据题意,()f x 是定义在[]3,3-上的奇函数, 则()010f a =+=,得 1.a =-经检验满足题意; 故1a =-;()2根据题意,当[]3,0x ∈-时,()1114343x x x x a f x =+=-, 当(]0,3x ∈时,[]3,0x -∈-,()114343x xx x f x ---=-=-.又()f x 是奇函数,则()()34xxf x f x =--=-.综上,当(]0,3x ∈时,()34xx f x =-;()3根据题意,若存在[]2,1x ∈--,使得()1123xx m f x -≤-成立, 即11114323x x x x m --≤-在[]2,1x ∈--有解, 即12243x x x m ≥+在[]2,1x ∈--有解. 又由20x >,则122()23xx m ≥+⋅在[]2,1x ∈--有解.设()122()23xx g x =+⋅,分析可得()g x 在[]2,1x ∈--上单调递减,又由[]2,1x ∈--时,()1112()12()523min g x g --=-=+⋅=,故5m ≥.即实数m 的取值范围是[)5,+∞.【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学期末考试试题 1 甘肃省静宁县第一中学2019-2020学年

高二上学期期末考试(文)(解析版)

一、选择题(每小题5分,共12小题60分) 1、已知,则等于( ) A. B. C. D. 2、从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是,摸出的

球是黑球的概率是,那么摸出的球是白球或黑球的概率是( ) A. B. C. D. 3、向如图所示的正方形内随机地投掷飞镖,飞镖落在阴影部分内的概率为( )

A. B. C. D. 4、已知回归直线的斜率的估计值为,样本点的中心为,则回归直线方程为( ) A. B. C. D. 5、点在直线上;点在曲线上,则使“”为真命题的一个点

是( ) A. B. C. D.

6、抛物线的准线方程为( )

A. B. C. D. 7、已知函数的导函数的图象如图所示,则的图象可能是

( ) 高二数学期末考试试题

2 A. B. C. D. 8、设,则“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 9、如果执行右面的框图,输入,则输出的数等于( )

A. B. C. D. 10、已知椭圆的焦点是,,点为椭圆上一点,且是与

的等差中项,则椭圆方程是( )

A. B. C. D. 11、中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为( ) A. B. C. D.

12、已知,为椭圆的两个焦点,(不在轴上)为椭圆

上一点,且满足,则椭圆离心率的取值范围是( ) A. B. C. D.

二、填空题(每小题5分,共4小题20分) 13、命题“若,则”的否命题为__________.

14、曲线在处的切线方程为__________. 15、过点作直线与双曲线有且仅有一个公共点,这样的直线有________条.

高二数学期末考试试题 3 16、直线经过抛物线的焦点,且与抛物线交于两点,若,则直线的斜率为__________. 三、解答题(第17题10分,第18题12分,第19题12分,第20题12分,第21题12分,第22题12分,共6小题70分) 17、一个袋中有四个形状大小完全相同的球,球的编号分别为. (1)从袋中随机取出两球,求取出两球的编号之和不大于的概率. (2)先从袋中随机取出一个球,该球的编号为,将球放回袋中,然后再从袋中随机取出一

个,该球的编号为,求的概率.

18、已知函数,且. (1)求的值; (2)求函数在上的最大值和最小值.

19、省《体育高考方案》于年月份公布,方案要求以学校为单位进行体育测试,某校 对高三班学按照高考测试项目按百分制进行了预备测试,并对分以上的成绩进行统计,其频率分布直方图如图所示,若分数段的人数为人. 高二数学期末考试试题 4

(Ⅰ)请估计一下这组数据的平均数; (Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第

五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.

20、已知抛物线:与直线交于两点. (1)求弦的长度; (2)若点在抛物线上,且的面积为,求点的坐标.

21、已知函数. (1)求函数的极值点; (2)设函数,其中,求函数在区间上的最小值(其中

为自然对数的底数).

22、已知椭圆的一个顶点是,离心率为. (1)求椭圆的方程; (2)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形

面积的最小值与最大值. 高二数学期末考试试题 5 参考答案 第1题答案C 第1题解析,,∴. 第2题答案D 第2题解析从袋中摸一个球,摸到的是红球,是白球,是黑球这三个事件是互斥的,因此摸出的球是白球或黑球的概率为. 第3题答案B 高二数学期末考试试题 6 第3题解析阴影部分内的面积, ∴. 第4题答案C 第4题解析由回归直线的斜率的估计值为,可排除D由线性回归直线方程样本点的中心为,将分别代入A、B、C,其值依次为,排除A、B . 第5题答案B

第5题解析点的坐标满足解得或. 第6题答案 第6题解析由题意,抛物线,可知,且开口向上,所以其准线方程为. 第7题答案D 第7题解析由图可知,设导函数的两个零点为,,则原函数在单调递减,单调递增,

单调递减,由图可知选项D正确. 第8题答案A

第8题解析 由题意得,不等式,解得或,所以“”是“”的充分而不必要条件,故选A. 第9题答案D

第9题解析 初始值,,循环下去,,成立;,,成立;

,,成立;,,成立;,,不成立,输出. 第10题答案C 第10题解析 由题意知:,又∵,∴,则,

,,故椭圆的方程为. 第11题答案A 第11题解析 由题意可知,此双曲线的渐近线方程为,则渐近线过点,

即,,所以.故选A. 第12题答案A 第12题解析 由椭圆的定义,得,平方得 ①. 由,∴ ②, 由余弦定理,得 ③,

由①②③,得,∴,.

,∴,即,∴. 则椭圆离心率的取值范围是.故选C. 第13题答案“若,则” 高二数学期末考试试题 7 第13题解析命题“若,则”的否命题为“若,则”, 第14题答案 第14题解析 的导数为,可得曲线在处的切线斜率为,即有切线方程为. 第15题答案4 第15题解析由题可知有两条直线与双曲线相切,有两条与渐近线平行,共条.

第16题答案 第16题解析 依题意,抛物线的焦点, 设直线的方程为

由,得,设,.

∴,,∵,∴即,∵,∴,解得或,∴或,又,将

代入解得. 第17题答案略 第17题解析 (1)从袋中随机取出两球,其一切可能的结果组成的基本事件有:“和”,“和”,“和”,“和”,“和”,“和”,共个;编号之和不大于的基本事件有“和”,“和”,共个,所以所求

事件的概率; (2)先从袋中随机取出一个球,记下编号为,将球放回袋中,然后再从袋中随机取出一个球,

记下编号为,其结果用表示,共有,,,,个基本事件,其中不满足的事件有,共个,满足条件的共有个,所以满足条件的事件概率.

第18题答案(1);(2). 第18题解析 (1)∵,,∴.

(2)令,得或;令,得. ∴在,上单调递增;在上单调递减. ∴极大值为,极小值为, 又,∴. 第19题答案略 第19题解析(1)数学成绩的平均数为 (分). 低于分的频率为, 高二数学期末考试试题 8 低于分的频率为, 设数学成绩的中位数为分,则,解得. 所以该年级同学数学成绩的中位数约为. (2)不低于分的同学中,由频率分布直方图估计在内的概率为,在 内的概率,所以按照分层抽样的方式抽出名同学,应该从成绩在 内的同学中抽取名,分别设为,,从成绩在内的同学中抽取名,设为. 先后发言,共有种等可能结果:,,,,,, 其中在同一组的同学发言时顺序相邻的有种结果:,,,. 所以选出的名同学中同一组的同学发言时顺序相邻的概率为. 第20题答案见解答.

第20题解析 1)设点,由可得,解得或4, ∴点两点的坐标为,故. (2)设点,点到的距离为, ,

,所以,即,解得或,所以点的坐标为或. 第21题答案(1)是函数的极小值点,无极大值点;(2)见解析.

第22题解析 (1),,由,得, 所以在区间上单调递减,在区间上单调递增. 所以是函数的极小值点,无极大值点. (2),则,由,得. 所以在区间上,为减函数,在区间上,为增函数. 当,即时,在区间上,为增函数, 所以的最小值为; 当,即时,的最小值为; 当,即时,在区间上,为减函数,所以的最小值为. 综上,当时,的最小值为;当时,的最小值为;当时,的最小值为. 第22题答案(1);(2)当时有最大值10;当时,有最小值8. 第22题解析(1)由题意,椭圆的一个顶点是, 所以,又离心率为,即, 解得,故椭圆C的方程是;

相关文档
最新文档