汽车理论(二)名词解释
汽车理论常用的名词解释

汽车理论常用的名词解释引言:汽车已经成为现代社会不可或缺的一部分,它在我们的生活中发挥着重要的作用。
然而,对于许多人来说,汽车领域的名词和术语可能令人困惑。
在本文中,我们将解释一些汽车理论常用的名词,帮助读者更好地理解汽车技术和概念。
1. 动力系统动力系统是指驱动汽车运行的能源来源,通常包括发动机、传动系统和燃料系统。
发动机是汽车的心脏,它将燃料转化为机械能,驱动车轮运动。
传动系统负责将发动机的动力传递给车轮,常见的传动系统包括手动变速器和自动变速器。
燃料系统则负责供应燃料给发动机,并确保燃料的燃烧效率。
2. 悬挂系统悬挂系统是汽车的重要组成部分,它连接车身和车轮,减震和保持车身的稳定性。
常见的悬挂系统包括独立悬挂和非独立悬挂。
独立悬挂允许每个车轮单独运动,提供更好的悬挂效果和行驶舒适性。
非独立悬挂则更简单和经济实用,适用于一些传统的小型汽车。
3. 制动系统制动系统是用于减速和停车的关键系统。
常见的制动系统包括盘式制动系统和鼓式制动系统。
盘式制动系统通过压紧刹车盘上的刹车片来实现制动效果,具有较好的散热性能和制动力。
鼓式制动系统则通过压紧刹车鼓内的刹车片来实现制动效果,适用于一些较低速度的车辆。
4. 车身结构车身结构是指汽车的外部形状和内部构造,它对于汽车的安全性、稳定性和舒适性有着重要的影响。
常见的车身结构包括轿车、SUV、MPV等。
轿车通常具有较低的底盘高度,适合城市行驶和舒适驾驶。
SUV具有较高的路面离去角和通过角,适合越野和不平路面驾驶。
MPV则注重座椅的多功能性和空间利用率,适合家庭出行和商务需求。
5. 节能环保技术随着环境保护意识的提升,节能环保技术在汽车领域的应用也越来越重要。
常见的节能环保技术包括混合动力和纯电动技术。
混合动力汽车结合了传统燃油发动机和电动机的优势,减少了燃料消耗和尾气排放。
纯电动汽车则完全依靠电能驱动,零尾气排放,具有更好的环保性能。
结论:在汽车理论中,理解常见名词的含义对于了解汽车技术和概念至关重要。
汽车理论总结

汽车理论
6
汽车理论
第一章总结
8. 汽车行驶的附着条件
(1) 汽车行驶的附着条件 C2 ≤
(2) 附着率的含义
附着率是表明汽车附着性能的一个重要指标,是汽车 驱动轮在不滑转工况下充分发挥驱动力作用所要求的最低 地面附着系数。
(3) 等效坡度
令
qi 1 cos
1 du g dt
,理解为包含加速阻力在内的等效坡度
4. 附着系数与滑动率之间的关系 5. 附着系数的影响因素 主要决定于道路的材料、路面 的状况与轮胎结构、胎面花纹、材 料以及汽车运动的速度等因素。 6. 滑水现象 7. 制动效能 制动距离分析(制动过程、制 动距离的影响因素、制动器起作用 时间对制动距离的影响)
•青岛大学车辆工程系
汽车理论
16
汽车理论
汽车理论
第一章 总结
1. 汽车动力性的基本概念;
2. 汽车动力性的评价指标;
3. 汽车的驱动力;
Ft
Ttqig i0 T
r
(1) 发动机的特性
发动机的外特性、部分负荷特性、使用特性曲线
(2) 机械效率 (3) 车轮半径 自由半径、静力半径、滚动半径 (4) 汽车的驱动力图
•青岛大学车辆工程系
1
汽车理论
参数
•青岛大学车辆工程系
14
第四章总结
汽车理论
1.汽车制动性的基本概念
2.汽车制动性的评价指标
制动效能、制动效能的恒定 性、制动时的方向稳定性
3.地面制动力、制动器制 动力与附着力之间的关系
汽车的地面制动力首先取决于制动器制动力,但同时又 受地面附着条件的限制。
•青岛大学车辆工程系
15
第四章总结
汽车理论(第五版)名词解释汇总

汽车理论(第五版)名词解释汇总1、等速百公里油耗:汽车在一定的载荷下,以最高档位在水平良好路面等速行驶100KM所消耗燃油量。
2、滑水现象:在某一车速下,在胎面下的动水压力的升力等于垂直载荷,轮胎将完全漂浮于水面上与路面毫无接触3、驱动力F t:发动机产生的转矩经传动系传到驱动轮,产生驱动力矩T t,驱动轮在T t的作用下给地面作用一圆周力F0,地面对驱动轮的反作用力F t即为驱动力。
4、汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
5、发动机的转速特性:发动机的转速特性,即Pe、Ttq、b=f(n)关系曲线。
P36、使用外特性曲线:带上全部附件设备时的发动机特性曲线,称为使用外特性曲线。
7、自由半径:车轮处于无载时的半径。
8、静力半径r s:汽车静止时,车轮中心至轮胎与道路接触面间的距离。
9、>10、滚动半径r r:车轮几何中心到速度瞬心的距离。
11、驱动力图:P712、轮胎的迟滞损失:轮胎在加载变形时所消耗的能量在卸载恢复时不能完全收回,一部分能量消耗在轮胎内部摩擦损失上,产生热量,这种损失称为轮胎的迟滞损失。
13、驻波现象:在高速行驶时,轮胎离开地面后因变形所产生的扭曲并不立即恢复,其残余变形形成了一种波,这就是驻波。
此时轮胎周缘不再是圆形,而呈明显的波浪形。
轮胎刚离开地面时波的振幅最大,它按指数规律沿轮胎圆周衰减。
14、空气阻力:汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。
15、压力阻力:作用在汽车外形表面上的法向压力的合力在行驶方向上的分力。
16、内循环阻力:满足冷却、通风等需要,使空气流经车体内部时构成的阻力。
17、诱导阻力:空气升力在水平方向的投影。
18、空气升力:由于流经车顶的气流速度大于流经车底的气流速度,使得车底的空气压力大于车顶,从而空气作用在车身上的垂直方向的压力形成压差,这就是空气升力。
19、摩擦阻力:由于空气粘性作用在车身表面产生的切向力的合力在行驶方向的分力。
名词解释

一、名词解释:1.理想气体:所谓理想气体,就是分子本身不占有体积,分子间又没有吸引力的气体。
理想气体仅是一种理想模型。
在发动机热力分析中,常把空气、燃气等都近似地看做理想气体,因为其分子间引力和分子本身的体积就可忽略不计。
2.发动机特性:发动机平均有效压力pe、有效扭矩Te、有效功率Pe、有效燃料消耗率ge、每小时耗油量G T等性能指标随运转工况而变化的关系称为发动机特性。
3.转速特性(汽油机):节气门开度保持不变,发动机性能指标Pe、Te、ge等随发动机转速n变化的关系叫做发动机的转速特性。
4.有效功率:有效功率Pe(kw),是发动机从曲轴输出的净功率。
5.汽车的动力性:汽车动力性的主要指标是汽车最高行驶速度。
最大爬坡度和加速能力。
6.汽车的通过性:它是指汽车在一定的装载质量下能以足够的的平均速度通过坏路面或无路地带及克服各种障碍物的能力。
7.汽车的行驶平顺性:它是指汽车抵抗路面不平度所引起的冲击和振动的能力。
8.I线、β线:习惯上把任何路面上均能满足前后轮自动抱死的前后轮制动力分配关系曲线成为理想的制动器制动力分配曲线,简称I曲线。
大多数两轴汽车的前、后轮制动器动力之比为一固定常值。
常用前制动器制动力与汽车总制动力制动力之比来表明分配的比例,称为制动器制动力分配系数,并用符号β表示。
9.驻波现象:驻波现象是引起爆胎的实质原因胎面发生的弹性形变来不及恢复的现象称为驻波,高速行驶时驻波现象对胎体结构的破坏是致命的,胎压不足易出现驻波现象10.最小转弯半径:最小转弯半径是指当转向盘转到极限位置,汽车以最低稳定车速转向行驶时,外侧转向轮的中心平面在支承平面上滚过的轨迹圆半径。
11.内轮差:内轮差(Difference of Radius Between Inner Wheels)是车辆转弯时内前轮转弯半径与内后轮转弯半径之差。
12.制动跑偏:制动时汽车自动向左或向右偏驶称为“制动跑偏”。
13.制动侧滑:制动时汽车的某一轴或两轴发生横向移动。
(完整版)《汽车理论》知识点最新全总结

《汽车理论》知识点全总结第一部分:填空题第一章.汽车的动力性.从获得尽可能高的平均行驶速度的观点出发,汽车的动力性指标主要是:()汽车的最高车速()汽车的加速时间()汽车的最大爬坡度。
.常用原地起步加速时间和超车加速时间来表明汽车的加速性能。
.汽车在良好路面的行驶阻力有:滚动阻力,空气阻力,坡道阻力,加速阻力。
.汽车的驱动力系数是驱动力与径向载荷之比。
.汽车动力因数Ψδ。
.汽车行驶的总阻力可表示为:∑。
其中,主要由轮胎变形所产生的阻力称:滚动阻力。
.汽车加速时产生的惯性阻力是由:平移质量和旋转质量对应的惯性力组成。
.附着率是指:汽车直线行驶状况下,充分发挥驱动力作用时要求的最低地面附着系数。
.汽车行驶时,地面对驱动轮的切向反作用力不应小于滚动阻力、加速阻力与坡道阻力之和,同时也不可能大于驱动轮法向反作用力与附着系数的乘积。
.车速达到某一临界车速时,滚动阻力迅速增长,此时轮胎发生驻波现象。
第二章.汽车的燃油经济性.国际上常用的燃油经济性评价方法主要有两种:即以欧洲为代表的百公里燃油消耗量和以美国为代表的每加仑燃油所行驶的距离。
.评价汽车燃油经济性的循环工况一般包括:等速行驶,加速、减速和怠速停车多种情况。
.货车采用拖挂运输可以降低燃油消耗量,主要原因有两个:()带挂车后阻力增加,发动机的负荷率增加,使燃油消耗率下降()汽车列车的质量利用系数(即装载质量与整车整备质量之比)较大。
.从结构方面提高汽车的燃油经济性的措施有:缩减轿车尺寸和减轻质量、提高发动机经济性、适当增加传动系传动比和改善汽车外形与轮胎。
.发动机的燃油消耗率,一方面取决于发动机的种类、设计制造水品;另一方面又与汽车行驶时发动机的负荷率有关。
.等速百公里油耗正比于等速行驶时的行驶阻力与燃油消耗率,反比于传动效率。
第三章.汽车动力装置参数的选定.汽车动力装置参数系指:发动机的功率和传动系的传动比;它们对汽车的动力性和燃油经济性有很大影响。
汽车发动机原理与汽车理论名词解释最终

发动机原理部分123发动机理论循环:将非常复杂的实际工作过程加以抽象简化,忽略次要因素后建立的循环模式。
循环热效率t η:工质所做循环功与循环加热量之比,用以评定循环经济性。
指示热效率it η:发动机实际循环指示功与所消耗的燃料热量的比值。
有效热效率et η:实际循环的有效功与所消耗的热量的比值。
指示性能指标:以工质对活塞所作功为计算基准的指标。
有效性能指标:以曲轴对外输出功为计算基准的指标。
指示功率i P :发动机单位时间内所做的指示功。
有效功率e P :发动机单位时间内所做的有效功。
机械效率m η:有效功率e P 与指示功率i P 的比值。
平均指示压力m i p :单位气缸工作容积,在一个循环中输出的指示功。
平均有效压力m e p :单位气缸工作容积,在一个循环中输出的有效功。
有效转矩tq T :由功率输出轴输出的转矩。
指示燃油消耗率i b :每小时单位指示功所消耗的燃料。
有效燃油消耗率e b :每小时单位有效功率所消耗的燃料。
指示功i W :气缸内每循环活塞得到的有用功。
有效功e W :每循环曲轴输出的单缸功量。
示功图:表示气缸内工质压力随气缸容积或曲轴转角的变化关系的图像。
p V -图即为通常所说示功图,p ϕ-图又称为展开示功图。
换气过程:包括排气过程(排除缸内残余废气)和进气过程(冲入所需新鲜工质,空气或者可燃混合气)。
配气相位:进、排气门相对于上、下止点早开、晚关的曲轴转角,又称进排气相位。
排气早开角:排气门打开到下止点所对应的曲轴转角。
排气晚关角:上止点到排气门关闭所对应的曲轴转角。
进气早开角:进气门打开到上止点所对应的曲轴转角。
进气晚关角:下止点到进气门关闭所对应的曲轴转角。
气门重叠:上止点附近,进、排气门同时开启着地现象。
扫气作用:新鲜工质进入气缸后与缸内残余废气混合后直接排入排气管中。
排气损失:从排气门提前打开,直到进气行程开始,缸内压力到达大气压力前循环功的损失。
汽车理论答案

汽车理论试题答案一.名词解释1.中性转向点:使汽车前、后轮产生同一侧偏角的侧向力作用点。
2.轮胎的侧偏现象:当车轮有侧向弹性时,即使FY没有达到附着极限,车轮行驶方向亦将偏离车轮平面,这就是轮胎的侧偏现象。
3.汽车的转向灵敏度:稳态的横摆角速度与前轮转角之比。
也叫稳态横摆角速度增益。
4.汽车的静态储备系数:就是中性转向点至前轴距离和汽车质心至前轴距离之差与轴距之比值。
5.车厢侧倾轴线:车厢相对地面转动时的瞬时轴线称为车厢侧倾轴线。
6.侧倾中心:车厢在前、后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。
二.填空1.不足转向、中性转向、过多转向2. 134dB3. 0.5︿2Hz 三.选择1.AD2. C3.C4. C5. B6. A7. A8.A9.B 10.A 11.A 12 .A四.判断:1.×2.×3.×4.×5.×6.×7.√8.×9.√10.√11.×12.×13.×五.问答分析计算:1.答:汽车的稳态转向特性分为不足转向,中性转向和过多转向三种类型。
其特性如下:在转向盘保持一固定转角δsw下,缓慢加速或以不同车速等速行驶时,随着车速的增加,不足转向汽车的转向半径R 增大;中性转向汽车的转向半径维持不变;而过多转向汽车的转向半径则越来越小。
2.答:舒适-降低界限与保持舒适有关。
在此极限内,人体对所暴露的振动环境主观感觉良好,并能顺利完成吃、读、写等动作。
CD T 疲劳-工效降低界限与保持工作效率有关。
当驾驶员承受振动在此极限内时,能保持正常地进行驾驶。
FDT暴露极限通常作为人体可以承受振动量的上限。
当人体承受的振动强度在这个极限之内,将保持健康或安全。
3答:振动的频率,强度,作用方向和持续时间。
椅面垂直轴向Z s:4︿12.5Hz;椅面水平轴向X s,Y s:0.5︿2Hz。
汽车理论复习题 名词解释

1.动力因数:剩余牵引力(总牵引力减空气阻力)和汽车总重之比2.回正力矩:使转向车轮恢复到直线行驶位置的主要恢复力矩之一3.汽车的比功率:发动机最大净功率/汽车总质量4.通过性:汽车能够以足够高的平均车速通过各种坏路和无路地带和各种障碍的能力5.I 曲线:也叫理想曲线,后轮制动器制动力分配曲线,是指前后轮同时抱死时前、后轮制动器制动力分配曲线6.侧偏特性:汽车在行驶中,在侧向力的作用下,弹性轮胎滚动方向偏离汽车行驶方向一角度7.汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度8.附着条件:地面作用在驱动轮上的切向反力小于驱动轮的附着力9.制动力系数:地面制动力与垂直载荷之比为制动力系数b ϕ。
轮胎的侧偏现象:当车轮有侧向弹性时,即使Y F 没有达到附着极限,车轮行驶方向亦将偏离车轮平面cc 的现象10.制动力系数的最大值称为峰附着系数p ϕ。
%100=S 的制动力系数称为滑动附着系数s ϕ11.等速百公里油耗:汽车在一定载荷下,以最高档在水平良好路面等速行驶100KM 所消耗的燃油量12.制动效率与利用附着系数:车轮不锁死的最大制动强度与车轮和地面间附着系数的比值;制动强度为Z 时汽车第i 轴产生的地面制动力与地面对第i 轴的法向反力的比值13.静态储备系数SM :中性转向点到前轮的距离与汽车质心到前轴距离a 之差与轴距L 之比。
14.制动器的热衰退:制动器温度上升后,制动器产生的摩擦力矩常会有显著下降,这种现象称为制动器的热衰退。
15.制动器制动力:在轮胎周缘克服制动器摩擦力矩所需的切向力称为制动器制动力。
16.后备功率:发动机功率与滚动阻力和空气阻力消耗的发动机功率的差值。
17.汽车行驶平顺性:汽车的行驶平顺性是指汽车在一定的速度范围内行驶时,能够保证驾驶员与旅客不会因车身振动而引起不舒适和疲劳的感觉,以及保持运送货物完整无损的性能18.轮胎的弹性延迟损失:由于内部摩擦,轮胎加、卸载的变形造成的能量损失现象19.同步附着系数:制动力分配系数β线和理想制动力曲线I 的交点的附着系数20.稳定横摆角速度增益:汽车前轮角阶越输入下汽车稳态横摆角速度和前轮转角之比21.汽车加速阻力:加速时,要克服汽车质量加速运动时的惯性力22.特征车速:不足转向特性下稳态摆角速度增益取最大值时的车速23.操纵稳定性:在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向行驶;且当受到外界干扰时,汽车能抵抗干扰而保持稳定行驶的性能24.空气阻力:汽车直线行驶时受到的空气作用力在行驶方向上的分力25.驱动力:车发动机产生的转矩,经传动系传至驱动轮上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 一. 名词解释 01.附着椭圆 P140 汽车运动时,在轮胎上常同时作用有侧向力与切向力。一定侧偏角下,驱动力增加时, 侧偏力逐渐有所减小,这是由于轮胎侧向弹性有所改变。当驱动力相当大时,侧偏力显 著下降,因为此时接近附着极限,切向力已耗去大部分附着力,而侧向能利用的附着力 很少。作用有制动力时,侧偏力也有相似的变化。驱动力或制动力在不同侧偏角条件下 的曲线包络线接近于椭圆,称为附着椭圆。它确定了在一定附着条件下切向力与侧偏力 合力的极限值. 02.稳态横摆角速度增益 . P147 汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用稳态横 摆角速度与前轮转角之比) 来评价稳态响应. 该比值称为稳态横摆角速度增益或转 向灵敏度。它是描述汽车操纵稳定性的重要指标。− 04.侧偏力和轮胎的侧偏现象 P136 侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的 作用,车轮中心沿轮胎坐标系Y轴方向有侧向力FY,相应地在地面上产生地面侧向反作 用力FY,FY即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使地面侧向反作用力FY 没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 07.回正力矩 Tz P140 在轮胎发生侧偏时,会产生作用于轮胎绕OZ轴的力矩Tz.圆周行驶时,Tz是使转向车轮恢复 到直线行驶的主要恢复力矩之一,称为回正力矩. 11.轮胎坐标系 P136 为了讨论轮胎的力学特性,需要建立一个轮胎坐标系。规定如下:垂直车轮旋转轴线的轮胎 中分平面称为车轮平面。坐标系的原点O 为车轮平面和地平面的交线与车轮旋转轴线在地平面上投影线的交点。车轮平面与地平面的交线取为X 轴,规定向前为正。Z 轴与地面垂直,规定指向上方为正。Y 轴在地面上,规定面向车轮前进方向时,指向左方为正。 12.汽车前或后轮(总)侧偏角 P161 汽车前、后轮(总)侧偏角包括:1)考虑到垂直载荷与外倾角变动等因素的弹性侧偏角; 2)侧倾转向角;3)变形转向角。这三个角度的数值大小,不只取决于汽车质心的位置和轮胎特性,在很大程度上还与悬架、转向和传动系的结构形式及结构参数有关。因此要进一步考虑它们对前、后轮侧偏角的影响。 13.侧倾转向 P172 在侧向力作用下车厢发生侧倾,由车厢侧倾所引起的前转向轮绕主销的转动,后轮绕垂直 地面轴线的转动,即车轮转向角的变动,称为侧倾转向 17.悬架的侧倾角刚度 P163 指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢的总弹性恢复力偶 矩。T 为悬架系统作用于车厢的总弹性恢复力偶矩;φ r为车厢转角。可以通过悬架的线刚度或等效弹簧来计算悬架的侧倾角刚度。 18.横摆角速度频率响应特性 P159 在分析汽车的操纵稳定性时,常以前轮转角δ或转向盘转角δsw为输入,汽车横摆角速度ωr为输出,来表征汽车的动特性。横摆角速度频率响应特性包括幅频特性和相频特性。 19.悬挂质量分配系数 ε P212 y为车身绕横轴y 的回转半径,a、b 为车身质量至前、后轴的距离。大部分汽车ε =0.8~1.2 . 28.侧偏刚度k FY −α 曲线在α =0°处的斜率称为侧偏刚度k,单位为N/rad . FY =kα . 2
29.高宽比 以百分数表示的轮胎断面高H与轮胎断面宽B 之比100% HB× 叫高宽比,又叫扁平率。 30.滑水现象 在一定车速下,汽车经过有积水层的路面时,轮胎将完全漂浮在水膜上面而与路面毫不 接触,滑动附着系数ϕ s ≈ 0,侧偏力完全丧失,方向盘和刹车会完全不起作用,是一种 极度危险的状态。此即滑水现象。 40.汽车的操纵稳定性 指驾驶员在不感到过分紧张、疲劳的条件下,汽车能遵循驾驶员通过转向系及转向车轮 给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。汽车 操纵稳定性不仅影响汽车驾驶操作的方便程度,而且也是决定汽车高速行驶安全的一个 主要性能。 41.汽车的平顺性 汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动 而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。由于行驶平顺性主要 是根据乘员的舒适程度来评价,又称为乘坐舒适性。 42.汽车的通过性 汽车能以足够高的平均车速通过各种坏路和无路地带及各种障碍的能力。描述汽车通过 性的几何参数主要包括最小离地间隙、接近角、离去角、纵向通过角等。 45.不足转向、中性转向、过多转向的特点P133 在转向盘保持一固定转角δsw下,缓慢加速或以不同车速等速行驶时,随着车速的增加, 不足转向汽车的转向半径R 增大;中性转向汽车的转向半径维持不变;而过多转向汽车 的转向半径越来越小。操纵稳定性良好的汽车应具有适度的不足转向特性。 二. 填空题 02.降低悬架系统固有频率可以减小车身加速度。这是改善汽车平顺性的基本措施。 P218 04.在侧向力作用下,若汽车前轴左、右车轮垂直载荷变动量较大,汽车趋于增大不足转向 量;若后轴左、右车轮垂直载荷变动量较大,汽车趋于减小不足转向量. P170 05.减小俯仰角加速度的办法主要有使悬挂质量分配系数ε﹥1 和使前后悬架交联,轴距加 长有利于减小俯仰角振动. P239 07.平顺性要求车身部分阻尼比ζ取较小值,行驶安全性要求取较大值。阻尼比增大主要使 动挠度的均方根值明显下降. P229 10.汽车的稳态转向特性分成三种类型:不足转向,中性转向和过多转向. P133 11.汽车速度越高,时间频率功率谱密度Gq(f)的值越小. P208 13.汽车的重心向前移动,会使汽车的过多转向量减小. P152 14.汽车的时域响应可以分为稳态响应和瞬态响应. P132 15.一般而言,最大侧偏力越大,汽车的极限性能越好,圆周行驶的极限侧向加速度越高. P138 16.减小车轮质量对平顺性影响不大,主要影响行驶安全性. P230 19.对于双轴汽车系统振动,当前、后轴上方车身位移同相位时,属于垂直振动,当反相位 时,属于角振动. P238 20. 汽车在弯道行驶中,因前轴侧滑而失去路径跟踪能力的现象称为驶出,后轴侧滑甩尾而 失去稳定性的现象称为激转。P186 24.稳定性因数K 值越小,汽车的过多转向量越大. 25.在路面随即输入下,车身各点垂直位移的均方根值,在轴距中心处最小,距轴距中心越 远处越大。 P227 32.汽车横摆角速度的频率特性包括相频特性和幅频特性. P159 3
33.描述道路谱的两种方式为空间频率功率谱和时间频率功率谱. P207 35.最大土壤推力是指地面对驱动轮或履带的切向反作用力. P253 36.由轮胎坐标系有关符号规定可知,负的侧偏力产生正的侧偏角. P138 37.当汽车质心在中性转向点之前时,汽车具有不足转向特性. P152 39.轮胎的气压越高,则轮胎的侧偏刚度越大.(气压过高后刚度不变) P139 41.采用软的轮胎对改善平顺性,尤其是提高车轮与地面间的附着性能有明显好处。 42.汽车前后轮总侧偏角包括弹性侧偏角、变形转向角、侧倾转向角。 43. 具有不足转向特性的汽车,当车速为uch = 1/ K 时,汽车稳态横摆角速度增益达到最 大值。uch即为特征车速。当不足转向量增大时K增大,uch降低。 P147 44.具有过多转向特性的汽车,当车速为ucr = .1/ K 时,稳态横摆角速度增益趋于无穷大。 ucr 即为临界车速。ucr 越低,K值越小(即|K|越大),汽车过多转向量越大。P148 48.汽车悬架系统的固有频率f0降低,则悬架动挠度fd增大。 P220 51.车厢侧倾时,因悬架形式不同,车轮外倾角的变化有三种情况:保持不变、沿地面侧向 反作用力方向倾斜、沿地面侧向反作用力作用方向相反方向倾斜。P170 52.左、右车轮垂直载荷差别越大,平均侧偏刚度越小。 P170 53.为了保持汽车的稳定性,当后轴要侧滑时,应对汽车施加外侧的横摆力偶矩;当前轴要 侧滑时,应对汽车施加内侧的横摆力偶矩。此外还应对汽车施加纵向减速度。 三. 问答题 01.分析轮胎结构、工作条件对轮胎侧偏特性的影响? P138 答:1)轮胎的尺寸、形式和结构参数对侧偏刚度有显著影响。尺寸较大的轮胎侧偏刚度高。子午线轮胎侧偏刚度高,钢丝子午线轮胎比尼龙子午线轮胎的侧偏刚度还要高些。2)高宽比对侧偏刚度影响很大,高宽比小的宽轮胎侧偏刚度高。3)垂直载荷的变化对轮胎侧偏特性有显著影响。一定范围内增大垂直载荷,轮胎侧偏刚度增大,但垂直载荷过大侧偏刚度反而减小。4)轮胎的充气压力对侧偏刚度也有显著影响。随着轮胎充气压力的增大侧偏刚度增大,但气压过高后刚度不变。5)在一定侧偏角下,驱动力或制动力增加时,侧偏力会逐渐减小。6)路面粗糙程度、干湿状况对轮胎侧偏特性尤其是最大侧偏力有很大影响,路面有薄水层时,由于滑水现象,会出现完全丧失侧偏力的情况。7)行驶车速对侧偏刚度的影响很小。 04.在一个车轮上,其由制动力构成的横摆力偶矩的大小,取决于那些因素? P190 答:由制动力构成的横摆力偶矩会使车厢绕车辆坐标系z 轴旋转,从而产生横摆角速度,影响汽车的稳态响应,进而影响汽车的操纵稳定性。在一个车轮上,由制动力构成的横摆力偶矩的大小取决于以下因素:1)制动器制动力的大小;2)车轮垂直载荷的大小;3)附着(椭)圆规定的纵向力与侧向力的关系;4)车轮相对于汽车质心的位置。 06.分析悬架系统阻尼比ζ 对衰减振动的影响. P213 答:悬架系统阻尼比ζ 对衰减振动有两方面的影响:1)与有阻尼固有频率ωr有关2ωr =ω0 1−ζ。2)决定振幅的衰减程度,其中d 为减幅系数。汽车悬架系统阻尼比ζ 的数值通常在0.25 左右,属于小阻尼。 07.试从汽车操纵稳定性的角度出发,分析电控四轮转向系统和车辆稳定性控制系统的控制的实质及特点. P186 答:4WS 汽车转弯行驶时,后两轮也随着前两轮有相应的转向运动。一般两轮转向汽车(2WS)在中、高速作圆周行驶时,车身后部甩出一点,车身以稍稍横着一点的姿态作曲线运动(如图所示),增加了驾驶者在判断与操作上的困难。电控4WS 汽车的质心侧偏角总接近与零,车厢与行驶轨迹方向一致,汽车自然流畅地作曲线运动,驾驶者能方便地判断与操作,显著地改善了操纵稳定性。改变制动力在前、后轴上的分配比例,可以起到控制汽车曲线运动的