processability theory

合集下载

Extrusion of Polymers

Extrusion of Polymers

1.3.1 Single-Screw Extruders
• The screw is the most important component of the extruder. • Extruder performance directly depends on the screw design. • As much as 30~50% increases in production rate maybe achieved by high performance screw.
1.2 Polymer Extrusion
• Melting: phase transformation of a crystalline solid into a liquid. Only crystalline polymer can melt. • Plasticating: state change of an amorphous glass-like solid into a liquid without phase transformation. • In this book Melting: the change from the solid behavior to liquid behavior for both crystalline and amorphous polymer
1.3.1 Single-Screw Extruders
1.3.1 Single-Screw Extruders
• The size of a screw is described by it’s diameter and length. • Length is given by “Length to Diameter L/D ratio” • A screw typically has three sections:

心理英语整理笔记3-4

心理英语整理笔记3-4

CHAPTER 3 Cognitive Psychology1 . PerceptionA . Visual perceptual organizationa.Perception is the process of interpreting and organising the environmental information received by the senses.b.Visual perceptual organizationFor visual perception, this involves taking the constantly fluctuating patterns of light which arrive from all over the environment, upside-down, onto our two-dimensional retinas and detecting the shape of objects in the environment; Establishing location in three-dimensional space; Recognizing an object in terms of its shape, size, brightness and colour.c.Perceptual Organization: Gestalt(1)Visual Capture:tendency for vision to dominate the other senses.(2)Gestalt -- an organized whole tendency to integrate pieces of information into meaningful wholes.(3)Grouping: the perceptual tendency to organize stimuli into coherent groups.Grouping Principles:Proximity -- group nearby figures togetherSimilarity -- group figures that are similarContinuity -- perceive continuous patternsClosure -- fill in gapsConnectedness -- spots, lines, and areas are seen as unit when connectedd.Top-down theories of perception(1)Sometimes referred to as constructivist theories, these theories stress the factors in the construction of reality that go beyond the information received from the senses.(2)Gregory’s theory and perceptual set theory regard perception as a very active process, whereby the individual’s past knowledge, expectations and stereotypes seek out sensory data to ‘complete the picture’.(3)Perceptual Constancyperceiving objects as unchanging even as illumination and retinal image change.(color,shape ,size)(4) Illusions(5) Perceptual Set: Schemase.Bottom-up theories of percption(1)These theories emphasise the richness of the information entering theeye and the way that perception can occur from using all the information available.(2)Gibson believes perception occurs directly from sensation, feature detection theories examine the processes involved in assembling perception from sensations.f.The development of perceptionDepth Perception: ability to see objects in three dimensions; allows us to judge distance.Binocular cues:retinal disparity,images from the two eyes differ; closer the object, the larger the disparity.Convergence: neuromuscular cue; two eyes move inward for near objects. Monocular Cuesrelative size: smaller image is more distantInterposition: closer object blocks distant objectrelative clarity: hazy object seen as more distantTexture: coarse --> close; fine --> distantrelative motion: closer objects seem to move fasterlinear perspective: parallel lines converge with distancerelative brightness: closer objects appear brighter2 . AttentionA. Definition: The focusing and concentration of mental effort thatusually results in conscious awareness of certain aspects of external sensory stimuli or mental experiences(although most study has focused on the former).B. Some studies have looked at focused or selective attention – how certain stimuli are selected over others through allocating attention.Other studies have looked at divided attention – how, within a limited capacity, attention can be allocated to more than one task at a time(Research has shown that if tasks are practised enough, they become automatic, need less attention, and can be successfully performed with other tasks).3 . MemoryA.Memory:persistence of learning over time via the storage and retrieval of information.B.Flashbulb Memory:a clear memory of an emotionally significant moment or eventC.Memory as Information Processinga. Encoding:the processing of information into the memory system. i.e.,extracting meaning.b.Storage:the retention of encoded information over time.c.Retrieval:process of getting information out of memory.D.Sensory Memory:the immediate, initial recording of sensory information in the memory system.E.Working Memory:focuses more on the processing of briefly stored information.G.Short-Term Memory:activated memory that holds a few items briefly, look up a phone number, then quickly dial before the information is forgotten.H.Long-Term Memory:the relatively permanent and limitless storehouse of the memory systemI.A Simplified Memory ModelEncoding EncodingLong-termmemoryShort-termmemorySensorymemorySensorymemorySensory input attention to important Retrievingor novel informationa. Encoding:Automatic Processing and Effortful Processing(1)Automatic Processing:unconscious encoding of incidental information(Space, time, frequency);well-learned information(word meanings);we can learn automatic processing(reading backwards)(2)Effortful Processing:requires attention and conscious effort.(3)Rehearsal:conscious repetition of information.(to maintain it in consciousness ;to encode it for storage)(4)Ebbinghaus used nonsense syllables:the more times practiced on Day 1, the fewer repetitions to relearn on Day 2.(5)Spacing Effect:distributed practice yields better long- term retention than massed practice.b.What Do We Encode?(1) Semantic Encoding:encoding of meaning, including meaning of words.(2) Acoustic Encoding:encoding of sound, especially sound of words(3)Visual Encoding:encoding of picture images.(4)Imagery:mental pictures, a powerful aid to effortful processing, especially when combined with semantic encoding.(5)Mnemonics:memory aids ,especially those techniques that use vivid imagery and organizational devices .(6)Chunking:organizing items into familiar, manageable units,like horizontal organization--1776149218121941(often occurs automatically);use of acronyms;Organized information is more easily recalled;(7)Hierarchies:complex information broken down into broad concepts and further subdivided into categories and subcategories.Encoding(automaticor effortful)OrganizationMeaning(semanticEncoding)Imagery(visualEncoding)ChunksHierarchiesb. Storage: Retaining Information(1) Iconic Memory:a momentary sensory memory of visual stimuli;a photographic or picture image memory lasting no more that a few tenths of a second.(2)Echoic Memory:momentary sensory memory of auditory stimuli.(3)Short-Term Memory :limited in duration and capacity;“magical”number 7+/-2(4)Long-Term MemoryⅠ.Synaptic changes:increase in synapse’s firing potential after brief, rapid stimulation.Ⅱ.Strong emotions make for stronger memories:some stress hormones boost learning and retention.Ⅲ.Explicit Memory:memory of facts and experiences that one can consciously know and declare;also called declarative memory;hippocampus--neural center in limbic system that helps process explicit memories for storage.Ⅳ.Implicit Memory :retention independent of conscious recollection;also called procedural memory.c. Retrieval(1)retrievalⅠ.Recall:measure of memory in which the person must retrieve information learned earlier,as on a fill-in-the-blank test.Ⅱ.Recognition:Measure of memory in which the person has only to identify items previously learned ,as on a multiple-choice test.Ⅲ .Relearning:memory measure that assesses the amount of time saved when learning material a second time.Ⅳ. Priming:activation, often unconsciously, of particular associations in memory.(2) Retrieval CuesⅠ.Deja Vu (French)--already seen:cues from the current situation may subconsciously trigger retrieval of an earlier similar experience.Ⅱ.Mood-congruent Memory:tendency to recall experiences that are consistent with one’s current mood ;memory, emotions, or moods serve as retrieval cues.State-dependent Memory-----what is learned in one state (while one is high, drunk, or depressed) can more easily be remembered when in same stateⅢ .After learning to move a mobile by kicking, infants had their learning reactivated most strongly when retested in the same rather than a different context.d. Forgetting(1) Forgetting can occur at any memory stage.(2)As we process information, we filter, alter, or lose much of it.(3)Amnesia--the loss of memory(4)Forgetting as encoding failure:Information never enters the long-term memory. Ebbinghaus forgetting curve over 30 days-- initially rapid, then levels off with time.(5)Forgetting as retrival failure:Forgetting can result from failure to retrieve information from long-term memory.(6)Interference:Learning some items may disrupt retrieval of other information.Ⅰ.Proactive (forward acting) Interference:disruptive effect of prior learning on recall of new information.Ⅱ.Retroactive (backwards acting) Interference:disruptive effect of new learning on recall of old information.Ⅲ .Motivated Forgettingpeople unknowingly revise memoriesⅣ.Repressiondefense mechanism that banishes from consciousness anxiety - arousing thoughts, feelings, and memories.(7)Memory ConstructionⅠ.We filter information and fill in missing pieces.Misinformation Effect and Source AmnesiaⅡ.Eyewitnesses reconstruct memories when questionedJ . Improve Your Memory(1)Study repeatedly to boost recall.(2)Spend more time rehearsing or actively thinking about the material.(3)Make material personally meaningful.(4)Use mnemonic devices: associate with peg (标记性) words--something already stored;make up story;chunk--acronyms.(5)Activate retrieval cues--mentally recreate situation and mood(6)Recall events while they are fresh-- before you encounter misinformation(7)Minimize interference(8)Test your own knowledge:rehearse;determine what you do not yet know.CHAPTER 3 Developmental Psychology1 . Prenatal Development and the NewbornA . Rooting Reflextendency to open mouth, and search for nipple when touched on the cheek B. Preferencesa. human voices and facesb.smell and sound of motherC. Habituationdecreasing responsiveness with repeated stimulationD. Having habituated to the old stimulus, newborns preferred gazing at a new one.2. Infancy and Childhood:A. Physical Developmenta.Maturation(1)biological growth processes that enable orderly changes in behavior.(2)relatively uninfluenced by experience.b.Babies only 3 months old can learn that kicking moves a mobile--and can retain that learning for a monthB . Cognitive Developmenta. Schemaa concept or framework that organizes and interprets information.b. Assimilationinterpreting one’s new experience in terms of one’s existing schemas.c. Accommodationadapting one’s current understandings (schemas) to incorporate new information.d. CognitionAll the mental activities associated with thinking, knowing, remembering, and communicating.e.Piaget’s Stages of Cognitive DevelopmentTypical Age Range Description of Stage Developmental PhenomenaBirth to nearly 2 years SensorimotorExperiencing the world throughsenses and actions (looking,Object permanence Stranger anxietytouching, mouthing)About 2 to 6 years PreoperationalRepresenting thingswith words and imagesbut lacking logical reasoning Pretend play Egocentrism Language developmentAbout 7 to 11 years Concrete operationalThinking logically about concreteevents; grasping concrete analogiesand performing arithmeticaloperations Conservation Mathematical transformationsAbout 12 through adulthood Formal operationalAbstract reasoningAbstract logicPotential for moral reasoning(1)Object Permanencethe awareness that things continue to exist even when not perceived.(2)Baby MathematicsShown a numerically impossible outcome, infants stare longer(3)Conservationthe principle that properties such as mass, volume, and number remain the same despite changes in the forms of objects.(4)Egocentrismthe inability of the preoperational child to take another’s point of view. (5)Theory of Mindpeople’s ideas about their own and others’ mental states - about their feelings, perceptions, and thoughts and the behavior these might predict. (6) AutismMarked by deficient communication, social interaction and understanding of others’ states of mind.C . Social Developmenta. Stranger Anxiety(1)fear of strangers that infants commonly display.(2)beginning by about 8 months of age.b. Attachment(1)an emotional tie with another person.(2)shown in young children by their seeking closeness to the caregiver and displaying distress on separation.c. Harlow’s Surrogate Mother ExperimentsMonkeys preferred contact with the comfortable cloth mother, even whilefeeding from the nourishing wire mother.d. Critical Periodan optimal period shortly after birth when an organism’s exposure to certain stimuli or experiences produces proper development.e. Monkeys raised by artificial mothers were terror-stricken when placed in strange situations without their surrogate mothers.f. Imprintingthe process by which certain animals form attachments during a critical period very early in life.h. Basic Trust (Erik Erikson)(1)a sense that the world is predictable and trustworthy(2)said to be formed during infancy by appropriate experiences with responsive caregiversi. Self-Concepta sense of one’s identity and personal worthAddition: Child-Rearing Practices①Authoritarian: parents impose rules and expect obedience②Permissive:submit to children’s desires, make few demands, use little punishment③Authoritative:both demanding and responsive;set rules, but explain reasons and encourage open discussion3. AdolescenceTips: Adolescence-----the transition period from childhood to adulthood.extending from puberty(青春期)to independencePuberty-----the period of sexual maturation.when a person becomes capable of reproduction.Throughout childhood, boys and girls are similar in height. At puberty, girls surge ahead briefly, but then boys overtake them at about age 14. A. Kohlberg’s Moral LadderPostconventional level Morality of abstract principles: to affirm agreed-upon rightsand personal ethical principles.Conventional level Morality of law and social rules: to gain approval or avoiddisapproval.Preconventional level Morality of self-interest: to avoid punishment or gainconcrete rewards.B . Erikson’s Stages of Psychosocial DevelopmentApproximate age Stage Description of Task Infancy(1st year) Trust vs. mistrust If needs are dependably met, infantsdevelop a sense of basic trust.Toddler(2nd year)Autonomy vs. Shame anddoubt Toddlers learn to exercise will and do things for themselves, or they doubt their abilities.Preschooler(3-5 years)Initiative vs. guilt Preschoolers learn to initiate tasksand carry out plans, or they feel guiltyabout efforts to be independent.Elementary(6 years-puberty)Competencevs. inferiorityChildren learn the pleasure ofapplying themselves to tasks, or theyfeel inferior.Adolescence(teens into 20’s)Identity vs. RoleconfusionTeenagers work at refining a sense ofself by testing roles and thenintegrating them to form a singleidentity, or they become confusedabout who they are.Young Adult(20’s to early 40’s)Intimacyvs. isolationYoung adults struggle to form closerelation-ships and to gain the capacityfor intimate love, or they feel sociallyisolated.Middle Adult (40’s to 60’s)Generativityvs. stagnationThe middle-aged discover a sense ofcontri-buting to the world, usuallythrough family and work, or they mayfeel a lack of purpose.Late Adult (late 60’s and up)Integrity vs.despair When reflecting on his or her life, theolder adult may feel a sense ofsatisfaction or failure.C . Social Developmenta. Identity: one’s sense of self. the adolescent’s task is to solidify a sense of self by testing and integrating various roles.b .Intimacy: the ability to form close, loving relationships. a primary developmental task in late adolescence and early adulthood.c. The changing parent-child relationship: dwindle per years.4. AdulthoodA. Physical Developmenta. The Aging Senses: vision ,smell ,and identifying spoken words aredecreasing per years .b. Slowing reactions contribute to increased accident risks among those 75 and older.c. Incidence of Dementia by AgeRisk of dementia increases in later years .B. Cognitive Developmenta. Recalling new names introduced once, twice, or three times is easier foryounger adults than for older ones .b. the ability to recall new information declined during early and middle adulthood, but the ability to recognize new information did not.c. Cross-Sectional Study:a study in which people of different ages are compared with one anotherd. Longitudinal Study: a study in which the same people are restudied and retested over a long period.e. Verbal intelligence scores hold steady with age, while nonverbal intelligence scores decline .f. Crystallized Intelligence:one’s accumulated knowledge and verbal skills .Tends to increase with age .Fluid Intelligence: ones ability to reason speedily and abstractly .Tends to decrease during late adulthood .C. Social Developmenta. Social Clock: the culturally preferred timing of social events ,such asmarriage ,parenthood ,retirementb .Multinational surveys show that age differences in life satisfaction are trivial .。

3M Dyneon Perfluoroelastomers 说明书

3M Dyneon Perfluoroelastomers 说明书

Table of ContentsIntroduction to 3M™ Dyneon™Perfluoroelastomers 3 Semiconductor Applications 4 Aerospace Applications 6 Oil, Gas & CPI Applications 8 Typical Physical Properties9233M ™ Dyneon ™ Perfluoroelastomers (3M PFE)Low permeationHigh reliability and long service lifeEasy processabilityThe right mix.Balanced properties and application engineering expertiseFrom semiconductor manufacturing equipment to deepwater drilling and high-flying jet engines, harsh chemicals and extreme temperatures place enormous demands on seals and gaskets. 3M ™ Dyneon ™Perfluoroelastomers are designed to withstand some of the most challenging operating conditions, helping extend equipment life and reduce costly downtime for maintenance.Bench-to-bench support from our experienced 3M Technical Specialists can help you with product, technical and application advice to help you solve your toughest material challenges.Our breadth of technologies and material capabilities gives you the flexibility you need to develop integrated solutions precisely fit to your systems and processes.4From plasma etching and chemical vapor deposition (CVD) chambers to vacuum systems, seals and gaskets for the semiconductor industry require extraordinary materials. Their high purity and resistance to plasma, heat and harsh chemicals make 3M ™ Dyneon ™ Perfluoroelastomers (“3M PFE”) excellent solutions for semiconductor fabrication or sub-fabrication processes. T ogether, these properties add up to longer seal life and less contamination – giving you higher wafer yield and lower total cost of ownership.At 3M, our global application engineering teams are constantly evaluating the unique and emergingneeds of the semiconductor industry. Our testing equipment is designed to simulate stringent real-world conditions in order to optimize our materials and support. Our PFE testing capabilities include plasma resistance, stiction force determination and metal content determination.Semiconductor IndustryTypical Applications:� C hamber lid seal (etch, deposition and cleaning processes)� G ate valve seals for load lock � O -rings � B onded seals � P ump liningsWhy is 3M PFE vital to the semiconductor industry?� H igh temperature resistance up to 315ºC � P lasma resistance (O 2, CF 4, SF 6, NF 3 etc.)�L ow particle generation � H igh purity/low metal ion content � P ermeation resistance� L ow volatile generation/outgassing �R�L �A Gate valveSemiconductor IndustryIn the semiconductor industry, customers are looking for materials with the lowest metal ion contentto prevent contamination. The information below has been generated using an ash and digestion test. Trace metal ion analysis: Ash and digestion ICP-MS15Often used to meet AMS 7257E, 3M™ Dyneon™ Perfluoroelastomers (“3M PFE”) help protect against high temperatures and aggressive fluids in aerospace gas turbine engines. PFE seals perform in someof the toughest environments, such as aerospace gas turbine engines – helping prevent aggressive fluids from leaking even at high temperatures.Aerospace IndustryTypical Applications:� Molded rings� Compression seals� O-ring cord� Molded-in-place gasketsWhy is 3M PFE used for aerospace sealing?� 3M PFE can be compounded to meet AMS 7257E� C ontinuous use temperatures of up to 315°C/599°F� H elps protect against HTS (high thermo-oxidative stability)lubrication fluids that contain aggressive additive packageswhich attack other elastomersAuthorization to UseEnsure products meet all applicable specifications, standards, and maintenance manual requirementsfor the platform being worked on and validate all aircraft approvals against current technical documentation.7Aerospace IndustryThe data generated above were evaluated using ASTM D412 and D2240, which use tensile dumb bells instead of the o-rings called out in the AMS 7257E specifications.Typical Physical PropertiesTypical Physical Properties (continued)Vulcanizates Physical Properties per ASTM D412 and D2240Press Cured: Compression molded Tensile Sheets 188°C (370°F) × 15 minutes Post Cured: 250°C (482ºF) x 16 hoursWhether it’s 1000 feet down a borehole or a pipeline carrying harsh chemicals, extreme environments require extraordinary sealing materials. 3M™ Dyneon™ Perfluoroelastomers (“3M PFE”) are proven sealing solutions in applications where other materials may fail because of their outstanding chemical, thermal and compression set resistance.Oil & Gas and Chemical Processing IndustryTypical Applications:� Oil and gas downhole seals � Petrochemical pump seals � Packers� Reactors� Mixers� Valves� Rubber-metal bonding parts Why is 3M PFE used for Oil & Gas and CPI?� B road range of chemical resistance� S team resistance� T hermal resistance� S eal ability – good compression set� H igh pressure extrusion resistance� H igh pressure extrusion resistance� R apid gas decompression (RGD)� H igh hardness� H igh modulus� H igh processabilityPhotos courtesy of CTG, Inc.Drill pipe float valves Line stops89Peroxide Cure PerfluoroelastomersEngineered for both reliable performance in harsh environments and ease of processing, with good flow and mold release.High Temperature PerfluoroelastomersDesigned to meet the challenges of higher temperature applications, with an upper continuous use temperature of 315ºC (599ºF) and excellent compression set resistance.Mechanical properties measured after post cure of 24 hours @ 250°C * ASTM D1414, 18% deflectionNote: Data in this document are not for specification purposes.3M Perfluoroelastomer Solutions and Typical Physical Properties3M ™ Dyneon ™ Perfluoroelastomers (“3M PFE”) are a class of fully fluorinated fluoroelastomers that provide some of thehighest levels of heat and chemical resistance available in an elastomer. 3M offers both peroxide curable grades which provide outstanding overall chemical resistance and triazine curable grades that provide outstanding heat resistance and excellentchemical resistance.Typical Physical Properties by Perfluoroelastomer Class101. R oom Temperature to 150°C (302°F) over 1 hour2. H old at 150°C (302°F) for 7 hours3. 150°C (302°F) to 300°C (572°F) over 2 hours4. H old at 300°C (572°F) for 4 hours5. 300°C (572°F) to Room Temperature over 2 hoursNote: Data in this document are not for specification purposes.Typical Physical Properties by Perfluoroelastomer Class (continued)Mechanical properties measured after the following step post cure:113M ™ Dyneon ™Perfluoroelastomers (3M PFE)Note:Data in this document are not for specification purposes.Chemical Resistance of Peroxide Cured Perfluoroelastomer (3M PFE 40)3M PFE 40 is used in applications needing better performance over a broad chemical range. The ability to cure without the use of metal oxide provides some of the best resistance to combinations of solvent and aqueous chemicals.3M ™ Dyneon ™ Perfluoroelastomers (3M PFE)Warranty, Limited Remedy, and Disclaimer: Many factors beyond 3M’s control and uniquely within user’s knowledge and control can affect the use and performance of a 3M product in a particular application. User is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user’s method of application. User is solely responsible for evaluating third party intellectual property rights and for ensuring that user’s use of 3M product does not violate any third party intellectual property rights. Unless a different warranty is specifically stated in the applicable product literature or packaging insert, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OF NON-INFRINGEMENT OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE . If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M’s option, replacement of the 3M product or refund of the purchase price.Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damages arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.T echnical Information: T echnical information, recommendations, and other statements contained in this document or provided by 3M personnel are based on tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed. Such information is intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. No license under any 3M or third party intellectual property rights is granted or implied with this information.3M Advanced Materials Division 3M CenterSt. Paul, MN 55144 USAP hone 1-800-367-8499Web /fluoroelastomersPlease recycle. Printed in USA © 3M 2021. All rights reserved. Issued: 4/21 16517HB3M and Dyneon are trademarks of 3M Company. Aerosil is a registered trademark of Evonik Industries AG. TAIC is a trademark of Shinryo Corporation. Trigonox is a registered trademark ofNouryon Chemicals B.V. Varox is a registered trademark of R.T. Vanderbilt Company, Inc.Asia3M Japan6-7-29, Kita-Shinagawa Shinagawa-ku Tokyo 141-8684 JapanPhone: 81 570 022 1233M Korea19F, 82, Uisadang-daeroYeongdeungpo-gu, Seoul, 150-705 KoreaPhone: 82 2 3771 4027Latin America3M BrasilVia Anhanguera km 110 SumareSao Paulo CEP 13181-900 BrasilPhone: 0800 01323333M MexicoSanta Fe 190, Col. Santa Fe Deleg. Alvaro Obregon Mexico D.F., C.P . 01210 México Phone: 0052 5552700 400Ext 829353M Taiwan6F, No.95, Sec. 2 Dunhua S. Rd. Taipei 10682 TaiwanPhone: 886 2 2704 9011 3M Thailand150 Soi Chalongkrung 31 Ladkrabang Bangkok, 10520 Thailand Phone: 66 2739 4803 9Ext 2354Customer ServiceUSA3M Advanced Materials Division 3M Center, 280-01W-03 St. Paul, MN 55144-1000 United StatesPhone:180****8499EuropeDyneon GmbH3M Advanced Materials Division Carl-Schurz-Straße 41453 Neuss GermanyPhone: +00 800 396 366 27 Fax: +00 800 396 366 39 www.dyneon.eu ItalyPhone: 0 800 7 910 18 Fax: 0 800 7 910 19。

资晶--Adaptation--theory

资晶--Adaptation--theory
• Verschueren认为语言使用是(在说话和解释中同时进行的)一个连续不断的 语言选择过程。语言形式的选择是以语用策略的选择为基础进行的。人类之 所以能在语言中进行选择,是因为语言具有变异性、协商性和适应性。语言 的选择实际上是在结构的每一个层面上进行的,说话人选择的不只是形式, 还有策略。有的选择是完全自动的,即无意识的;而有的选择意识程度是很 高的。刻意曲解是一种有意识的选择,通过选择这种语用策略来达到自己的 交际目的。我们可以和间接言语行为结合起来理解,即说话人在使用语言的 同时有意识地选择了间接策略来实现自己的交际目的。 顺应论: 宏观语用学 的核心 1985年, 维索尔伦(Verschueren) 在国际语用学研讨会上, 明确提出了 语用学是关于语言的一种综观的观点, 1999年又以专著的形式即《语用学新解 》(Understanding Pragmatics) 系统呈现了该理论, 标志着该理论走向成熟。 这本专著之所以具有非同一般的意义, 是因为作者提出的“顺应性理论”是从一 个全新的视角去理解和诠释当今的语用学。 顺应论强调语言交际的过程是不 断地进行语言选择的顺应过程, 这些选择可以发生在语言组织的各个层面, 包 括语音、形态、句法、语义等。语言使用的顺应过程, 不仅需要顺应交际意图, 而且需要顺应交际环境。
• Influenced and restricted by the social and cultural factors, choices are not equivalent for every user.
3.Three key notions of language use
Variability: is the property of language which defines the range of possibility from which choices can be made. It is dynamic rather than static. E.g.

糠醇树脂改性木材机制的研究进展与思考

糠醇树脂改性木材机制的研究进展与思考

林业工程学报,2021,6(6):35-43JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202012001收稿日期:2020-12-01㊀㊀㊀㊀修回日期:2021-06-04基金项目:国家自然科学基金(32001259);江苏省自然科学基金(BK20200796)㊂作者简介:冷魏祺,男,讲师,研究方向为生物质材料保护与改性㊂E⁃mail:wleng@njfu.edu.cn糠醇树脂改性木材机制的研究进展与思考冷魏祺1,2,何盛3,张雪峰4,翟胜丞1,王新洲1,潘彪1,石江涛1(1.南京林业大学材料科学与工程学院,南京210037;2.南京林业大学轻工与食品学院,南京210037;3.国家林业和草原局竹子研究开发中心,杭州310012;4.美国密西西比州立大学林学院,斯塔克维尔39762)摘㊀要:速生木材及其制品易受环境温湿度的影响而产生尺寸变形㊁霉变㊁腐朽等缺陷,极大地限制了其在户外领域的应用㊂糠醇改性是一种环境友好型木材改性技术,可以提高改性木材的尺寸稳定性㊁防霉防腐性以及硬度等性能,进而赋予改性木材更高的使用价值和更广的应用前景㊂尽管学者们对糠醇改性木材做了大量基础理论和应用研究,但对糠醇改性木材的反应机理以及糠醇原位聚合和糠醇交联木材细胞壁主要成分这两个竞争反应的影响因素尚未达成共识㊂笔者围绕糠醇改性反应机理,从糠醇改性体系本身(包括催化剂㊁糠醇浓度㊁稀释剂㊁分子量等),糠醇与木材细胞壁主要成分的反应倾向性,以及细胞壁主要成分可控脱除这3个方面进行了概述总结;列举了现阶段能够证明糠醇发生化学反应的现代仪器分析方法,并从化学反应分子热力学角度进一步阐明了糠醇原位聚合和糠醇交联木材细胞壁这两个竞争反应的机制以及发生的概率;最后重点探讨了基于细胞壁可控脱除体系使得纤维素㊁半纤维素以及木质素与糠醇分别发生交联反应的可能性及方法,以期为探索实木改性机制提供新的思路㊂关键词:木材改性;糠醇改性;原位聚合;细胞壁;化学交联;可控脱除中图分类号:S781.7㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:2096-1359(2021)06-0035-09ResearchprogressandthoughtsonthemodificationmechanismofwoodfurfurylationLENGWeiqi1,2,HESheng3,ZHANGXuefeng4,ZHAIShengcheng1,WANGXinzhou1,PANBiao1,SHIJiangtao1(1.CollegeofMaterialsScienceandEngineering,NanjingForestryUniversity,Nanjing210037,China;2.CollegeofLightIndustryandFoodEngineering,NanjingForestryUniversity,Nanjing210037,China;3.ChinaNationalBambooResearchCenter,Hangzhou310012,China;4.DepartmentofSustainableBioproducts,MississippiStateUniversity,MississippiState,StarkvilleMS39762,USA)Abstract:Fast⁃growingwoodandbamboohavebeenwidelyusedinthefabricationofwoodproductsandpaperduetotheirshortgrowthcycle,excellentprocessabilityandrenewability.Nevertheless,themoisturecontentoffast⁃growingwoodandbambooproductsaresusceptibletochangedependingontheenvironmentaltemperatureandhumidity,con⁃sequentlycausingdimensioninstabilityanddecaybymoldandfungi.Thesedrawbacksinfinitelylimitedtheiroutdoorapplications.Asanenvironmentallyfriendlymodificationtechnology,furfurylationcanimprovethedimensionstabili⁃ty,decayandmoldresistance,andhardnessofwoodandbambooproducts,endowingpotentialhigherusevaluesandbroaderapplications.Researchonthefundamentaltheoryandpracticalapplicationsoffurfurylationhasbeenconductedelaboratelybymanyresearchersaroundtheworld.However,thereisnouniversalagreementonthemechanismsoffurfurylalcoholself⁃polymerizationandgraftingreactionwithprincipalwoodcellwallcomponents,neitheranycon⁃federalagreementonthereactionpreferencebetweentheself⁃polymerizationandgraftingreactionoffurfurylalcohol.Inthisreview,thefurfurylalcoholmodifyingsystem(includingtheuseofcatalysts,theconcentrationoffurfurylal⁃cohol,solvents,andmolecularweightoftheoligomeroffurfurylalcohol,etc.),andthepropensityofthereactionbetweenfurfurylalcoholandcellulose,hemicelluloseandlignin,aswellasthecontrolledremovalofhemicelluloseandligninweresystematicallysummarizedbasedonthereactionmechanismoffurfurylation.Variousadvancedanaly⁃sistechnologiesthatcouldattestandidentifyallpossiblereactionsbetweenfurfurylalcoholandwoodcellwallcompo⁃nentswerealsodemonstratedinthispaper,suchastheConfocalLaserScanningMicroscopy,NuclearMagneticReso⁃林业工程学报第6卷nance,FourierTransforminfraredspectroscopyandGelPermeationChromatography,etc.Moreover,themechanismsoffurfurylalcoholself⁃polymerizationandgraftingreactionswerefurtherelucidatedfromtheperspectiveofmolecularthermodynamicsviathecalculationofactiveenergiesfromallpossiblereactions.Finally,theprobabilityandpathwayofcrosslinkingreactionbetweenfurfurylalcoholandcellulose,hemicelluloseandligninwerediscussedindetailbasedoncontrolledremovalofcellwallcomponents.Hopefully,thisreviewwouldshedlightonthedirectionsofthefuturewoodfurfurylationresearch.Keywords:woodmodification;furfurylation;self⁃polymerization;cellwall;chemicalbonding;controlledremoval㊀㊀随着全球优质木材资源的不断减少,以及国外相当一部分国家对珍贵树种的出口限制,人们对速生林树种的资源开发和利用进入了高速发展阶段㊂其中,以杉木㊁辐射松㊁杨木㊁桉树㊁泡桐为代表的针㊁阔叶速生材被大量应用于室内㊁户外木质制品领域[1]㊂然而,当速生木材应用于户外时,由于周围潮湿环境导致产品尺寸稳定性差,易受耐腐菌㊁霉菌等侵蚀[2-4],严重降低了木质制品的质量,限制其应用范围㊂很多学者围绕如何提高速生木材的尺寸稳定性㊁耐腐㊁抗霉变性能展开了多维度的研究㊂其中,木材尺寸稳定性处理一直是木材改性领域的研究热点㊂木材尺寸稳定性改性可分为细胞壁非反应型和反应型改性[5]㊂在过去的几十年,科研工作者通过高温热处理㊁乙酰化㊁糠醇改性㊁硅烷化处理㊁酚醛树脂改性㊁三聚氰胺树脂改性㊁甲基丙烯酸甲酯改性等细胞壁反应型改性技术体系有效改善了木材及其制品的尺寸稳定性[6-8]㊂但是每一种改性方法并不是完美的:高温热处理会降低木材力学性能,从而影响木材的使用范围[9];乙酰化处理木材中残留的醋酸副产物,酸味较大[10];硅烷化处理㊁酚醛树脂改性㊁三聚氰胺树脂改性以及甲基丙烯酸甲酯改性过程中会产生有机挥发物,均不同程度造成环境污染㊂随着资源与生态压力的不断加大,科研工作者对绿色㊁高效㊁环境友好型木材改性体系的探索实践从未停歇㊂其中,糠醇改性因其改性工艺相对简单,对环境污染甚微,对人和动物仅有微量毒性等独特的优势而被深入研究[11-12],成为近年来木材改性领域的研究热点之一,且在欧洲已经得到市场化应用㊂如挪威KebonyAS公司年产超过2万m3糠醇改性木材,产品已销往22个国家[13]㊂关于糠醇分子的介绍在很多综述文章中已经提及[14],此处不再赘述㊂综合而言,糠醇改性木材的优势在于:1)易与木材细胞壁发生稳定的化学结合㊂糠醇分子是由五元含氧杂环组成的,结构相对不稳定,容易在催化剂作用下产生碳正离子自由基,并与自身或木材细胞壁发生化学反应,形成稳定的化学键[12,15-17]㊂2)改性木材综合性能优良㊂糠醇是呋喃树脂的一种,能显著提高木竹材料的尺寸稳定性㊁耐腐耐霉菌性能㊁压缩强度㊁硬度等,且不影响木竹制品的界面胶合及涂饰性能[18-19]㊂3)绿色自然,来源广泛㊂糠醇主要来源于农林剩余物,是一种绿色㊁可再生的木材改性剂,因而改性过程及改性后的木材产品对人和使用环境的负面影响甚微[20-23]㊂然而,目前的木材糠醇改性技术,其根本问题是如何实现糠醇单体有效地进入细胞壁内部与其发生化学交联反应,而非简单地填充木材细胞腔[24-25]㊂因为只有糠醇单体与细胞壁主要成分发生了化学交联,才能永久阻隔甚至切断细胞壁中的活性基团与外界水分反应,消除水分的润胀作用,防止细胞壁组分受到菌类的侵蚀㊂此外,糠醇聚合物填充在细胞腔内,会阻碍细胞壁中的水分外流,这将大大影响木材二次干燥效率[16,26]㊂笔者以糠醇反应机理为中心,围绕糠醇改性剂特性㊁糠醇改性剂与木材细胞壁主要成分的化学反应以及木材细胞壁主要成分可控脱除对糠醇改性的影响这3个方面归纳总结了近些年的研究进展㊂1㊀糠醇改性过程中的化学反应糠醇改性过程中发生的化学反应有糠醇在细胞壁和/或细胞腔内原位聚合反应,糠醇与细胞壁主要成分发生化学交联反应㊂了解这些反应的机理有利于调控这些反应的发生概率㊂1.1 糠醇原位聚合反应从反应机理上讲,糠醇原位聚合主要经过3个步骤:1)糠醇单体在一定温度和酸性催化剂作用下发生原位缩聚,即一分子糠醇的羟甲基与另一分子糠醇的α氢原子缩合形成次甲基键,或相邻糠醇分子的羟甲基相互缩合形成甲醚键㊂Kim等[27]通过热动力学理论计算两个反应所需的反应自由能发现两个糠醇分子反应更加倾向于生成次甲基键;2)缩合后的线性糠醇低聚物转化为由 CH 连接的共轭链;3)这些共轭链通过Diels⁃Alder双63㊀第6期冷魏祺,等:糠醇树脂改性木材机制的研究进展与思考烯合成,进一步交联成高度聚合的呋喃树脂㊂其中第二步和第三步反应几乎是同时进行的[5,28-29]㊂1.2 糠醇与木材细胞壁主要成分的化学反应相对于糠醇原位聚合而言,糠醇分子与木材细胞壁主要成分的反应机制在学术界尚未形成统一的意见㊂大量研究已经证实糠醇分子能够渗透到木材细胞壁中,然而糠醇分子是否仅在细胞壁内发生原位聚合还是和细胞壁主要成分发生化学反应尚无明确的结论[16,30]㊂部分学者认为糠醇分子在细胞壁中仅发生原位聚合反应,如董友明等[8]使用扫描电子显微镜和共聚焦拉曼光谱仪证实了糠醇分子在细胞壁中发生了原位聚合反应㊂Thygesen等[30]采用激光共聚焦显微镜分析共轭糠醇聚合物在木材细胞壁中的形成机理,结果表明木材经过糠醇改性后,胞间层以及细胞角隅处的荧光效应比细胞壁更为强烈,说明糠醇分子更容易在木质素含量高的区域发生链增长反应,而且细胞腔中共轭体系的长度大于细胞壁,表明细胞壁组分限制了糠醇的自缩聚反应㊂Cabane等[31]用共聚焦拉曼光谱仪表征木材改性后的细胞壁结构与化学信息,结果表明细胞内壁上的改性聚合物浓度最高,并逐渐向细胞壁内呈递减趋势,而且改性聚合物能够渗透到整个早材细胞壁中,然而在晚材细胞壁中渗透深度最多4μm㊂Yang等[32]采用扫描电子显微镜⁃能量色散X射线光谱仪分析化学预处理对糠醇在木材内部空间分布及其与细胞壁主要成分反应的影响规律,结果表明糠醇均匀分布于细胞腔和细胞壁中,而且化学预处理能够促使糠醇向细胞壁中迁移,并附着在细胞壁内层上,将细胞腔与细胞壁隔开㊂此外,还有学者认为糠醇分子与细胞壁主要成分发生了化学反应㊂如刘颖等[33]对竹材进行糠醇树脂改性,然后通过傅里叶红外光谱发现糠醇改性木材的游离羟基明显减少,证明糠醇分子与木材细胞壁主要成分发生了化学反应,导致细胞壁中的水分吸着点减少,提高了木材的尺寸稳定性㊂Li等[16]通过对比糠醇改性木材与未处理材的细胞壁硬度和模量,间接证明了糠醇与细胞壁主要成分确实发生了化学交联,因为纳米压痕结果显示,糠醇改性后木材细胞壁的硬度和模量显著提高,且明显高于未处理材以及糠醇聚合物本身的硬度和模量㊂那么,糠醇分子或低聚物到底是与细胞壁中的哪一类或哪几类主要成分发生了化学交联呢?能否精准促进糠醇分子或低聚物与木材细胞壁主要成分发生交联反应呢?这些科学问题尚需答案㊂1.2.1㊀糠醇与纤维素的化学反应研究人员发现糠醇单体或聚合物很难与纤维素直接发生化学反应[32,34-35]㊂Pranger等[36-38]用纤维素晶须做布仑斯惕酸催化剂,通过红外光谱分析发现纤维素能够催化糠醇发生开环反应,并生成大量的二元酮结构,且证明纤维素修饰了糠醇聚合物网络结构;然而,经深入研究发现纤维素并未直接与糠醇发生交联反应,而是利用纤维素上的残余硫酸引发糠醇原位聚合反应,生成的糠醇聚合物再将纤维素颗粒包裹起来,形成稳定的复合体系㊂董友明等[8,19]通过X射线衍射光谱仪也证实了糠醇分子并不直接与纤维素分子发生化学反应㊂但在改性体系中加入甲基丙烯酸异氰基乙酯和甲基丙烯酸甲酯时,会降低木材细胞壁中纤维素的结晶度,使得非结晶区域增加㊂因此,笔者认为可以通过化学预处理将部分纤维素结晶区转化为非结晶区,暴露更多的纤维素反应活性点,增加糠醇分子与纤维素交联反应概率㊂1.2.2㊀糠醇与半纤维素的化学反应目前几乎没有关于糠醇与半纤维素反应的相关研究报道㊂然而,首先糠醇是来源于半纤维素的一种重要的平台化合物;其次,半纤维素在酸作用下水解生产戊糖,并伴随一些副反应,理论上这些产物在酸催化作用下能与糠醇发生化学反应,生成稳定的共价键[39]㊂1.2.3㊀糠醇与木质素的化学反应有一些研究直接或间接地证明糠醇分子或低聚物与木质素发生了化学反应㊂Ehmcke等[40]通过紫外显微分光光度计证实了糠醇聚合物主要分布在细胞壁中木质素含量高的区域㊂紫外显微分光光度计能够直接对木材生物降解以及单个细胞壁层原位脱除木质素过程中木质素的分布与变化进行动态成像㊂紫外显微分光光度计的高分辨率可以相对容易地将细胞壁各层对紫外光的吸收区分开㊂紫外扫描结果显示细胞壁S2层的性质发生了变化,且木质素可能与糠醇发生了化学交联㊂刘颖等[33]对竹材进行糠醇树脂浸渍改性,通过傅里叶红外光谱仪证实了木质素特征峰的减弱,进一步证明了木质素与糠醇分子发生了化学交联,但无明显证据证明纤维素和半纤维素与糠醇分子发生交联反应㊂然而,也有研究发现糠醇并未与木质素发生交联反应,而仅仅在木质素含量高的区域发生原位聚合反应㊂董友明[19]在对速生杨木进行糠醇改性处理时发现,糠醇聚合物大量存在于细胞角隅处,此处木质素含量较高㊂通过傅里叶红73林业工程学报第6卷外光谱仪和光电子能谱仪均证明糠醇发生了自缩聚反应,而未与木质素发生化学反应㊂随后他通过脱除木质素预处理发现,脱木质素后更多的糠醇分子能够进入到细胞壁中,与纤维素分子发生相互作用,提高了木材的结晶度㊂以上研究仅仅证明了糠醇与木质素反应的可能性,而非确凿证据,因为当糠醇在细胞壁内原位聚合同样能产生细胞壁改性效果㊂为了探索木质素能否与糠醇分子发现化学交联,Nordstierna等[41-42]采用马来酸酐/柠檬酸复合催化体系引发了糠醇与木质素简单模型化合物的反应㊂核磁共振光谱结果证实了糠醇与木质素模型化合物间存在共价键结合,因为木质素苯环上的羟基活性很高,容易与糠醇反应生成亚甲基(图1)㊂图1㊀糠醇与木质素模型化合物间的反应机理[12]Fig.1㊀Suggestedgraftingreactionoffurfurylalcoholwithlignin注:底部左图为赤式木质素二聚体模型的结构;底部右图为糠醇分子与赤式木质素二聚体模型在4/Cα位形成共价键结构㊂图2㊀愈创木基木质素简单模型与糠醇分子可能反应产物的结构以及缩合反应发生的位置[29]Fig.2㊀Structuresofpossiblecross⁃productsofthesimpleligninGmodel⁃Me⁃GPhe⁃withFAincludingdefinitionofcondensationposition㊀㊀除了使用现代分析仪器证明糠醇分子或低聚物与木质素发生化学交联,Barsberg等[29]采用密度泛函理论系统地计算了糠醇分子原位聚合以及糠醇分子与木质素模型化合物的化学反应热力学参数(吉布斯自由能㊁反应焓等),并从化学反应能量角度详细比较了这两种反应的倾向性㊂图2列出了木质素可能与糠醇分子发生化学交联的位置㊂通过放热反应焓的计算发现糠醇交联木质素的反应热焓与糠醇原位聚合的热焓相差很小(小于4.187J/mol),而且芳环中2㊁3号位碳以及甲氧基的反应活性最强㊂因此,他们认为糠醇分子原位聚合和糠醇分子与木质素模型化合物的化学交联反应概率相同㊂此外,化学反应热力学显示,木质素中未受到空间阻隔效应影响的羟甲基键㊁α和γ碳以及受到低程度空间阻隔效应影响的位置都有可能与糠醇发生化学反应,同时证明了糠醇聚合物也能与木质素发生化学交联反应,且仅有一部分反应发生在木质素的芳环上㊂实验发现,除了木质素简单模型化合物,更大分子量的木质素模型化合物仍能与糠醇分子发生化学交联反应㊂同时也排除了83㊀第6期冷魏祺,等:糠醇树脂改性木材机制的研究进展与思考木质素中的羟基与糠醇发生交联反应的可能性,认为羟基的主要功能是与呋喃环上的氧形成氢键,以铆钉住糠醇聚合物,防止其从木材细胞壁中析出[29]㊂研究者们从现代仪器分析技术和分子反应热力学两方面探索了糠醇与细胞壁主要成分间的化学反应可能性㊂以上结果表明糠醇分子极有可能与细胞壁中的木质素发生化学交联反应,而与纤维素以及半纤维素发生化学交联反应的可能性不大㊂后续研究需要朝着增加纤维素及半纤维素的反应活性点方向进行,这样才有可能使糠醇分子与纤维素及半纤维素发生化学交联反应㊂以上总结概述了糠醇原位聚合反应以及糠醇与细胞壁主要成分可能发生的化学交联反应,其中,重点分析了糠醇与细胞壁主要成分可能发生的化学交联反应㊂然而,关于糠醇改性剂本身的特性(极性㊁溶剂特点㊁催化剂)对糠醇与细胞壁主要成分化学交联反应影响的研究较少,这使得木材细胞壁主要成分在糠醇改性中的作用及影响难以得到深入研究,导致目前的改性技术中糠醇原位聚合反应与糠醇交联细胞壁主要成分这两个竞争反应未能实现可控调节㊂其中,糠醇分子主要发生原位聚合反应,然而糠醇原位聚合对改性效果的影响远不如糠醇与细胞壁主要成分交联反应,因而导致糠醇改性效果的提高空间有限㊂因此,明确糠醇改性剂在木材细胞壁㊁细胞腔结构中的空间分布规律,揭示糠醇分子与木材细胞壁主要成分的反应机制,对完善木材糠醇改性基础和优化糠醇改性体系具有重要的理论和实践意义㊂2㊀木材糠醇改性剂对改性效果的影响改性剂由糠醇分子㊁催化剂㊁溶剂等组成,这些参数的变化显著影响了改性效果:糠醇分子的大小直接影响其从细胞腔向细胞壁的渗透;催化剂的选择决定了糠醇原位聚合及其与细胞壁组分反应的速率;不同溶剂会影响糠醇改性剂在木材细胞中的渗透以及空间分布㊂2.1㊀催化剂对糠醇改性效果的影响为了控制糠醇原位聚合与糠醇交联细胞壁主要成分这两个竞争反应,改善糠醇改性效果,国内外许多专家学者已经开展了相关的基础应用研究㊂主要是通过筛选合适的催化剂来实现糠醇改性剂的优化升级,且研究方向主要集中在催化剂改进对糠醇原位聚合反应的影响上[37,43]㊂Goldstein等[43]早在20世纪50年代开始采用氯化锌作为催化剂成功对木材单板进行了糠醇改性处理,木材的尺寸稳定性大幅提升㊂随后,出现了甲苯磺酸㊁马来酸酐㊁酒石酸㊁氯化亚铜/五甲基二乙烯三胺复合催化体系㊁蒙脱石纳米黏土/纤维素晶须催化体系㊁改性阿尔及利亚黏土㊁木质素基催化剂㊁金属铝基溶胶催化剂等,均有效地改善了糠醇改性剂的性能[37,44-48]㊂除此之外,催化剂的酸碱度起着重要作用,糠醇在酸性条件下更容易产生活性糠基碳正离子自由基,进而发生自由基原位聚合反应㊂而在碱性条件下,糠醇分子的原位聚合反应程度相当低,仅生成少量直链型低聚物[49]㊂由于糠醇单体6号位碳上氢原子的存在使得羟基的活性高到足以与相邻糠醇单体的5号位碳发生缩合反应,生成二聚体㊁三聚体等低聚物[28,50];并在反应后期伴随着链终止反应生成醚键,经高温作用脱除甲醛,生成稳定的亚甲基键(图3)㊂此外,催化剂应具有较低的分子量,且与木材组分有相近的亲和力,以确保其能与糠醇分子一起渗透到木材细胞壁中[17]㊂注:式(1)缩合反应形成二聚体;式(2a)链终止反应形成醚;式(2b)醚高温脱除甲醛生成稳定结构㊂图3㊀糠醇在酸催化条件下的反应[12]Fig.3㊀Reactionoffurfurylalcoholunderacidconditions2.2㊀改性剂及其他变量对糠醇改性效果的影响除了催化剂,糠醇体系中溶剂类型㊁糠醇分子量㊁质量分数以及反应温度等参数不仅影响反应效率,而且也会影响糠醇原位聚合及其与细胞壁交联反应这两个竞争反应[51-53]㊂目前关于这两个竞争反应影响机理方面的研究还较少㊂有学者认为不同溶剂对糠醇分子的化学反应影响显著,一些研究已经证实了有机溶剂能够减缓糠醇聚合的速率,提高糠醇聚合的起始温度,以及减小反应聚合程度[50,54-55]㊂Thygesen等[56]分别用水和异丙醇作溶剂对辐射松进行糠醇处理,光学显微结果表明:以水为溶剂时,约有12%的早晚材管胞被糠醇聚合物填充;以异丙醇作溶剂时,26%的早材管胞被糠醇聚合物填充,而晚材管胞几乎未被糠醇聚合物填充㊂其原因在于:1)糠醇聚合前,异丙醇更能促使糠醇从细胞腔渗透到细胞壁中;2)异丙醇的沸点93林业工程学报第6卷低于水,很容易挥发,随着温度的升高,糠醇在细胞壁中的流动受限㊂此外,Thygesen等[56]通过红外光谱证实了不同溶剂的选用并不会影响糠醇反应的产物,细胞腔内填充的糠醇聚合物多为长共轭链结构,而由于空间阻隔效应细胞壁中则多为短共轭链结构㊂研究表明:糠醇的浓度决定了糠醇分子的分布区域㊂当糠醇的质量分数为30%时,细胞腔内几乎没有糠醇[19];当糠醇的质量分数达到50%以上时,由于空间阻隔效应使得大部分细胞腔被糠醇分子填充,且糠醇分子是由细胞腔逐步向细胞壁渗透的[56-57]㊂此外,改性过程中改性剂的液相/气相状态对糠醇改性的效果也有显著影响㊂最近,Liu等[26]提出使用糠醇蒸汽而非传统的糠醇溶液对木材进行改性处理,不但使细胞腔内的糠醇含量达到最低值,完全不影响改性木材二次干燥,而且避免了糠醇废液的后期处理等问题,使得处理效率得到提高㊂只有当糠醇改性剂真正进入木材细胞壁内,并与细胞壁主要成分发生化学反应,或者在细胞壁内发生原位聚合反应进而充分润胀细胞壁,才能有效地改善木材尺寸稳定性[58-59]㊂其主要原因在于:只有与细胞壁主要成分反应或在细胞壁内原位聚合才能有效阻止外界水分进入并润胀细胞壁㊂如果糠醇改性剂仅在细胞腔内发生原位聚合,这只能很小程度降低外界水分进入木材细胞壁的效率,而非从源头上阻止水分润胀细胞壁;因此,如何促进糠醇分子迁移㊁进入木材细胞壁并与其发生交联反应极为关键㊂理解糠醇改性剂自身特性及其与木材细胞壁主要成分的反应机制能够为促进糠醇分子交联木材细胞壁研究提供理论基础㊂为了明确糠醇改性剂与木材细胞壁主要成分的反应机制,可对木材细胞壁主要成分进行可控脱除,在保留木材整体结构的前提下,逐个精准解析纤维素㊁半纤维素以及木质素与糠醇分子的化学反应机制㊂3㊀木材细胞壁主要成分可控脱除对糠醇改性效果的影响㊀㊀木材主要由细胞壁㊁细胞腔和细胞间隙等孔隙组成,而细胞壁是木材的实质物质,是纤维素㊁半纤维素和木质素的聚集体㊂细胞壁主要成分之间通过C C㊁C O等化学键紧密联系在一起(图4)㊂如何清晰地界定细胞壁主要成分与糠醇之间的反应关系,如何实现半纤维素与木质素的可控拆解而保留纤维素骨架结构,这些都关系到糠醇改性木材机理的真实分析㊂通过现代分析测试技术表征细胞壁木质素与半纤维素的可控脱除,可以揭示糠醇改性剂与细胞壁各组分间的化学结合倾向性,实现糠醇在细胞壁中的可控空间分布,并能改善糠醇改性剂在木材中的改性效果㊂Yang等[60]通过不同程度脱除杨木半纤维素改变糠醇改性木材的吸湿性,提高其尺寸稳定性㊂实验结果表明:不同程度脱除半纤维素,使得细胞壁产生大量孔隙,这些孔隙成为糠醇分子原位聚合的场所,进而导致细胞壁较高程度润胀;此外,糠醇改性与半纤维素脱除处理协同作用,可以大幅降低木材的羟基可及度,使得糠醇改性木材尺寸稳定性得以提高㊂董友明[19]提出使用强碱对杨木进行脱木质素预处理,然后对预处理杨木进行糠醇浸渍处理,结果发现:脱除木质素对糠醇改性木材的增重率影响显著,因为更多的糠醇渗透到这些纳米孔隙中㊂Fu等[61]使用过乙酸脱除木质素,扫描电子显微镜结果显示:脱除木质素后的木材细胞壁上产生了很多纳米孔洞,这对后续浸渍处理非常有利,因为这些纳米孔隙可以容纳更多的树脂㊂当纳米孔隙被糠醇分子填充后,糠醇分子与纤维素的相互作用概率大大提高,有利于糠醇与细胞壁主要成分发生反应㊂Yang等[62]对杨木不同程度脱除木质素后进行糠醇浸渍改性,发现脱除木质素与糠醇浸渍改性协同作用,使得木材尺寸稳定性提高了20%,同时木材的吸湿滞后程度也降低了㊂上述研究表明,木材细胞壁主要成分的可控脱除,不仅为糠醇分子从细胞腔往细胞壁迁移提供了更多的通道,还减少了自由羟基的数量,提高了木材尺寸稳定性㊂图4㊀木材细胞壁主要成分空间结构示意图Fig.4㊀Schematicspatialstructureofwoodcellwallcomponents4㊀展㊀望研究人员对糠醇改性工艺(尤其是催化剂的优化)㊁糠醇改性剂与细胞壁主要成分的化学反应04。

EMS材料

EMS材料

Grivory GV经证实的金属替代材料该产品系列材料基于带部分芳香族含量的半结晶聚酰胺。

Grivory GV 以颗粒状供应,方便常规的市售设备和模具进行进一步注塑成型或挤出成型加工。

Grivory 用于制造具备以下特征的技术组件:∙较高的刚度和强度水平∙吸湿后特性值几乎无变化∙较低的吸湿性和吸水性∙良好的尺寸稳定性和低翘曲性∙典型聚酰胺的良好耐化学性∙良好的表面质量∙经济高效地进行生产提供以下 Grivory G 等级:Grivory GV:玻璃纤维增强,非常坚硬Grivory GVX:最高的刚度和强度值,极低的翘曲性Grivory GM:矿物增强,低翘曲性Grivory GVN:玻璃纤维增强,耐冲击性Grivory GC:碳增强,非常坚硬Grivory G4V:玻璃纤维增强,良好的表面质量Grivory GVS:玻璃纤维增强,卓越的流动特性Grivory GV FWA:玻璃纤维增强,用于接触食品和饮用水这些等级也适用于一系列不同的改性,根据所使用的增强剂、稳定剂和加工助剂的浓度而各不相同。

Grivory FWA产品对人体无害,并且还用于直接接触应用水和食品的敏感型应用领域。

Grivory GVX最高级别的金属替代我们的金属称为Grivory凭借高性能聚合物Grivory GV,EMS-GRIVORY 多年来一直是金属替代领域的市场领导者。

现在,新材料Grivory GVX 使我们更进一步。

该新材料大大提高了机械特性,显著扩大了金属替代应用的范围。

Grivory GVX 所提供的卓越性能在所有细节上均无可挑剔!Grivory GVX 尤其具备以下特性:∙最高的刚度和强度值∙极低的翘曲性∙加工过程简单Added performanceWith its exceptional property specification profile, Grivory GVX opens up a completely new chapter in the field of metal replacement.If all property values of Grivory GV-5H are compared with those of the new material Grivory GVX 5H, the consistent increase in performance is clearly apparent. The further development of Grivory GVX is particularly visible in its low warpage values, more isotropic material properties and flowability.Metal replacementDie-cast metals under pressureThe advantages of Grivory GVX compared to diecast metals are, above all, their lower density, simple processability and efficient production with up to 40% lower manufacturing costs.With a modulus of elasticity of up to 300 MPa, Grivory GVX is leader among thermoplastic materials and does not need to avoid direct comparison with property profiles of metals. At high temperatures for example, it exhibits much better performance than die-cast zinc. When combined with a component design suited for plastic materials, structural rigidity values, comparable to those of metal components, can be achieved.The future for metal replacementDue to its exceptional mechanical properties and simple processing, Grivory GVX expands the limits of metal replacement. The well-known advantages of weight reduction, freedom of design, functional integration and, above all cost savings, make polyamide materials much in demand as an alternative to more expensive metals. Grivory GVX - metal replacement at the highest level!Stiff and strongA significant increase in stiffness values - a new dimension for thermoplastic materials with glassfibre reinforcementGrivory GVX achieves modulus of elasticity values of nearly 30‘000 MPa. Compared to values for Grivory GV, this is an increase of more than 50%! These values also remain at the highest level for test bars in a conditioned state where conventional polyamides show a decrease of up to 35%.Significantly higher lateral stiffnessCompared to Grivory GV, Grivory GVX shows an increase of 26% in lateral stiffness for the same glassfibre content. This factor is particularly important in the manufacture of components exposed to internal pressure. The striking improvement is a great advantage for parts exposed to stress applied laterally to the direction of the fibres.WarpageAll semi-crystalline plastic materials are subject to the problem of warpage. With Grivory GVX, this warpage has been reduced by up to 50%. Due to an optimised interaction between the matrix and reinforcing glassfibres, 25% lower lateral shrinkage to the direction of alignment of the fibres has been achieved. This low transverse shrinkage results in the manufacture of components with greatly reduced warpage.The Moldflow analysis clearly shows the difference in warpage between Grivory GVX (A) and conventional products with the same amount of glassfibre reinforcement (B). This reduced warpage is not only Moldflow- Theory. Both test bars and daily applications confirm this lower warpage in an impressive manner.Grivory HT增强了高温下的性能Grivory® 是EMS-GRIVORY 所制造并销售的专用热塑性塑料商标名。

高分子专业英语教材

加工类:1196986233加工processing反应性加工reactive processing等离子体加工plasma processing加工性processability熔体流动指数melt flow index门尼粘度Mooney index塑化plasticizing增塑作用plasticization内增塑作用internal plasticization外增塑作用external plasticization增塑溶胶plastisol增强reinforcing增容作用compatibilization相容性compatibility相溶性intermiscibility生物相容性biocompatibility血液相容性blood compatibility组织相容性tissue compatibility混炼milling; mixing素炼mastication塑炼plastication过炼dead milled橡胶配合rubber compounding共混blend捏合kneading冷轧cold rolling压延性calenderability压延calendering埋置embedding压片preforming模塑molding模压成型compression molding压缩成型compression forming冲压模塑impact moulding, shock moulding 叠模压塑stack moulding复合成型composite molding注射成型injection molding注塑压缩成型injection compression molding射流注塑jet molding无流道冷料注塑runnerless injection molding共注塑coinjection molding气辅注塑gas aided injection molding注塑焊接injection welding传递成型transfer molding树脂传递成型resin transfer molding铸塑cast熔铸fusion casting铸塑成型casting molding单体浇铸monomer casting挤出extrusion共挤出co-extrusion多层挤塑multi-layer extrusion共挤吹塑co-extrusion blow molding同轴挤塑coaxial extrusion吹胀挤塑blown extrusion挤出吹塑extrusion blow molding挤拉吹塑成型extrusion draw blow molding反应性挤塑reactive extrusion固相挤出solid-phase extrusion发泡expanding foam后发泡post expansion物理发泡physical foam化学发泡chemical foam吹塑blow molding多层吹塑multi-layer blow molding拉伸吹塑成型stretch blow molding滚塑rotational moulding反应注射成型reaction injection molding, RIM 真空成型vacuum foaming无压成型zero pressure molding真空烧结vacuum sintering真空袋成型vacuum bag molding热成型thermal forming拉伸热成型stretch thermoforming袋模塑bag molding糊塑paste molding镶铸imbedding冲压成型impact molding触压成型impression molding层压材料laminate泡沫塑料成型foam molding包模成型drape molding充气吹胀inflation橡胶胶乳rubber latex高分子胶体polymer colloid生橡胶raw rubber, crude rubber硬质胶ebonite再生胶reclaimed rubber充油橡胶oil-extended rubber母胶masterbatch交联crosslinking固化cure光固化photo-cure硫化vulcanization后硫化post cure, post vulcanization 自硫化bin cure自交联self crosslinking过硫over cure返硫reversion欠硫under cure动态硫化dynamic vulcanization不均匀硫化heterogeneous vulcanization 开始效应set-up effect自动硫化self-curing, self-vulcanizing 焦烧scorching无压硫化non-pressure cure模压硫化moulding curing常温硫化auto-vulcanization热硫化heat curing蒸汽硫化steam curing微波硫化micro wave curing辐射硫化radiation vulcanization辐射交联radiation crosslinking连续硫化continuous vulcanization无模硫化open vulcanization成纤fiber forming可纺性spinnability纺丝spinning干纺dry spinning湿纺wet spinning干施法纺丝dry wet spinning干喷湿法纺丝dry jet wet spinning溶液纺丝solution spinning乳液闪蒸纺丝法emulsion spinning喷射纺丝jet spinning喷纺成型spray spinning液晶纺丝liquid crystal spinning熔纺melt spinning共混纺丝blended spinning凝胶纺丝gel spinning熔纺melt spinning共混纺丝blended spinning凝胶纺丝gel spinning反应纺丝reaction spinning静电纺丝electrostatic spinning高压纺丝high-pressure spinning复合纺丝conjugate spinning无纺布non-woven fabrics单丝monofilament, monofil复丝multifilament全取向丝fully oriented yarn中空纤维hollow fiber皮芯纤维sheath core fiber共纺co-spinning冷拉伸cold drawing, cold stretching单轴拉伸uniaxial drawing, uniaxial elongation 双轴拉伸biaxial drawing多轴拉伸multiaxial drawing皮心效应skin and core effect皮层效应skin effect防缩non-shrink熟成ripening垂挂sag定型sizing起球现象pilling effect捻度twist旦denier特tex纱yarn股strand粘合adhesion反应粘合reaction bonding压敏粘合pressure sensitive adhesion底漆primer浸渍impregnation浸渍树脂solvent impregnated resin基体matrix聚合物表面活性剂polymeric surfactant高分子絮凝剂polymeric flocculant预发颗粒pre-expanded高分子模polymeric membraneH-模H-filmLB膜Langmuir Blodgett film(LB film)半透膜semipermeable membrane反渗透膜reverse osmosis membrane多孔膜porous membrane各向异性膜anisotropic membrane正离子交换膜cationic exchange membrane 负离子交换膜anionic exchange membrane吸附树脂polymeric adsorbent添加剂additive固化剂curing agent潜固化剂latent curing agent硫化剂vulcanization agent给硫剂sulfur donor agent, sulfur donor 硫化促进剂vulcanization accelerator硫化活化剂vulcanization activator活化促进剂activating accelerator活化剂activator防焦剂scorch retarder抗硫化返原剂anti-reversion agent塑解剂peptizer偶联剂coupling agent硅烷偶联剂silane coupling agent钛酸酯偶联剂titanate coupling agent铝酸酯偶联剂aluminate coupling agent增强剂reinforcing agent增硬剂hardening agent惰性填料inert filler增塑剂plasticizer增粘剂tackifier增容剂compatibilizer增塑增容剂plasticizer extender分散剂dispersant agent结构控制剂constitution controller色料colorant荧光增白剂optical bleaching agent抗降解剂antidegradant防老剂anti-aging agent防臭氧剂antiozonant抗龟裂剂anticracking agent抗疲劳剂anti-fatigue agent抗微生物剂biocide防蚀剂antip-corrosion agent光致抗蚀剂photoresist防霉剂antiseptic防腐剂rot resistor防潮剂moisture proof agent防臭剂re-odorant抗氧剂antioxidant抗静电添加剂antistatic additive抗静电剂antistatic agent紫外线稳定剂ultraviolet stabilizer紫外光吸收剂ultraviolet absorber光稳定剂light stabilizer, photostabilizer 光屏蔽剂light screener发泡剂foaming agent物理发泡剂physical foaming agent化学发泡剂chemical foaming agent脱模剂releasing agent内脱模剂internal releasing agent外脱模剂external releasing agent阻燃剂flame retardant防火剂fire retardant烧蚀剂ablator润滑剂lubricant湿润剂wetting agent隔离剂separant增韧剂toughening agent抗冲击改性剂impact modifier消泡剂antifoaming agent减阻剂drag reducer破乳剂demulsifier粘度改进剂viscosity modifier增稠剂thickening agent, thickener阻黏剂abhesive洗脱剂eluant附聚剂agglomerating agent后处理剂after-treating agent催干剂drier防结皮剂anti-skinning agent纺织品整理剂textile finishing agent高物高化类:结构单元constitutional unit重复结构单元constitutional repeating unit 构型单元configurational unit立构重复单元stereorepeating unit立构规整度tacticity等规度isotacticity间同度syndiotacticity无规度atacticity嵌段block规整嵌段regular block非规整嵌段irregular block立构嵌段stereoblock有规立构嵌段isotactic block无规立构嵌段atactic block单体单元monomeric unit二单元组diad三单元组triad四单元组tetrad五单元组pentad无规线团random coil自由连接链freely-jointer chain自由旋转链freely-rotating chain蠕虫状链worm-like chain柔性链flexible chain链柔性chain flexibility刚性链rigid chain链刚性chain rigidity棒状链rodlike chain聚集aggregation聚集体aggregate凝聚、聚集coalescence链缠结chain entanglement凝聚缠结cohesional entanglement物理缠结physical entanglement拓扑缠结topological entanglement凝聚相condensed phase凝聚态condensed state凝聚过程condensing process临界聚集浓度critical aggregation concentration 线团-球粒转换coil-globule transition受限链confined chain受限态confined state物理交联physical crosslinking统计线团statistical coil等效链equivalent chain统计链段statistical segment链段chain segment链构象chain conformation无规线团模型random coil model无规行走模型random walk model自避随机行走模型self avoiding walk model卷曲构象coiled conformation高斯链Gaussian chain无扰尺寸unperturbed dimension扰动尺寸perturbed dimension热力学等效球thermodynamically equivalent sphere近程分子内相互作用short-range intramolecular interaction远程分子内相互作用long-range intramolecular interaction链间相互作用interchain interaction链间距interchain spacing长程有序long range order近程有序short range order回转半径radius of gyration末端间矢量end-to-end vector链末端chain end末端距end-to-end distance无扰末端距unperturbed end-to-end distance均方根末端距root-mean-square end-to-end distance伸直长度contour length相关长度persistence length主链;链骨架chain backbone支链branch chain链支化chain branching短支链short-chain branch长支链long-chain branch支化系数branching index支化密度branching density支化度degree of branching交联度degree of crosslinking网络network网络密度network density溶胀swelling平衡溶胀equilibrium swelling分子组装molecular assembly自组装self assembly微凝胶microgel凝胶点gel point可逆凝胶reversible gel溶胶-凝胶转化sol-gel transformation临界胶束浓度critical micelle concentration组成非均一性constitutional heterogeneity, compositional heterogeneity 摩尔质量平均molar mass average数均分子量number-average molecular weight重均分子量weight-average molecular weightZ-均分子量Z-average molecular weight黏均分子量viscosity-average molecular表观摩尔质量apparent molar mass表观分子量apparent molecular weight聚合度degree of polymerization动力学链长kinetic chain length单分散性monodispersity临界分子量critical molecular weight分子量分布molecular weight distribution多分散性指数polydispersity index平均聚合度average degree of polymerization质量分布函数mass distribution function数量分布函数number distribution function重量分布函数weight distribution function舒尔茨-齐姆分布Schulz-zimm distribution最概然分布most probable distribution对数正态分布logarithmic normal distribution聚合物溶液polymer solution聚合物-溶剂相互作用polymer-solvent interaction溶剂热力学性质thermodynamic quality of solvent均方末端距mean square end to end distance均方旋转半径mean square radius of gyration良溶剂good solvent不良溶剂poor solvent位力系数Virial coefficient排除体积excluded volume溶胀因子expansion factor溶胀度degree of swelling弗洛里-哈金斯理论Flory-Huggins theory哈金斯公式Huggins equation哈金斯系数Huggins coefficient溶度参数solubility parameter摩擦系数frictional coefficient流体力学体积hydrodynamically equivalent sphere珠-棒模型bead-rod model棒-簧链模型ball-spring model流动双折射flow birefringence, streaming birefringence 动态光散射dynamic light scattering小角激光光散射low angle laser light scattering沉降平衡sedimentation equilibrium沉降系数sedimentation coefficient沉降速度法sedimentation velocity method沉降平衡法sedimentation equilibrium method相对黏度relative viscosity相对黏度增量relative viscosity黏度比viscosity ratio黏数viscosity number[乌式]稀释黏度计[Ubbelohde] dilution viscometer毛细管黏度计capillary viscometer落球黏度计ball viscometer落球黏度ball viscosity本体黏度bulk viscosity比浓黏度reduced viscosity比浓对数黏度inherent viscosity, logarithmic viscosity number 特性黏数intrinsic viscosity, limiting viscosity number黏度函数viscosity function零切变速率黏度zero shear viscosity端基分析analysis of end group蒸气压渗透法vapor pressure osmometry, VPO辐射的相干弹性散射coherent elastic scattering of radiation折光指数增量refractive index increment瑞利比Rayleigh ratio超瑞利比excess Rayleigh ratio粒子散射函数particle scattering function粒子散射因子particle scattering factor齐姆图Zimm plot散射的非对称性dissymmetry of scattering解偏振作用depolarization分级fractionation沉淀分级precipitation fractionation萃取分级extraction fractionation色谱分级chromatographic fractionation柱分级column fractionation洗脱分级elution fractionation热分级thermal fractionation凝胶色谱法gel chromatography摩尔质量排除极限molar mass exclusion limit溶剂梯度洗脱色谱法solvent gradient elution chromatography分子量排除极限molecular weight exclusion limit洗脱体积elution volume普适标定universal calibration加宽函数spreading function链轴chain axis等同周期identity period链重复距离chain repeating distance晶体折叠周期crystalline fold period构象重复单元conformational repeating unit几何等效geometrical equivalence螺旋链helix chain构型无序configurational disorder链取向无序chain orientational disorder构象无序conformational disorder锯齿链zigzag chain双螺旋double stranded helix分子链大尺度取向global chain orientation结晶聚合物crystalline polymer半结晶聚合物semi-crystalline高分子晶体polymer crystal高分子微晶polymer crystallite结晶度degree of crystallinity高分子同晶现象macromolecular isomorphosm 聚合物形态学morphology of polymer片晶lamella, lamellar crystal轴晶axialite树枝晶体dendrite纤维晶fibrous crystal串晶结构shish-kebab structure球晶spherulite折叠链folded chain链折叠chain folding折叠表面fold surface折叠面fold plane折叠微区fold domain相邻再入模型adjacent re-entry model插线板模型switchboard model缨状微束模型fringed-micelle model折叠链晶体folded-chain crystal平行链晶体parallel-chain crystal伸展链晶体extended-chain crystal球状链晶体globular-chain crystal长周期long period近程结构short-range structure远程结构long-range structure成核作用nucleation分子成核作用molecular nucleation阿夫拉米方程Avrami equation主结晶primary crystallization后期结晶secondary crystallization外延结晶,附生结晶epitaxial crystallization外延晶体生长,附生晶体生长epitaxial growth织构texture液晶态liquid crystal state溶致性液晶lyotopic liquid crystal热致性液晶thermotropic liquid crystal热致性介晶thermotropic mesomorphism近晶相液晶smectic liquid crystal近晶中介相smectic mesophase近晶相smectic phase条带织构banded texture环带球晶ringed spherulite向列相nematic phase盘状相discotic phase解取向disorientation分聚segregation非晶相amorphous orientation非晶区amorphous orientation非晶态amorphous state非晶取向amorphous orientation链段运动segmental motion亚稳态metastable state相分离phase separation亚稳相分离spinodal decomposition微相miscibility界面相boundary phase相容性compatibility混溶性miscibility不相容性incompatibility不混溶性immiscibility增容作用compatibilization最低临界共溶温度lower critical solution temperature最高临界共溶温度upper critical solution temperature浓度猝灭concentration quenching激基缔合物荧光excimer fluorescence激基复合物荧光exciplex fluorescence激光共聚焦荧光显微镜laser confocal fluorescence microscopy 单轴取向uniaxial orientation双轴取向biaxial orientation, biorientation取向度degree of orientation橡胶态rubber state玻璃态glassy state高弹态elastomeric state黏流态viscous flow state伸长elongation高弹形变high elastic deformation回缩性nerviness拉伸比draw ratio, extension ratio泊松比Poisson’ ratio杨氏模量Young’s modulus本体模量bulk modulus剪切模量shear modulus法向应力normal stress剪切应力shear stress剪切应变shear strain屈服yielding颈缩现象necking屈服应力yield stress屈服应变yield strain脆性断裂brittle fracture脆性开裂brittle cracking脆-韧转变brittle ductile transition脆化温度brittleness temperature延性破裂ductile fracture冲击强度impact strength拉伸强度tensile strength极限拉伸强度ultimate tensile strength抗撕强度tearing strength弯曲强度flexural strength, bending strength 弯曲模量bending modulus弯曲应变bending strain弯曲应力bending stress收缩开裂shrinkage crack剪切强度shear strength剥离强度peeling strength疲劳强度fatigue strength挠曲deflection压缩强度compressive strength压缩永久变形compressive set压缩变形compressive deformation压痕硬度indentation hardness洛氏硬度Rockwell hardness布氏硬度Brinell hardness抗刮性scrath resistance断裂力学fracture mechanics力学破坏mechanical failure应力强度因子stress intensity factor断裂伸长elongation at break屈服强度yield strength断裂韧性fracture toughness弹性形变elastic deformation弹性滞后elastic hysteresis弹性elasticity弹性模量modulus of elasticity弹性回复elastic recovery不可回复形变irrecoverable deformation 裂缝crack银纹craze形变;变形deformation永久变形deformation set剩余变形residual deformation剩余伸长residual stretch回弹,回弹性resilience延迟形变retarded deformation延迟弹性retarded elasticity可逆形变reversible deformation应力开裂stress cracking应力-应变曲线stress strain curve拉伸应变stretch strain拉伸应力弛豫tensile stress relaxation热历史thermal history热收缩thermoshrinking牛辫分析torsional braid analysis应力致白stress whitening应变能strain energy应变张量strain tensor剩余应力residual stress应变硬化strain hardening应变软化strain softening电流变液electrorheological fluid假塑性pseudoplastic拉胀性auxiticity牛顿流体Newtonian fluid非牛顿流体non-Newtonian fluid宾汉流体Bingham fluid冷流cold flow牛顿剪切粘度Newtonian shear viscosity 剪切粘度shear viscosity表观剪切粘度apparent shear viscosity 剪切变稀shear thinning触变性thixotropy塑性形变plastic deformation塑性流动plastic flow体积弛豫volume relaxation拉伸黏度extensional viscosity粘弹性viscoelasticity线性粘弹性linear viscoelasticity非线性粘弹性non-linear viscoelasticity蠕变creep弛豫relaxation弛豫模量relaxation modulus蠕变柔量creep compliance热畸变温度heat distortion temperature弛豫谱relaxation spectrum推迟时间谱retardation spectrum弛豫时间relaxation time推迟时间retardation time动态力学行为dynamic mechanical behavior动态粘弹性dynamic viscoelasticity热-机械曲线thermo-mechanical curve动态转变dynamic transition储能模量storage modulus损耗模量loss modulus复数模量complex modulus复数柔量complex compliance动态黏度dynamic viscosity复数黏度complex viscosity复数介电常数complex dielectric permittivity介电损耗因子dielectric dissipation factor介电损耗常数dielectric loss constant介电弛豫时间dielectric relaxation time玻璃化转变glass transition玻璃化转变温度glass transition temperature次级弛豫secondary relaxation次级转变secondary transition次级弛豫温度secondary relaxation temperature开尔文模型Kelvin model麦克斯韦模型Maxwell model时-温叠加原理time-temperature superposition principle 波尔兹曼叠加原理Boltzmann superposition principle平衡因子shift factorWLF公式WLF[Williams-Lendel-Ferry] equation 软化温度softening temperature平衡熔点equilibrium melting point物理老化physical aging光老化photo-aging热老化thermal aging热氧老化thermo-oxidative aging人工老化artificial aging加速老化accelerated aging计算机模拟computer simulation分子动力学模拟molecular dynamics simulation蒙特卡洛模拟Monte Carlo simulation聚合反应类单体monomer官能度functionality平均官能度average functionality双官能单体bifunctional monomer三官能单体trifunctional monomer乙烯基单体vinyl monomer1,1-亚乙烯基单体/偏[二]取代乙烯单体vinylidene monomer1,2-亚乙烯基单体/1,2-二取代乙烯单体vinylene monomer双烯单体diene monomer极性单体polar monomer非极性单体non polar monomer共轭单体conjugated monomer非共轭单体non conjugated monomer活化单体activated monomer官能单体functional monomer大分子单体macromonomer环状单体cyclic monomer共聚单体co-monomer聚合反应polymerization均聚反应homopolymerization低聚反应/齐聚反应oligomerization调聚反应telomerization自发聚合spontaneous polymerization预聚合prepolymerization后聚合post polymerization再聚合repolymerization铸塑聚合cast polymerization链式聚合chain polymerization烯类聚合,乙烯基聚合vinyl polymerization双烯聚合diene polymerization加成聚合addition polymerization自由基聚合free radical polymerization可控自由基聚合controlled radical polymerization活性自由基聚合living radical polymerization原子转移自由基聚合atom transfer radical polymerization反向原子转移自由基聚合reverse atom transfer radical polymerization可逆加成断裂链转移reversible addition fragmentation chain transfer氮氧调控聚合nitroxide mediated polymerization稳定自由基聚合stable free radical polymerization自由基异构化聚合free radical isomerization polymerization自由基开环聚合radical ring opening polymerization氧化还原聚合redox polymerization无活性端聚合,死端聚合dead end polymerization光致聚合photo polymerization光引发聚合light initiated polymerization光敏聚合photosensitized polymerization四中心聚合four center polymerization电荷转移聚合charge transfer polymerization辐射引发聚合radiation initiated polymerization热聚合thermal polymerization电解聚合electrolytic polymerization等离子聚合plasma polymerization易位聚合metathesis polymerization开环易位聚合ring opening metathesis polymerization精密聚合precision polymerization环化聚合cyclopolymerization拓扑化学聚合topochemical polymerization平衡聚合equilibrium polymerization离子聚合ionic polymerization辐射离子聚合radiation ion polymerization离子对聚合ion pair polymerization正离子聚合/阳离子聚合cationic polymerization碳正离子聚合carbenium ion polymerization, carbocationic polymerization 假正离子聚合pseudo cationic polymerization假正离子活性聚合pseudo cationic living polymerization活性正离子聚合living cationic polymerization负离子聚合,阴离子聚合anionic polymerization碳负离子聚合carbanionic polymerization活性负离子聚合living anionic polymerization负离子环化聚合anionic cyclopolymerization负离子电化学聚合anionic electrochemical polymerization负离子异构化聚合anionic isomerization polymerization烯丙基聚合allylic polymerization活性聚合living polymerization两性离子聚合zwitterion polymerization齐格勒-纳塔聚合Ziegler Natta polymerization配位聚合coordination polymerization配位离子聚合coordinated ionic polymerization配位负离子聚合coordinated anionic polymerization配位正离子聚合coordinated cationic polymerization插入聚合insertion polymerization定向聚合,立构规整聚合stereoregular polymerization, stereospecific polymerization 有规立构聚合tactic polymerization全同立构聚合isospecific polymerization不对称诱导聚合asymmetric induction polymerization不对称选择性聚合asymmetric selective polymerization不对称立体选择性聚合asymmetric stereoselective polymerization对映体不对称聚合enantioasymmetric polymerization对映体对称聚合enantiosymmetric polymerization异构化聚合isomerization polymerization氢转移聚合hydrogen transfer polymerization基团转移聚合group transfer polymerization消除聚合elimination polymerization模板聚合matrix polymerization, template polymerization插层聚合intercalation polymerization无催化聚合uncatalyzed polymerization开环聚合ring opening polymerization活性开环聚合living ring opening polymerization不死的聚合immortal polymerization酶聚合作用enzymatic polymerization聚合加成反应,逐步加成聚合polyaddition偶联聚合coupling polymerization序列聚合sequential polymerization闪发聚合,俗称暴聚flash polymerization氧化聚合oxidative polymerization氧化偶联聚合oxidative coupling polymerization逐步聚合step growth polymerization缩聚反应condensation polymerization, polycondensation酯交换聚合transesterification type polymerization自催化缩聚autocatalytic polycondensation均相聚合homogeneous polymerization非均相聚合heterogeneous polymerization相转化聚合phase inversion polymerization本体聚合bulk polymerization, mass polymerization固相聚合solid phase polymerization气相聚合gaseous polymerization, gas phase polymerization吸附聚合adsorption polymerization溶液聚合solution polymerization沉淀聚合precipitation polymerization淤浆聚合slurry polymerization悬浮聚合suspension polymerization反相悬浮聚合reversed phase suspension polymerization珠状聚合bead polymerization, pearl polymerization分散聚合dispersion polymerization反相分散聚合inverse dispersion polymerization种子聚合seeding polymerization乳液聚合emulsion polymerization无乳化剂乳液聚合emulsifier free emulsion polymerization 反相乳液聚合inverse emulsion polymerization微乳液聚合micro emulsion polymerization连续聚合continuous polymerization半连续聚合semicontinuous polymerization分批聚合,间歇聚合batch polymerization原位聚合in situ polymerization均相缩聚homopolycondensation活化缩聚activated polycondensation熔融缩聚melt phase polycondensation固相缩聚solid phase polymerization体型缩聚three dimensional polymerization界面聚合interfacial polymerization界面缩聚interfacial polycondensation环加成聚合cycloaddition polymerization环烯聚合cycloalkene polymerization环硅氧烷聚合cyclosiloxane polymerization引发剂initiator引发剂活性activity of initiator聚合催化剂polymerization catalyst自由基引发剂radical initiator偶氮引发剂azo type initiator2,2‘偶氮二异丁腈2,2’-azobisisobutyronitrile, AIBN过氧化苯甲酰benzoyl peroxide, BPO过硫酸盐引发剂persulphate initiator复合引发体系complex initiation system氧化还原引发剂redox initiator电荷转移复合物,电荷转移络合物charge transfer complex, CTC 聚合加速极,聚合促进剂polymerization accelerator光敏引发剂photoinitiator双官能引发剂bifunctional initiator, difunctional initiator 三官能引发剂trifunctional initiator大分子引发剂macroinitiator引发-转移剂initiator transfer agent, inifer引发-转移-终止剂initiator transfer agent terminator, iniferter 光引发转移终止剂photoiniferter热引发转移终止剂thermoiniferter正离子催化剂cationic catalyst正离子引发剂cationic initiator负离子引发剂anionic initiator共引发剂coinitiator烷基锂引发剂alkyllithium initiator负离子自由基引发剂anion radical initiator烯醇钠引发剂alfin initiator齐格勒-纳塔催化剂Ziegler Natta catalyst过渡金属催化剂transition metal catalyst双组分催化剂bicomponent catalyst后过渡金属催化剂late transiton metal catalyst金属络合物催化剂metal complex catalyst茂金属催化剂metallocene catalyst甲基铝氧烷methylaluminoxane, MAO氧桥双金属烷氧化物催化剂bimetallic oxo alkoxides catalyst双金属催化剂bimetallic catalyst桥基茂金属bridged metallocene限定几何构型茂金属催化剂constrained geometry metallocene catalyst 均相茂金属催化剂homogeneous metallocene catalyst链引发chain initiation热引发thermal initiation染料敏化光引发dye sensitized phtoinitiation电荷转移引发charge transfer initiation诱导期induction period引发剂效率initiator efficiency诱导分解induced decomposition再引发reinitiation链增长chain growth, chain propagation增长链端propagating chain end活性种reactive species活性中心active center持续自由基persistent radical聚合最高温度ceiling temperature of polymerization链终止chain termination双分子终止bimolecular termination单分子终止unimolecular termination初级自由基终止primary radical termination扩散控制终止diffusion controlled termination歧化终止disproportionation termination偶合终止coupling termination自发终止spontaneous termination终止剂terminator假终止pseudotermination链终止剂chain terminating agent自发终止self termination自由基捕获剂radical scavenger旋转光闸法rotating sector method自由基寿命free radical lifetime凝胶效应gel effect自动加速效应autoacceleration effect链转移chain transfer链转移剂chain transfer agent尾咬转移backbiting transfer退化链转移degradation chain transfer加成断裂链转移addition fragmentation chain transfer 链转移常数chain transfer constant缓聚作用,延迟作用retardation阻聚作用inhibitor缓聚剂retarder缓聚剂,阻滞剂retarding agent阻聚剂inhibitor封端end capping聚合动力学polymerization kinetics聚合热力学polymerization thermodynamics聚合热heat of polymerization共聚合copolymerization二元共聚合binary copolymerization三元共聚合ternary copolymerization竟聚率reactivity ratio自由基共聚合radical copolymerization离子共聚合ionic copolymerization无规共聚合random copolymerization理想共聚合ideal copolymerization交替共聚合alternating copolymerization恒组分共聚合azeotropic copolymerization接枝共聚合graft copolymerization嵌段共聚合black copolymerization开环共聚合ring opening copolymerization共聚合方程copolymerization equation共缩聚copolycondensation逐步共聚合step copolymerization同种增长homopropagation自增长self propagation交叉增长cross propagation前末端基效应penultimate effect交叉终止cross terminate序列长度分布sequence length distribution侧基反应reaction of pendant group扩链剂,链增长剂chain extender交联crosslinking化学交联chemical crosslinking自交联self crosslinking光交联photocrosslinking交联度degree of crosslinking硫化vulcanization固化curing硫化sulfur vulcanization促进硫化accelerated sulfur vulcanization 过氧化物交联peroxide crosslinking无规交联random crosslinking交联密度crosslinking density交联指数crosslinking index解聚depolymerization降解degradation链断裂chain breaking解聚酶depolymerase细菌降解bacterial degradation生物降解biodegradation化学降解chemical degradation辐射降解radiation degradation断裂降解chain scission degradation自由基链降解free radical chain degradation 无规降解random degradation水解降解hydrolytic degradation热降解thermal degradation热氧化降解thermal oxidative degradation 光降解photodegradation光氧化降解photo oxidative degradation力化学降解mechanochemical degradation 接枝聚合graft polymerization活化接枝activation grafting接枝点grafting site链支化chain branching支化度degree of branching接枝效率efficiency of grafting接枝度grafting degree辐射诱导接枝radiation induced grafting嵌段聚合block polymerization通用类:高分子macromolecule, polymer超高分子supra polymer天然高分子natural polymer无机高分子inorganic polymer有机高分子organic polymer无机-有机高分子inorganic organic polymer金属有机聚合物organmetallic polymer元素高分子element polymer高聚物high polymer聚合物polymer低聚物oligmer二聚体dimmer三聚体trimmer调聚物telomere预聚物prepolymer均聚物homopolymer无规聚合物random polymer无规卷曲聚合物random coiling polymer头-头聚合物head-to-head polymer头-尾聚合物head-to-tail polymer尾-尾聚合物tail-to-tail polymer反式有规聚合物transtactic polymer顺式有规聚合物cistactic polymer规整聚合物regular polymer非规整聚合物irregular polymer无规立构聚合物atactic polymer合同立构聚合物isotactic polymer间同立构聚合物syndiotactic polymer杂同立构聚合物heterotactic polymer有规立构聚合物stereoregular polymer, tactic polymer 苏型双全同立构聚合物threo-diisotactic polymer苏型双间同立构聚合物threop-disyndiotactic polymer赤型双全同立构聚合物erythro-diisotactic polymer赤型双间同立构聚合物erythro-disyndiotactic polymer全同间同等量聚合物equitactic polymer共聚物copolymer二元共聚物binary copolymer三元共聚物terpolymer多元聚合物multipolymer序列共聚物sequential copolymer多层共聚物multilayer copolymer多相聚合物multiphase polymer统计共聚物statistical copolymer无规共聚物random copolymer交替共聚物alternating copolymer周期共聚物periodic copolymer梯度共聚物gradient copolymer嵌段共聚物block copolymer递变嵌段共聚物tapered block copolymer两亲嵌段共聚物amphiphilic block copolymer二嵌段共聚物diblock copolymer三嵌段共聚物triblock copolymer多嵌段共聚物segmented copolymer杂聚物heteropolymer恒分共聚物azeotropic copolymer多组分共聚物multicomponent copolymer单分散聚合物monodisperse polymer, uniform polymer多分散性聚合物polydisperse polymer, non-uniform polymer 高分子共混物polyblend, polymer blend聚合物-聚合物配合物ploymerp-polymer complex聚合物-金属配合物polymer-metal complex单股聚合物single-strand polymer双股聚合物double-strand polymer链型聚合物chain polymer碳链聚合物carbon chain polymer杂链聚合物heterochain polymer杂环高分子heterocyclic polymer大环聚合物macrocyclic polymer直链高分子straight chain polymer线型聚合物linear polymer体型聚合物three-dimensional polymer活性高分子living polymer反应性聚合物reactive polymer极性聚合物polar polymer非极性聚合物non-polar polymer刚性链聚合物rigid chain polymer半柔性链聚合物semi-flexible chain polymer柔性链聚合物flexible chain polymer刚帮高分子rigid rod polymer棒状高分子rodlike polymer刚-柔嵌段共聚物rod coil block copolymer树状高分子dendrimer, dendritic polymer刷状聚合物brush polymer线团状聚合物coiling type polymer花菜状聚合物cauliflower polymer螺旋形聚合物helical polymer锥形共聚物tapered copolymer梯形聚合物ladder polymer分段梯形聚合物step ladder polymer部分梯形聚合物partial ladder polymer碳环梯形聚合物carbocyclic ladder polymer梳形聚合物comb polymer星形聚合物star polymer。

Structuration_theory_

Structuration theory:its potential impact on logistics research Ira Lewis and Jim Suchan Naval Postgraduate School,Monterey,California,USAKeywords Logistics,Research,Information technology,Supply-chain management,CommunicationsAbstract While the physical paths that goods traverse are being simplified,the capture,storage,processing and dissemination of information associated with logistics has become considerablymore complex.Logistics researchers need to better understand the behavioral and managerialissues created by information technology implementation.The paper suggests that structurationtheory,a research approach derived from sociology that has become well established in the study ofinformation systems,can contribute to that understanding.This paper introduces logisticsresearchers to structuration theory as a useful theoretical framework that can help understand therelationship between technologies,the people who interpret them,and the patterns of use that stemfrom that interpretation.Introduction The evolution of advanced information technologies (AITs)is having a fundamental impact on the physical and information flows that characterize logistics activities.Although the physical paths goods traverse are being simplified due,in part,to outsourcing (Sarkar et al.,1998;Lewis and Talalayevsky,2000),the ability of AITs to capture,process,store,and disseminate large amounts of supply chain information has significantly increased the complexity of organizational members’and suppliers’tasks,and made more dynamic the systems within which they work.Following DeSanctis and Poole (1994),we define AITs as the tools,techniques,and knowledge (e.g.collaborative customer management and supply chain management (SCM)systems,groupware such as e-mail and intranets,and decision support systems)that promote participation in organizational and inter-organizational activities by a wide range of organizational members and stakeholders.These AITs can make real-time information available to members at all levels in the organization,to suppliers,and to customers.If this information and knowledge is used wisely,organizations can build customized relationships with their suppliers and customers,leading to a significant strategic advantage over competitors.Effectively adopting and implementing AITs to strategically manage supply chain information,communication,and relationships is not only aThe Emerald Research Register for this journal is available atThe current issue and full text archive of this journal is available at /researchregister /0960-0035.htm IJPDLM33,4296Received February 2002Revised September 2002,January 2003International Journal of PhysicalDistribution &Logistics ManagementVol.33No.4,2003pp.296-315q MCB UP Limited0960-0035DOI 10.1108/09600030310478784technical but also a managerial challenge.More specifically,understanding how AITs affect the managerial and behavioral management components of the logistics framework and the larger organization systems within which that framework is embedded is key to helping us understand how organizational agents,such as individuals,groups,departments,divisions,or even whole enterprises interpret,implement,resist,and use AITs.However,Lambert et al.(1998)point out that these behavioral elements are difficult to assess because they represent complex process interactions that can only be understood over time.This difficulty creates significant problems if the effect of AITs on people,processes,and the internal and external SCM systems are to be understood,diagnosed,and aligned with large-scale organizational systems.Stock(2001)emphasized that“SCM allows multiple theories, concepts,principles,and methods to be used in the identification and solution of SCM-related problems and issues”.We strongly believe that structuration theory,a research approach derived from sociology that is becoming well established in information systems and organizational behavior research,can help researchers better understand the behavioral SCM issues and problems that AIT implementation and use create.Consequently,the purpose of this paper is to introduce logistics researchers to structuration theory as a useful theoretical framework that may help them to understand better the relationship between AITs,the people who interpret them,and the patterns of use that stem from that interpretation.Clearly,the theoretical framework suggested by structuration could be applied to a wide range of SCM issues including any kind of interface between man and machines.However,we focus on AITs so as to provide a specific,easy-to-understand application of structuration theory,to capitalize on the research done in the information technology(IT)field,and to treat an area having a significant impact on SCM managerial processes.This paper is organized as follows:(1)a brief overview of current logistics research that points out thelimitations of variance theories and the need for process theories and an interpretivist framework to understand better the behavioral complexity or dimensionality of supply chains;(2)an overview of structuration theory with illustrations of how this theorycan help us understand AITs behavioral impact on SCM issues;(3)a brief case that applies structuration theory in a systematic manner;(4)a description of the data gathering methods needed to use thestructuration theory lens and the limitations of these methods;(5)final observations that describe the disciplinary challenges logistics mayface in adopting the interpretivist framework that structuration theory and other similar theoretical frameworks require.Structurationtheory297The need for process-based theories in logistics research Seaker et al.(1993)described logistics as “a relatively new field of study that is characterized by emerging opportunities and changing research requirements”.Stock (1990,1997)and McGinnis et al.(1994)suggested that logistics should look to other disciplines to determine whether developments within the field constitute progress.Critical of the state of logistics research at the time,Stock(1990)expressed the following view:The role of logistics in contributing to the social welfare will start to crystallize as logistics is viewed from a larger perspective.If logistics is viewed strategically and more broadly to include marketing,planning,and strategy,additional opportunities exist for academicians involved in scholarly research.Current academicians and practitioners will have to see themselves as change agents and work to break apart the provincialism of traditional logistics.The above researchers also expressed the view that logistics research had adopted a strong positivist approach toward how knowledge was created.That approach,which theorizes that behavior can be predicted and that cause-and-effect relationships are clear and pervasive,contrasts sharply with interpretivism,which seeks to understand the subjective individual and organizational processes that shape and control behavior.From the interpretivist perspective,explanations of behavior,indeed virtually all aspects of organizational life,are socially constructed.Consequently,to understand the processes that constructed that behavior,researchers must gather data that reveal workers’subjective experiences,the interpretive lenses that give meaning to that experience,and the organizational factors and contexts that create common organizational interpretive lenses.The field of management generally,and in particular research into the impact of AITs on management practices,has benefited from both positivist and interpretivist frameworks.However,there is increasing realization that the positivist framework may be imposing limitations on our understanding of organizations.As explained by Edwards (2000),“scholars now contend that innovation is best understood as a dynamic,ongoing process during which actions and institutional structures are inextricably linked”.Process-based theories,which fall within the interpretivist tradition,suggest that behavior cannot be predicted either by the intentions of individual actors or by discrete changes in environmental conditions such as the implementation of AITs (Markus and Robey,1988).In contrast,variance theories,which stem from a positivist tradition,view the precursor or cause as a necessary and sufficient condition for the expected outcome to occur.For example,the well-known prediction by Leavitt and Whisler (1958)that IT would always cause organizational centralization is an example of a variance theory.Table I outlines the key differences between the logical frameworks associated with variance and process theories.IJPDLM 33,4298Variance theories are consistent with the use of surveys,which are the dominant form of research in logistics management.Dunn et al.(1993),in their review of four leading logistics journals,found that only 2percent of the articles published were based on methods such as case studies or action research.In contrast,36percent used surveys or interviews,while 25percent used modeling and simulation.Mentzer and Kahn (1995)stated that the majority of published literature in the Journal of Business Logistics consisted of normative research or literature reviews.The interpretivist framework and the process theories that define that framework suggest that social relationships,such as those that characterize the relationships between the members of a supply chain,are far too complex to be modeled through use of surveys.Methodologies that capture members’subjective experiences,their interpretation of that experience,and the actions that result from that interpretation are required to understand SCM behavior.The increasing complexity of logistics partly caused by the increasing interconnectedness of supply chain members from organizations with different missions,goals,strategies,and tactics may lead logistics researchers to consider greater use of process theories to better understand the impact these behavioral factors have on SCM.Kent and Flint (1997)suggested that a “deeper understanding of behavioral issues”in logistics research would emerge,with a particular need for “solid theory based on sound empirical examination of construct relationships over multiple industries and situations”.Mentzer (2001),in summarizing the findings of an edited collection of papers on SCM,explained the challenge as follows:Although much of traditional SCM research has looked at the operational and financial aspects of supply chains,it is apparent from this book that much of what must be managed in supply chains falls within the realm of behavioral research.How functions within a company can be integrated,how companies can coordinate their activities,and the chain of customer service to customer satisfaction to customer value all represent opportunities to bring the insights of behavioral research to what we know about supply chains.Variance theoryProcess theory DefinitionThe cause is necessary and sufficient for the outcome Causes result from socially constructed,subjective experiences Role of timeStatic Longitudinal Assumptions Behavior can be predicted ormodeled Behavior can be understood in relation to organizationally-specific context factorsResearch methods Surveys Case studies,action research,ethnographic and cultural studiesLevel of analysis Macro Blend of macro and micro Source:Based on Markus and Robey (1988)Table I.Logical structure ofvariance andprocess theories Structuration theory 299However,logistics researchers may not have fully appreciated the required shift in thinking required of logistics researchers to add an interpretivist paradigm and the requisite theoretical frameworks to their collective research “toolkits”,nor the barriers that will make that change difficult.As SCM has become an accepted concept in logistics,the challenge of managing numerous complex relationships with other members of the supply chain,including thecapture,analysis,and distribution of information associated with physical goods,has become a major issue.Due to the predominance of positivist approaches in logistics,the most common response to the challenge of increased complexity in SCM by logistics researchers has been to suggest the decomposition of supply chains into simplified structures that can then be analyzed to determine appropriate managerial action to be taken to oversee that part of the distribution channel.For example,Lambert et al.(1998)suggested that supply chains could be characterized as networks of multiple tiers of suppliers and customers surrounding a focal firm.The links between member firms in the supply chain could then be easily divided into categories,based on whether the links related to key processes,or whether the links are actively managed or more passively monitored.Similarly,Cooper et al.(1997)proposed a “value tree”approach to supply chains.In that simplified analogy,the trunk of the tree represents the focal firm,with customers as the roots and suppliers as branches of the tree.The roots and branches may subdivide to represent multiple tiers of customers or suppliers.The above approaches seek to deal with the complexity –or dimensionality –of supply chains by abstracting complex relationships and reducing them to reasonably simple,rational models.For each defined category of link within the supply chain,firms should adopt a corresponding strategy for managing that rge numbers of suppliers or customers,changes in the composition or nature of the supply chain,interruptions in the flow of physical goods or information,or uncertainty about any aspect of a relationship within the chain are generally perceived to have an appropriate managerial response.These approaches to SCM may be attempting to overly simplify the complex interactions and behaviors that occur within supply chains (Mears-Young and Jackson,1997).In contrast,Choi et al.(2001),inspired,in part,by research in complexity theory and the natural sciences,characterized supply chains as “complex adaptive systems”(CASs).CASs represent aggregations of autonomous agents whose degree of autonomy and whose predictability of behavior is related to the degree of connectivity between them.Such systems emerge “over time without any singular entity deliberately managing or controlling it”.Also,a CAS both reacts to and creates its own environment.In other words,as the system adds new or even redundant suppliers to meet newly anticipated demands for products or services of end consumer marketsIJPDLM 33,4300(a strategic reaction to the environment based on environmental scanning),the addition of these primary and tertiary suppliers creates new interconnections within the supply chain–a system-created environment.These additional interconnections both reshape the system and create emerging patterns of thinking and action(what Choi et al.(2001)call interpretive schema)that reinterpret end consumer market needs.The characterization of supply chains as CASs challenges the positivist approach that has dominated logistics research,while giving credence to the value of alternative,more process-oriented approaches such as interpretivism(Markus and Robey,1988).Research methods that seek to impose a purely positivist perspective on supply chains may not explain the breadth of phenomena that occur within the networks of organizations and individuals involved in the movement and storage of physical goods.In the following sections,we provide an explanation of how one interpretivist approach,structuration theory,could be used to capture complexity and enrich the study and understanding of logistics.An overview of structuration theory“Structure”has a non-traditional definition within the theoretical framework of structuration.Structure is traditionally seen as the formal and informal links of organizational activities and elements(e.g.job specialization, departmentalization,and functional,divisional,and matrix designs)that enable organizational work to get done.However,viewed through the structuration theory lens,structures are codes of behavior,implicit stores of knowledge that exist in workers’heads,that steer individual and collective organizational action(Giddens,1979,1984).In other words,structures are workers’mental blueprints for action within specific organizational contexts (e.g.meetings with suppliers or customers,assessments of how suppliers and customers will use new information technologies,interactions with superiors, etc.).As the“code”and“blueprint”metaphors suggest,these templates or organizing patterns and the behaviors that result from them are malleable or, as DeSanctis and Poole(1994)characterize them,“softly deterministic”.Structures are either reinforced or modified,sometimes radically but more often than not incrementally,by individual actions and,in general,by theflow of ongoing organizational behavior.For example,organizational members’repeated and continual use of e-mail to share complex ideas with suppliers rather than the telephone,face-to-face,or video teleconferencing both reflects and reinforces the current pattern of thinking about successful communication and e-mail as an appropriate media choice as well as steers future communication media choice behavior.In short,people’s actions reproduce structures and,simultaneously,are guided by them.As Figure1illustrates, there is a recursive,reinforcing relationship between structures and people’s actions or behaviors.Structurationtheory301Figure 1implies that the key to this structuration process is the interplay between the structures that simultaneously guide,regulate,and reflect behavior and individuals’willingness to reproduce and thus reinforce current structures through expected behavior,as illustrated in the e-mail use example above.Additionally,structures may be modified minimally,significantly,or radically through ongoing new behavior.What can trigger new behavior thatcan alter structures are events such as significant economic changes (e.g.the dot-com implosion),mergers and acquisitions,and,as we discuss next,AIT adoptions.Barley (1986)applies the structuration theory framework to AITs.He argues that organizations’adoption of these technologies and the initial changes in thinking and behavior that may result from that adoption may create enough of a behavioral disruption to alter structures and thus create a modified code of,or blueprint,for behavior.For example,Barley researched the effect of computerized tomography (CT)scanners on institutional roles and patterns of interaction in hospital radiology departments.Barley demonstrated that CT scanners represented an AIT that was both a physical and a social object capable of triggering different behavior dynamics,hence varying degrees of “disruption”,in organizations.Specifically,radiologists and technicians in two hospitals interpreted in very different ways the complexity,value,and use of the same CT technology,thus causing a significant change in job role,power relations,and communication between radiologists and technicians in one hospital and minimal,if any change,in another.Barley’s (1986)research caused him to reject the deterministic,one-dimensional view that AITs are self-evident artifacts whose use and impact on behavior is obvious and uniform across organizations.AITs are viewed by Barley (1986),as they are by Weick (1990),as having equivocal effects,thus allowing for various interpretations and different behaviors resulting from those interpretations.In short,organizational members’interpretations of an AIT and its physical properties influence how the technology can be used,what it will do,and its contribution to organizational effectiveness.The structuration theory perspective enabled Barley (1986)to conclude that an AIT exists as a socially constructed object uniquely situated within ongoing organizational action –a technology can only be understood within the context of its routine workday use and the existing structures that shape that use.Figure 1.The reciprocalinteraction betweenstructures andbehaviorIJPDLM 33,4302Consequently,researchers need to examine how an AIT is interpreted,the influence that prevailing organizational structures (codes or blueprints)have on that interpretation,how that interpretation affects,over time,the way and the degree to which the AIT is incorporated into the everyday life of organizational members,and the behavioral disruptions or accommodations to these codes the technology generates.Figure 2outlines this relationship between:.AIT as an artifact that has embedded within it,features reflecting designers’intended use;.organizational members’interpretations of the AIT;.the structures that influence AIT interpretation and influence strongly ongoing organizational behavior;and.the behaviors that are both influenced by and reinforce those structures.Figure 2also shows that over time (times B and C)that the interplay between these four factors (listed above)may,to varying degrees,alter both structures and the behaviors influenced by them.DeSanctis and Poole (1994)extend Barley’s (1986)application of structuration theory by focusing in greater detail on the specific reasons why the same technology can significantly alter behavior patterns and,over time,structures in one organization but have little impact on behavior and structures in another.Calling their framework “adaptive structuration theory”.DeSanctis and Poole (1994)examine the interplay between expected structures or blueprints for behavior that AIT designers explicitly or implicitly build into their systems and the structures (e.g.patterns of Figure 2.Interplay of factorscausing potential changeof structures andbehaviorStructuration theory 303behavior and use)that actually emerge as organizational members,influenced by the patterns of thinking and behavior that define structures within their own organizations,adopt,modify through improvisation,resist,or even reject AIT designers’intended use of the technology (Figure 2describes that interplay).In summary,as a result of ongoing actions of organizational members,AITsare adapted into organizational practice.As we indicated earlier,the degree of adaptation of the same technology may vary from organization to organization depending on the unique structures of the respective organizations and the degree of malleability characterizing these structures.These differences in adaptation reflect the degree of change the technology has triggered within an organization.This change may enhance organizational effectiveness or undermine it.For example,electronic brainstorming software can create structures of interaction that help organizations in extremely competitive environments to generate new product ideas.However,that same brainstorming software may also create interactions that undermine hierarchy in an organization that relies on chain of command to organize and be effective.As explained by DeSanctis and Poole (1994):Because the new structures offered by technology must be blended with existing organizational practices,radical behavior change takes time to emerge,and in some cases may not occur at all.Structuration models go beyond the surface to consider the subtle ways in which technology impacts may unfold.Tension often arises between the structures of intended use embedded within the advanced technology by its creators and sponsors and the structures that emerge from action as people within different organizational contexts (and the different structures that define appropriate action within those contexts)interact with the technology.Orlikowski (1992)characterizes this tension as the “duality of structure”,a phenomenon that is often invisible within anizational members are often unaware of their own patterns of technology use and the structures that steer that use,because of their tendency to reify them,or to treat them as a “black box”.In such circumstances,users do not assess or diagnose the technology as an interaction between the structures of use embedded in the technology’s material characteristics and users’organizational structures that steer their specific uses.This lack of mindfulness or awareness can cause problems because,debate,dialogue,and other forms of interaction that result in new learning –what Argyris (1999)calls double-loop learning –are absent.Consequently,organizational members remain unaware of the degree of influence AITs are having on their structures and actions;moreover,they are unable to determine if their own organizational structures and the actions they produce are limiting their understanding and use of the AIT.Interestingly,action research that uses structuration theory as a theoretical lens can increaseIJPDLM 33,4304organizational members’mindfulness or awareness about strategic AIT appropriation.The value of structuration to evaluate the impact of the adoption of AITs has direct relevance to logistics.While physical goods cannot be moved as rapidly as information,expectations of what logistics processes and the technologies supporting them can accomplish have risen with rapid improvements in IT.Accordingly,the physical distribution of goods is being restructured to take advantage of increased efficiencies in IT,notably in the ease of communication between the different components of the supply chain. IT has become a key enabler of the integration of logistics functions(Zacharia, 2001).Given the pervasive role of IT in logistics,and the well-established use of structuration theory to examine IT-enabled behavioral change,we believe there is considerable potential for the use of structuration theory in logistics research.The next section applies these structuration concepts to a logistics case.This application will demonstrate how the structuration theory lens can be used to surface critical issues in AIT adoption and adaptation.Logistics case study–the global transportation networkThis case study uses broad-based structuration theory concepts to discuss the adoption by the US Department of Defense(DoD)of the global transportation network(GTN),a complex AIT.Wefirst discuss the organizational context for the case,then describe the impact of GTN on information processing,and finally suggest how structuration theory could be used to evaluate DoD organizational challenges in adopting and adapting to GTN. Organizational contextLogistics organizations within DoD are responsible for ensuring the worldwide distribution of large quantities of equipment and supplies to bothfixed locations(such as military bases)and mobile units(such as ships and infantry battalions).The military supply chain also includes thousands of suppliers and warehouses,providing material ranging from the commonplace(food and office supplies)to the complex(spare parts for aircraft and ships).The performance of this large,complex DoD logistics system is affected by constraints on access to accurate demand information,disturbances due to breakdowns in transportation and communications,the number of decision points where information is concentrated and acted on,time lags for value and non-value added processes,and decision rules for activities such as order placement,inventory levels,or the dispatching of vehicles(Evans et al.,1993). Traditionally,the many organizations involved in the end-to-end military supply chain–referred to colloquially as“factory to foxhole”–have each pursued their own objectives leading to different behavioral patterns.For example,a military unit charged with warehousing supplies will seek to deliver items to its loading dock as quickly as possible,without regard for the length of Structurationtheory305。

13AdaptationTheory顺应论


13.2 Language use as choice-making
A. These choices are made at every possible level of linguistic structure.
13.1 Adaptability, variability and negotiability
Defined as the study of linguistic adaptation or adaptability, pragmatics is necessarily a discipline that undertakes the analysis of verbal communication as a form of adaptation vital to life and survival.
13.1 Adaptability, variability and negotiability
A fundamental question the Adaptation Theory raises is what and how language contributes to life and survival.
13.2 Language use as choice-making
Talking or using language expressively and /or communicatively consists of constantly making linguistic choices, consciously or unconsciously, for language-internal (i.e. structural) and /or language-external reasons.

图式理论(Schema Theory)在跨文化交际中的运用的论文

图式理论(Schema Theory)在跨文化交际中的运用的论文关键词:图式理论跨文化传播跨文化交际经过许多学者的努力,跨文化交际(intercultural communication)[1]的研究在国内已渐成态势。

跨文化交际包括不同的研究领域:(1)对陌生环境的心理反应研究,如“文化休克(culture shock)”,u曲线和v曲线以及减少不确定性理论;(2)跨文化适应(cross-cultural adjustment or adaptation)及涵化(acculturation)研究;(3)跨文化交际效力(intercultural communication competence简称icc)研究;(4)价值及价值取向研究;(5)语言和非语言交际研究。

虽然我们对跨文化交际的了解在不断增多,认识在不断提高,但理论化程度不够高,基础理论建设薄弱仍然是跨文化交际研究学科化发展的困难所在。

正如传播学先驱卢因(lewin)所说:“没有什么比好的理论更实用了。

”因此对相关学科理论成果的借鉴不失为一条出路。

现代图式理论(scheme theory)是认知心理学兴起之后,在70年代中期产生的。

由于图式概念有助于解释复杂的社会认知现象,很快被社会心理学家所采用。

90年代以来图式理论又被运用于跨文化交际的研究领域,与其他理论相比,图式理论兼具描述和解释功能,并可以籍此开展一些实证研究,因此应当引起重视。

一、什么是图式当人进人一个熟悉的环境,就可能根据记忆中原有的知识进行相应的思维或行动反应。

比如我们看到在一个台子上有两名壮汉挥舞着拳头攻击对方,而周围有许多人观看,依据我们原有的认知结构(cognitive structure)可以知道这是在进行拳击比赛,如果我们还具备对拳击比赛规则(进一步的认知结构)的一般了解,我们还可以进一步欣赏比赛,否则就只看到台上台下的“野蛮”行动了。

这个例子说明我们会自然地把个别刺激物放在一个预存的认知结构,即图式中去认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汉语中介语初始状态中母语迁移—对语言可加工性理论的检验 尹洪山、徐晓慧
中国外语 2008年9月第5卷第5期 49-53
根据语言可加工性理论,从属句程序是语言加工序列等级的 最高阶段,在这一阶段学习者开始掌握英语主句与从句的关 系,并在从句中使用SVO语序。与英语相比,汉语的从句 大多也使用SVO语序,因此,在这方面,两种语言存在比 较相似的特征。 研究问题:英语和汉语都是SOV语言,这种相似的语法特 征如果在当前阶段不具备加工性,是否会在习得过程中出现 迁移现象? 研究假设:根据语言可加工性理论,二语学习者只能产出和 理解自身语言加工器所能处理的语言形式,因此即使英汉两 种语言存在相似的语法特征,如果这一特征在当前阶段并 不具备可加工性,那么,该语法特征未必会向中介语的初 始状态发生迁移。
研究设计
研究对象:97名不同水平的英语学习者。其中初级组为36名初 中二年级学生,中级组为36名非英语专业本科一年级学生,高 级组受试为25名英语专业研究生。 实验材料共由20个句子组成。包括实验句和干扰句两部分。实 验句均为主从复合句,从句中涉及SVO和倒装语序两种类型, 如(1)一(2)所示: (1)Bob didn’t tell me when he would start. (2)The teacher wants to know how often do you go swimming. 研究中采用的干扰句旨在分散受试者对语言材料的敏感性,因 此选用与实验句不同的句子类型,如(3)一(4)所示: (3)How you are going on with your study? Please tell me all about it. (4)Excuse me,could you tell me the way to the library?
受试者根据自己的语感对所给的句子做出正误判断,判断正 确得1分,判断错误得零分。由于本研究中的初级组尚未学 习主从复合句的语法结构,因此,他们需要对从句中的语序 参数进行重新设置。鉴于汉语在这类从句中大多使用SVO语 序,初级阶段的学习者是否会利用母语知识对这些句子进行 语法判断?研究设计的语法判断部分有助于回答这一问题。 C:\Documents and Settings\Administrator\桌面\新建文 件夹
AN EXEMPLARY STUDY: Kawaguchi(2005)
The core of Processability Theory(PT) is the universal processability hierarchy. To demonstrate the validity of this theory, empircal studies on typologically different languages become necessary. Kawaguchi's research on Australian learning Japanese as a second language has set a good example.
2.Phrasal procedure
phrase
Topic+S(O)V
At the phrasal level, TOPIC and OBJECT can be distinguished.
3.Sentence procedure
sentence
Passive and OBJECT Topicalization
Level 1.Lexical procedure 2.Phrasal procedure 3.Sentence procedure Informative transfer category phrase sentence Structure TOPsubj(O)V Topic+S(O)V Passive and OBJECT Topicalization
Research Design
Kawaguchi conducted two longitudinal studies spanning respectively two and three years. Informants: Australian native speakers of English learning Japanese as a second language. They received six hours of linguistic input per week for 24 weeks per year. Data collection: Sample collection began four weeks after commencement of the class. Samples were collected every month in natural conversation and using communicative tasks. Each session lasted between 20 and 30 minutes.
1.Lexical procedure
category
TOPsubj(O)V
The unmarked alignment hypothesis predicts that learners will not initially differentiate between TOPIC and OBJECT. The intial structure also follows the canonical word order in Japanese(SOV).
Typologically, Japanese and English belong to different languages. Therefore, there are some differences in their grammatical structures.
Compared with English, Japanese is an SOV language and the verb is always in final position. Its syntactic relations are marked by nominal particles that follow the noun to be marked. Besides, its word order is relatively free.
研究发现:虽然英语从属句中的SVO语序与汉语类似,但本 研究中的初级组在这~语法特征中的得分均值仅为.4504, 明显低于中、高级组受试者。这说明,初级组没有习得英语 从属句中的语序参数。
Thank you for attention!

eg. Piano-o Tamiko-ga hiita. Piano-Accusative Tamiko-Nominative Tamiko played the piano.
play-Past
Combining specific features of Japanese with Processability Theory and Lexical Mapping Theory, Kawaguchi predicted a development trajectory of learning Japanese as a second language. The following is part of it.
At the sentence level, objects can be in initial, that is, topic position. T h e l a tt e r t w o s t e p s c a n a l s o b e p r e d i c t e d b y t h e TO PI C hypothesis.( TOPIC function will be first applied to noncore arguments and then to core aruments. )
Continued
Data analysis: Kawaguchi carried out a distributional analysis of the data. The structures that are included in the hypothesized development trajectory are searched in the learner data. The absence or presence of these structures is counted for every sample. Research findings:The verb appeared in the last position in every sentence and for every session right from the start. The structure TOPsubj(O)V appeared in a clearly distinguishable next step, and this was followed by structures in which TOPIC and SUJECT are differentiated. Thus the results support the predictions made by Processability Theory.
相关文档
最新文档