multisim 仿真
Multisim模拟电路仿真实例

05
Multisim在电子工程设计 中的应用
在电子工程设计中应用Multisim的意义
高效性
Multisim提供了高效的电路仿真环境,能够快速模拟电路的 性能,缩短设计周期。
1
精确性
2
Multisim的仿真结果具有较高的精确度,能够准确反映电路
的实际工作情况。
3 实验安全性
在Multisim中进行电路仿真,可以避免因实验错误导致硬件 设备的损坏。
仿真分析
提供多种仿真分析工具,帮助用户深入了解电 路的工作原理和性能。
软件应用领域
电子工程
Multisim广泛应用于电子工程领域 ,用于电路设计、分析和仿真的教学 和实践。
通信系统
用于控制系统的电路设计和性能分析 。
嵌入式系统
用于模拟嵌入式系统的电路设计和性 能分析。
控制系统
用于通信系统的电路设计和性能评估 。
需的输出信号。
滤波器电路搭建
总结词
滤波器电路是模拟电路中常用的一种 基本电路,用于将信号中的特定频率 成分提取或滤除。
详细描述
滤波器电路由一个输入端、一个输出端和若干个电 阻、电容和电感组成。输入信号通过电阻R1和R2 加到滤波器的输入端,输出信号通过电容C1和C2 反馈到滤波器的输出端。通过调整电阻、电容和电 感的参数,可以改变滤波器的频率响应,从而提取 或滤除信号中的特定频率成分。
放大器电路搭建
总结词
放大器电路是模拟电路中常用的一种基本电路,用于将微弱的信号放大到所需的幅度。
详细描述
放大器电路由一个输入端、一个输出端和若干个电阻和电容组成。输入信号通过电阻 R1和R2加到运算放大器的同相输入端,输出信号通过电容C1和C2反馈到运算放大器的 反相输入端。通过调整电阻和电容的参数,可以改变放大器的增益和带宽,从而获得所
最详细最好的multisim仿真教程

最详细最好的multisim仿真教程最详细最好的multisim仿真教程第13章 Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使⽤Multisim进⾏模拟电路仿真的基本⽅法。
⽬录1. Multisim软件⼊门2. ⼆极管电路3. 基本放⼤电路4. 差分放⼤电路5. 负反馈放⼤电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放⼤电路8. 信号产⽣和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim⽤户界⾯及基本操作13.1.1 Multisim⽤户界⾯在众多的EDA仿真软件中,Multisim软件界⾯友好、功能强⼤、易学易⽤,受到电类设计开发⼈员的青睐。
Multisim⽤软件⽅法虚拟电⼦元器件及仪器仪表,将元器件和仪器集合为⼀体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿⼤图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真⼯具,原名EWB。
IIT公司于1988年推出⼀个⽤于电⼦电路仿真和设计的EDA⼯具软件Electronics Work Bench(电⼦⼯作台,简称EWB),以界⾯形象直观、操作⽅便、分析功能强⼤、易学易⽤⽽得到迅速推⼴使⽤。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进⾏了较⼤变动,名称改为Multisim(多功能仿真软件)。
IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单⽚机和LabVIEW虚拟仪器的仿真和应⽤。
下⾯以Multisim10为例介绍其基本操作。
mutisim仿真模型器件建立

Revision History
ቤተ መጻሕፍቲ ባይዱ
Date
Revision History
Reviser
步骤 3:输入符号信息
在此操作中可以编辑元器件在仿真中所显示的符号。 有三种编辑方式可以选择,如图 5 所示:
5
图5 1. Edit:可以任意编辑修改符号,如图 6 所示;
图6
6
2. Copy from DB:从库中选择已存在的符号; 3. Copy to…:可以把这个符号复制到自己的文件夹里,备以后使用。 编辑完毕点击 Next 进入下一个步骤。
1
目录
步骤 1:输入元器件信息........................................................................................................3 步骤 2:输入封装信息............................................................................................................3 步骤 3:输入符号信息............................................................................................................5 步骤 4:设置管脚参数............................................................................................................7 步骤 5:设置符号与布局封装间的映射信息........................................................................8 步骤 6:载入仿真模型............................................................................................................9 步骤 7:实现符号管脚至模型节点的映射............................................................................9 步骤 8:将元器件保存到数据库中......................................................................................10 步骤 9:测试修改新载入的元器件......................................................................................11
multisim用法

multisim用法Multisim是一款由美国国家仪器公司(National Instruments)开发的,在电子工程教育和硬件设计中广泛使用的电路仿真软件。
它为工程师和学生提供了一个强大的环境,用于设计、模拟和验证各种电路和系统的性能。
Multisim具有易于使用和直观的界面,可以帮助用户轻松地创建电路图并进行仿真。
以下是一些使用Multisim的常见方法:1. 创建电路图:Multisim提供了可拖放式的元件和电路元件库,以帮助用户创建逻辑图、模拟电路和控制系统等各种电路图。
用户可以从库中选择所需元素,并将它们拖放到设计区域中,然后通过连接它们来构建电路图。
2. 仿真和调试:Multisim支持各种类型的仿真,如直流仿真、交流仿真、传输线仿真等。
用户可以通过模拟电路的工作原理,评估其性能和行为,以便优化设计。
此外,Multisim还提供了强大的调试功能,用于检测和修复电路中的错误。
3. 电路分析:Multisim还提供了多种电路分析工具,如直流分析、交流分析、小信号分析等。
这些工具可以帮助用户计算电路中各个元件的电流、电压、功率、相位差等参数,以便更好地理解电路的行为和性能。
4. 实验布线:Multisim还具有实验布线功能,允许用户将虚拟仪器和测试点连接到电路图中的任意位置,以模拟实际电路布线。
这使得用户可以在模拟器中进行真实的实验,观察电路在不同条件下的响应。
5. 运行蒙特卡洛分析:Multisim通过蒙特卡洛分析功能,允许用户对电路中的元件参数进行随机变化,从而评估电路的鲁棒性和性能稳定性。
这对于设计高可靠性的电路非常有用,因为它可以帮助用户识别设计中的潜在问题,并提供改进的建议。
6. 自定义模型和元件:除了预置的元件库外,Multisim还允许用户定义和使用自定义模型和元件。
这使得用户可以根据实际需要创建新的元件,并将其添加到电路中进行仿真和分析。
总结起来,Multisim是一种功能强大的电路仿真软件,可以帮助用户设计、模拟和验证电路的性能。
Multisim三相电路仿真实验

Multisim三相电路仿真实验————————————————————————————————作者:————————————————————————————————日期:2--3 实验六 三相电路仿真实验一、实验目的1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真;2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、 加深对三相四线制供电系统中性线作用的理解。
4、 掌握示波器的连接及仿真使用方法。
5、 进一步提高分析、判断和查找故障的能力。
二、实验仪器1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。
3.仿真分析三相电路的相关内容。
4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。
画仿真图时要注意。
负载对称星形联接时,线量与相量的关系为: (1)P L U U 3=(2)P L I I =负载对称三角形联接时,线量与相量的关系为:(1)P L U U = (2)P LI I 3=4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
--4 如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
高频电路Multisim仿真实验二 高频功率放大仿真

实验二 高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors 中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
(2)将输入信号的振幅修改为1V ,用同样的设置,观察i c 的波形。
(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。
在设置起始时间与终止时间不能过大,影响仿真速度。
例如设起始时间为0.03s ,终止时间设置为0.030005s 。
在output variables 页中设置输出节点变量时选择vv3#branch 即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。
根据各个电压值,计算此时的导通角θc 。
(提示根据余弦值查表得出)。
srad LCw /299.61012610200116120=⨯⨯⨯==-- =Cθ87.80378.0299.61263000=⨯==Lw R Q L2、线性输出(1)要求将输入信号V1的振幅调至1.414V。
注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。
同时为了提高选频能力,修改R1=30KΩ。
(2)正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形;输入端波形:输出端波形:(3)读出输出电压的值并根据电路所给的参数值,计算输出功率P0,PD,ηC;输出电压:12V ;∑==RI V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=η二、 外部特性1、调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。
当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;谐振时,C=200pF ,此时电流为:-256.371输出波形为:将电容调为90%时,此时的电流为-256.389mA 。
multisim仿真教程调幅电路
multisim仿真教程调幅电路6.5调幅电路调幅(振幅调制)是用低频调制信号去控制高频载波的振幅,使其振幅按调制信号的规律而变化,调制是一个非线性过程。
从频谱结构来看,调幅又是一个对调制信号进行频谱搬移的过程,即把较低的频谱搬到较高频谱。
6.5.1普通调幅(AM)电路普通调幅电路可分为高电平调制电路和低电平调制电路两大类。
前者属于发射机的最后一级,直接产生发射机输出功率要求的已调波;后者属于发射机前级产生小功率的已调波,再经过线性功率放大达到所需的发射机功率电平。
现在设载波电压为:uctUcmcoct(6.5.1)调制电压为:uEcUmcot(6.5.2)上两式相乘为普通振幅调制信号。
utKEcUmcotcmcoctUKUcmEcUmcotcoctU1macotcoct(6.5.3)式中称为调幅系数(或调制指数),它表示调幅波的幅度的最大变化量与载波振幅之比,即幅度变化量的最大值。
显然否则已调波会产生失真。
根据6.6.3式,由乘法器(K=1)组成的普通调幅(AM)电路图6.5.1所示,可获得通信系统中常用的普通调幅(AM)。
高频载波信号电压uc(t)(图中的V2)加到Y输入端口;直流电压U3(图中的V3)和低频调制信号uΩ(t)(图中的V1)加到某输入端口,仿真运行图6.5.1电路,可得输出电压波形如图6.5.1(b),满足式(6.5.1)关系。
(a)乘法器组成的普通调幅(AM)电路(b)普通调幅(AM)仿真输出波形图6.5.1乘法器组成的普通调幅(AM)电路6.5.2抑制载波双边带调幅(DSB/SCAM)调制电路在抑制载波调幅波的产生电路中,设载波电压为:uc(t)UcmcoCt调制电压为:u(t)Umcot(6.5.4)(6.5.5)经过模拟乘法器电路后输出电压为抑制载波双边带振幅调制信号为:u0(t)Kuc(t)u(t)KUcmUmco(t)co(Ct)1KUcmUmco(C)tco(C)t2(6.5.6)利用乘法器(K=1)组成的抑制载波双边带调幅(DSB/SCAM)电路如图6.5.2所示,可获得通信系统中常用的抑制载波双边带信号(DSB/SCAM)。
Multisim14电子系统仿真与设计第8章 Multisim14的仿真分析方法
8.4 瞬态分析(Transient)
选择瞬态分析后,其对话框会显示4个分析设置选项卡:
通过分析参数(Analysis Parameters)选项卡,可以设 置分析开始的初始条件、分 析开始和结束的时间等。
输出(Output)选项卡设置 同直流工作点分析, 本例选 择为3号和4号结点的电压。 其余选项卡可采用默认设置。
完成分析设置后,点击Run可进行仿真分析,结果显示在Grapher View窗口中:
本例选择电阻R1为扫描元件,设置其 扫描开始数值为1kΩ、结束数值为20kΩ、 扫描点数为4。选择扫描分析类型为瞬态分 析,并设置瞬态分析结束时间为0.01秒。从 仿真分析结果可见,R1在1kΩ~20kΩ之间 变化时,放大器的输出波形由饱和失真到 基本不失真。显然,R1=20kΩ比较合适, 此时输出波形基本不失真。
分析结果为谱密度曲线。其中, 上面的曲线是R1对输出结点噪声 贡献的谱密度曲线,下面的曲线 是Q1对输出结点噪声贡献的谱密 度曲线。
81交互式仿真interactivesimulation输出选项卡output用于设置在仿真结束进行数据检查跟踪时是否显示所有的器件参数当器件参数很多或者仿真退出的时间较长时可以选择不显示器件参数通常采用默认设置
第8章 Multisim14的 仿真分析方法
CHINA MACHINE PRESS
引言
8.3 交流扫描分析(AC Sweep)
交流扫描分析能完成电路的频率响应 分析,生成电路的幅频特性和相频特性。 分析中所有直流电源被置零,电容和电感 采用交流模型,非线性元件(二极管、三 极管、场效应管等)使用交流小信号模型。 无论用户在电路输入端加入了何种信号, 交流扫描分析时系统均默认电路的输入是 正弦波,并以用户设置的频率范围来扫描。
模拟电子电路multisim仿真实例大全
模拟电子电路multisim仿真1.1 晶体管基本放大电路1.1.1 共射极基本放大电路按下图搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。
2. 动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。
由波形图可观察到电路的输入,输出电压信号反相位关系。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
3. 参数扫描分析在上图所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC 的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。
选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100k,终值为900k,扫描方式为线性,步长增量为400k,输出节点5,扫描用于暂态分析。
4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。
Multisim的介绍
对电路进行仿真运行,通过对运行结果的分 析,判断设计是否正确合理,是EDA软件的 一项主要功能。 为此,Multisim为用户提供了类型丰富的虚 拟仪器,可以从Design工具栏Instruments 工具栏,或用菜单命令(Simulation/ instrument)选用这11种仪表。
以标签Workspace为例,当选中该标签时,Pre ferences对话框如下图所示:
在这个对话窗口中有3个分项: 1.Show:可以设置是否显示网格,页边界以
及标题框。 2.Sheet size:设置电路图页面大小。 3.Zoom level:设置缩放比例。
二、使用Multisim实现电路仿真
3.取用元器件
3.选中相应的元器件: 在Component Family Name中选择74LS系列,在 Component Name List中选择74LS00。 单击OK按钮就可以选中74LS00,出现如下备选窗 口。 7400是四/二输入与非门,在窗口种的Section A/B /C/D分别代表其中的一个与非门,用鼠标选中其中 的一个放置在电路图编辑窗口中。
5. 通过改进、整合设计流程, 减少建模错误并缩短上市时间。
一、Multisim的基本操作
Multisim为用户提供了丰富的元器件,并以开放的形式管理元器件,使得用户能够自己 添加所需要的元器件。
一、Multisim的基本操作
据此用户可以通过选择User数据库,进而对自建元器件进 行编辑管理。
在Multisim Master中有实际元器件和虚拟元器件,它们 之间根本差别在于:一种是与实际元器件的型号、参数值以及 封装都相对应的元器件,在设计中选用此类器件.
在元器件工具栏中,虽然代表虚拟器件的按钮的图标与该类实际 器件的图标形状相同,但虚拟器件的按钮有底色,而实际器件没有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次仿真作业
要求见课程说明和题目
灵敏度分析参考资料
U S1
R 1=4R 3=3Ω 1 已知电路参数如下图所示。
(1)推导U (a)与R 1, R 2, R 3, U S1, U S2的关系式; (2)推导并计算U (a)对R 1, R 2, R 3的灵敏度; (3)仿真求U (a)对R 1, R 2, R 3的灵敏度,打印出 仿真电路图和仿真结果;
(4)若R 1, R 2, R 3的阻值偏差是相互独立的,且最大偏差均为其阻值的
10%, U S1, U S2是精确不变的。
U (a)的偏差不能超过其工作点的 10%,问能否确保电路正常工作? 2 用运算放大器实现3x +2y -0.5z 的信号运算功能(只能得到x , y , z 信号,运算放大器用EWB 的5端模型,电源电压为±15V )。
(1)使用的运算放大器的数量不能超过3个,电阻数量不限; (2)画出电路原理图,分析输出与输入信号x 、y 、z 的关系;
(3)利用仿真软件完成下表。
要求打印仿真电路图并在图中适当位置注明相应的信号表达式。
如果输出结果与计算不同,请分析结果并分析一下可能注意:仿真作业一定要独立完成!
摘自电子工业出版社,James W.Nilsson等著,冼立勤等译电路(第六版)。