2014年高考文科数学真题解析分类汇编:B单元 函数与导数(纯word可编辑)
2014年高考真题——文科数学(天津卷)解析版 Word版含解析

课标【2014·天津文卷】一、选择题1. [2014•天津文卷]i 是虚数单位,复数=++i i437( )A. i -1B. i +-1C. i 25312517+D. i 725717+-【答案】A 【解析】()()()()()()i ii i i i i i -=+⨯+⨯-+⨯+⨯=-+-+=++14313474137434343743722.2. [2014•天津文卷]设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为()A.2B. 3C. 4D. 5【答案】B【解析】可行域如图当目标函数线过可行域内A 点时,目标函数有最小值31211=⨯+⨯=z .3. [2014•天津文卷]已知命题为则总有p e x x p x ⌝>+>∀,1)1(,0:( )A.1)1(,0000≤+≤∃x e x x 使得B. 1)1(,0000≤+>∃xe x x 使得C.1)1(,0000≤+>∃xe x x 总有 D.1)1(,0000≤+≤∃x e x x 总有【答案】B【解析】含量词的命题的否定先改变量词的形式再对命题的结论进行否定.4. [2014•天津文卷] 设,,log ,log 2212-===πππc b a 则( )A .c b a >> B.c a b >> C.b c a >> D.a b c >>【答案】C【解析】∵1log 2>=πa ,0log 21<=πb ,112<=πc ,∴a c b <<.5. [2014•天津文卷]设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .-21 【答案】D 【解析】∵()6412344114-=-⨯⨯+=a a S ,又∵,,,421S S S 成等比数列, ∴()()64121121-=-a a a ,解之得211-=a . 6. [2014•天津文卷] 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 【答案】A 【解析】∵1020,2+-==c ab ,∴5=c ,52=a ,202=b , ∴120522=-y x . 7. [2014•天津文卷]如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④【答案】D【解析】∵31∠=∠,42∠=∠,∴21∠=∠,34∠=∠,∴BD 平分CBF ∠,∴ABF ∆∽BDF ∆, ∴BF BD AF AB =,∴BD AF BF AB ⋅=⋅,∴DFBF BF AF =, DF AF BF ⋅=2. 8. [2014•天津文卷]已知函数()sin cos (0),.f x x x x R ωωω+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( ) A.2π B.23π C.π D.2π 【答案】C【解析】∵()16sin 2=⎪⎭⎫ ⎝⎛+=πωx x f ,∴216sin =⎪⎭⎫ ⎝⎛+πωx ,∴Z k k x ∈+=+111,266πππω或Z k k x ∈+=+222,2656πππω,则()()ππω1212232k k x x -+=-,又∵相邻交点距离的最小值为3π,∴2=ω,π=T . 二、填空题9. [2014•天津文卷]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.【答案】60 【解析】由分层抽样方法可得一年级抽取人数为6065544300=+++⨯. 10. [2014•天津文卷] 1 234一个几何体的三视图如图所示(单位:m ),一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.俯视图侧视图正视图 【答案】320π【解析】由三视图可得该几何体为圆柱与圆锥的组合体,其体积32022314122πππ=⨯⨯+⨯⨯=V .11.[2014•天津文卷]阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】-4【解析】()()42223-=-+-=S .12. [2014•天津文卷]函数()2lg x x f =的单调递减区间是________.【答案】()0,∞-【解析】()2lg x x f =的单调递减区间需满足02>x 且2x y =递减.13. [2014•天津文卷]已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上, 3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.【答案】2【解析】建立如图所示坐标系,且()0,1-A 、()3,0-B 、()0,1C 、()3,0D ,设()11,y x E ,()22,y x F ,由3B C B E =得()()3,33,111+=y x ,解之得⎪⎪⎭⎫ ⎝⎛-332,31E ,由D C D Fλ=得()()3,3,122-=-y x λ,解之得⎪⎪⎭⎫ ⎝⎛-λλ33,1F , 又∵13231033,11332,34=-=⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-=⋅λλλ, ∴2=λ.14. [2014•天津文卷]已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______.【答案】21<<a【解析】AB CD在同一坐标系内分别作出()x f y =与||x a y =的图象,当||x a y =与()x f y =的图象相切时⎩⎨⎧>---=-0452a x x ax ,解之得1=a ,∴||x a y =与()x f y =的图象有四个交点时,21<<a .15. [2014•天津文卷]某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.16.C7、C8[2012•天津文卷]在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin =(1)求A cos 的值;(2)求)62cos(π-A 的值.()0|45|2≤++=x x x y |2|2-=x y||x a y =PFE D CBA 17.G4、G11[2014•天津文卷]如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==,2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点. (Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60, (ⅰ)证明 平面PBC ^平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.18.H5、H8[2014•天津文卷] 设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M,2MF =,求椭圆的方程.19. B11、B12 [2014•天津文卷] 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.A1、D3、E7[2014•天津文卷]已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.。
【最新原创】2014年高考数学(理)真题分类汇编:B单元++函数与导数

数 学B 单元 函数与导数B1 函数及其表示 6.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12 B.32 C .0 D .-126.A 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1) 2.A7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 7.D 2.[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1] B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞) 2.C3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.CB2 反函数 12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.DB3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1) 2.A7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 7.D21.、[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示). 12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 12.115.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 15.①③④ 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).B4 函数的奇偶性与周期性7.、、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 7.D 3.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3 3.C 3.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 3.C 15.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是________.15.(-1,3)B5 二次函数16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2]B6 指数与指数函数 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B 3.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-1 3.A3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 3.C 2.,[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4) 2.C 5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1 B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3 5.D 7.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x7.B 11.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.11.10 [解析] 由4a =2,得a =12,代入lg x =a ,得lg x =12,那么x =1012 =10.B7 对数与对数函数 5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 3 5.D3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.C 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B 13.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.503.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 3.C4.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 4.D 7.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2 图1-27.D 12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14B8 幂函数与函数的图像 4.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( )图1-1A BC D图1-24.B10.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B8.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 8.B7.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC D图1-2 图1-27.DB9 函数与方程10.、[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e)C.⎝⎛⎭⎫-1e ,eD.⎝⎛⎭⎫-e ,1e10.B 14.[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.14.(0,1)∪(9,+∞)6.[2014·浙江卷] =f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9 6.CB10 函数模型及其应用 8.[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1 8.D 10.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x10.AB11 导数及其运算 18.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-pn 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -pk =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.20.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x . 故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,ex>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .10.、[2014·广东卷] 曲线y =e -5x +2在点(0,3)处的切线方程为________.10.y =-5x +3 [解析] 本题考查导数的几何意义以及切线方程的求解方法.因为y ′=-5e -5x ,所以切线的斜率k =-5e 0=-5,所以切线方程是:y -3=-5(x -0),即y =-5x +3.13.[2014·江西卷] 若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.13.(-ln 2,2) [解析] 设点P 的坐标为(x 0,y 0),y ′=-e -x .又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln 2,此时y =2,所以点P 的坐标为(-ln 2,2).18.、[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 18.解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 7.C 8.[2014·新课标全国卷Ⅱ] 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .38.D21.,,,[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x(x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x 不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k+2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证. 19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.B12 导数的应用 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1). 18.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值. 18.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.18.[2014·北京卷] 已知函数f (x )=x cos x -sin x ,x ∈⎣⎡⎦⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin xx <b 对x ∈⎝⎛⎭⎫0,π2恒成立,求a 的最大值与b 的最小值.18.解:(1)证明:由f (x )=x cos x -sin x 得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝⎛⎭⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎡⎦⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎫0,π2,g ′(x )=cos x -c <0,所以g (x )在区间⎝⎛⎭⎫0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝⎛⎭⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎫0,π2上的情况如下:因为g (x )在区间(0,x 0)上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立”当且仅当g ⎝⎛⎭⎫π2=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.20.、[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x . 20.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 故g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:①若c ≥1,则e x ≤c e x .又由(2)知,当x >0时,x 2<e x .故当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立.而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x.所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增.取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增.又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k , 易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:(1)同方法一. (2)同方法一.(3)对任意给定的正数c ,取x 0=4c ,由(2)知,当x >0时,ex>x 2,所以e x=e x 2·e x 2>⎝⎛⎭⎫x 22·⎝⎛⎭⎫x 22,当x >x 0时,e x>⎝⎛⎭⎫x 22⎝⎛⎭⎫x 22>4c ⎝⎛⎭⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:(1)同方法一. (2)同方法一.(3)首先证明当x ∈(0,+∞)时,恒有13x 3<e x .证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x .由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x .取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .21.、[2014·广东卷] 设函数f (x )=1(x 2+2x +k )2+2(x 2+2x +k )-3,其中k <-2.(1)求函数f (x )的定义域D (用区间表示); (2)讨论函数f (x )在D 上的单调性;(3)若k <-6,求D 上满足条件f (x )>f (1)的x 的集合(用区间表示). 22.[2014·湖北卷] π为圆周率,e =2.718 28…为自然对数的底数.(1)求函数f (x )=ln xx的单调区间;(2)求e 3,3e ,e π,πe ,,3π,π3这6个数中的最大数与最小数;(3)将e 3,3e ,e π,πe ,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f (x )的定义域为(0,+∞).因为f (x )=ln xx ,所以f ′(x )=1-ln x x 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e <ln πe ,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π.故这6个数的最大数在π3与3π之中,最小数在3e 与e 3之中.由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln ee .由ln ππ<ln 33,得ln π3<ln3π,所以3π>π3;由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3.综上,6个数中的最大数是3π,最小数是3e .(3)由(2)知,3e <πe <π3<3π,3e <e 3.又由(2)知,ln ππ<ln e e ,得πe <e π.故只需比较e 3与πe 和e π与π3的大小.由(1)知,当0<x <e 时,f (x )<f (e)=1e,即ln x x <1e. 在上式中,令x =e 2π,又e 2π<e ,则ln e 2π<e π,从而2-ln π<e π,即得ln π>2-eπ.①由①得,eln π>e ⎝⎛⎭⎫2-e π>2.7×⎝⎛⎭⎫2-2.723.1>2.7×(2-0.88)=3.024>3, 即eln π>3,亦即ln πe >ln e 3,所以e 3<πe .又由①得,3ln π>6-3eπ>6-e>π,即3ln π>π,所以e π<π3.综上可得,3e <e 3<πe <e π<π3<3π,即这6个数从小到大的顺序为3e ,e 3,πe ,e π,π3,3π. 22.、[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.22.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a 舍去.当x ∈(0,x 1)时,f ′(x )<0; 当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减, 在区间(x 1,+∞)上单调递增.综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝ ⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a ,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1. 18.、[2014·江西卷] 已知函数f (x )=(x 2+bx +b )1-2x (b ∈R ). (1)当b =4时,求f (x )的极值;(2)若f (x )在区间⎝⎛⎭⎫0,13上单调递增,求b 的取值范围. 18.解:(1)当b =4时,f ′(x )=-5x (x +2)1-2x,由f ′(x )=0,得x =-2或x =0.所以当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减;当x ∈(-2,0)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减,故f (x )在x =-2处取得极小值f (-2)=0,在x =0处取得极大值f (0)=4.(2)f ′(x )=-x [5x +(3b -2)]1-2x ,易知当x ∈⎝⎛⎭⎫0,13时,-x1-2x<0, 依题意当x ∈⎝⎛⎭⎫0,13时,有5x +(3b -2)≤0,从而53+(3b -2)≤0,得b ≤19. 所以b 的取值范围为⎝⎛⎦⎤-∞,19. 11.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]11.C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数.当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立. 根据(i)(ii)知对任何n ∈结论都成立.11.[2014·新课标全国卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)11.C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a 2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意. 综上可知,实数a 的取值范围为(-∞,-2).21.、[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2xe x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e.因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1.21.、[2014·新课标全国卷Ⅱ] 已知函数f (x )=e x -e -x -2x . (1)讨论f (x )的单调性;(2)设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001).21.解:(1)f ′(x )=e x +e -x -2≥0,当且仅当x =0时,等号成立, 所以f (x )在(-∞,+∞)上单调递增.(2)g (x )=f (2x )-4bf (x )=e 2x -e -2x -4b (e x -e -x )+(8b -4)x ,g ′(x )=2[e 2x +e -2x -2b (e x +e -x )+(4b -2)]=2(e x +e -x -2)(e x +e -x -2b +2). (i)当b ≤2时,g ′(x )≥0,等号仅当x =0时成立,所以g (x )在(-∞,+∞)上单调递增.而g (0)=0,所以对任意x >0,g (x )>0.(ii)当b >2时,若x 满足2<e x +e -x <2b -2,即0<x <ln(b -1+b 2-2b )时,g ′(x )<0.而g (0)=0,因此当0<x <ln(b -1+b 2-2b )时,g (x )<0.综上,b 的最大值为2.(3)由(2)知,g (ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g (ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln(b -1+b 2-2b )=ln 2,g (ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4.所以ln 2的近似值为0.693.。
2014年高考真题——文科数学(北京卷)解析版 Word版含解析

课标文数【2014·北京文卷】一、选择题1.[2014•北京文卷]若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 【答案】C【解析】{}{}{}2,13,2,14,2,1,0==I I B A . 2. [2014•北京文卷]下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =【答案】B【解析】由定义域为R 排除选项C ,定义域单调递增排除选项A 、D. 3. [2014•北京文卷]已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】2a -b =()()()7,51,14,22=--. 4. [2014•北京文卷]执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出【答案】C【解析】7222210=++=S . 5. [2014•北京文卷]设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 【答案】D【解析】当0<⋅b a 时,由b a >推不出22b a >,反之也不成立. 6. [2014•北京文卷] 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 【答案】C 【解析】在同一坐标系中作函数()xx h 6=与()x x g 2log =的图象如图,可得()x f 零点所在区间为()4,2.7. [2014•北京文卷]已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o ,则m 的最大值为( )A.7B.6C.5D.4 【答案】B【解析】由图可知当圆C 上存在点P 使O =∠90APB ,即圆C 与以AB 为直径的圆有公共点,∴143122+≤+≤-m m ,解之得64≤≤m .8. [2014•北京文卷]加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 O 5430.80.70.5t p记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 【答案】B【解析】由题意得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 5255.04168.0397.0,解之得⎪⎩⎪⎨⎧-==-=25.12.0c b a ,∴()0625.075.32.025.12.022+--=-+-=t t t p ,即当75.3=t 时,P 有最大值.二、填空题9. [2014•北京文卷]若()()12x i i i x R +=-+∈,则x = . 【答案】2【解析】∵()i xi i i x 211+-=+-=+,∴2=x . 10. [2014•北京文卷]设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点式()1,0,则C 的方程为.()0,m A -()0,m BP【答案】122=-y x【解析】由题意设双曲线方程1222=-by x ,又∵()2221=+b ,∴12=b即双曲线方程为122=-y x .11. [2014•北京文卷]某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .侧(左)视图正(主)视图11122【答案】 22【解析】三棱锥的直观图如图所示,并且ABC PB 面⊥,2=PB ,2,2===BC AC AB ,222222=+=PA ,()62222=+=PC .12. [2014•北京文卷]在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2、815PBAC【解析】由余弦定理得24112241cos 2222=⨯⨯⨯-+=-+=C ab b a c ,即2=c ; 872221442cos 222=⨯⨯-+=-+=bc a c b A ,∴815871sin 2=⎪⎭⎫⎝⎛-=A . 13. [2014•北京文卷]若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则3z x y =+的最小值为 .【答案】1【解析】可行域如图,当目标函数线x y z 3+=过可行域内A 点时,z 有最小值,联立⎩⎨⎧=-+=011y x y ,解之得()1,0A ,11103min =⨯+⨯=Z .14. [2014•北京文卷] 【答案】42【解析】交货期最短即少耽误工期,所以先让徒弟加工原料B ,交货期为4215216=++天. 顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都 完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料粗加工精加工原料A 9 15 原料B6 21则最短交货期为 工作日15. [2014•北京文卷]已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.1=y 01=--y x 01=-+y x xy 3-=A(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==L ,,. 设等比数列{}n n b a -的公比为q ,由题意得·· 344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=L ,, ⑵ 由⑴知()13212n n b n n -=+=L ,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.16. [2012•北京文卷] 函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. 【解析】⑴ ()f x 的最小正周期为π07π6x =. 03y =⑵ 因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 17. [2014•北京文卷]如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG . 因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC A C ∥,且11AC A C =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,GC 1B 1A 1FE CBA所以1C F ∥平面ABE .(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,所以AB ==. 所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△. 18. [2014•北京文卷]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. 19. [2014•北京文卷] 已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =.故椭圆C的离心率c e a ==.(Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=u u u r u u u r, 即0020tx y +=,解得02y t x =-. 又220024x y +=,所以()()222002AB x t y =-+- ()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为 20. [2014•北京文卷] 已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)解:(Ⅰ)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝()11f f ==-所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝ . (Ⅱ)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.()g x 与()g x '的情况如下:)当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有1个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在3条直线与曲线()y f x =相切时,t 的取值范围是()31--, .(Ⅲ)过点()12A -, 存在3条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切; 过点()02C , 存在1条直线与曲线()y f x =相切.:。
2014年天津高考文科数学试题逐题详解-(纯word解析版)

2014年天津高考文科数学试题逐题详解 (纯word 解析版)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年天津卷(文01)】i 是虚数单位,复数734ii+=+ A.1i - B.1i -+ C.17312525i + D.172577i -+【答案】A 【解析】73472525134343425i i i i i ii i【2014年天津卷(文02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.【2014年天津卷(文03)】已知命题p :∀x >0,总有(x+1)ex >1,则¬p 为( )A .∃x 0≤0,使得(x 0+1)e x0≤1B .∃x 0>0,使得(x 0+1)e x0≤1C .∀x >0,总有(x+1)e x ≤1D .∀x ≤0,总有(x+1)e x≤1【答案】B【解析】根据全称命题的否定为特称命题可知,¬p 为∃x 0>0,使得(x 0+1)e ≤1,【2014年天津卷(文04)】设a=log 2π,b=logπ,c=π﹣2,则( )A . a >b >cB . b >a >cC . a >c >bD . c >b >a【答案】C【解析】log 2π>1,log π<0,0<π﹣2<1,即a >1,b <0,0<c <1,∴a >c >b【2014年天津卷(文05)】设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2B.﹣2 C.D.﹣【答案】D【解析】∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:【2014年天津卷(文06)】已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【答案】A【解析】令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1【2014年天津卷(文07)】如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【答案】D【解析】∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵BD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立【2014年天津卷(文08)】已知函数f(x)=sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π【答案】C【解析】∵已知函数f(x)=sinωx+cosωx=2sin(ωx+)(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,正好等于f(x)的周期的倍,设函数f(x)的最小正周期为T,则=,∴T=π二、填空题:本大题共6小题,每小题5分,共30分.【2014年天津卷(文09)】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取____名学生.【答案】60【解析】由分层抽样的方法可得,从一年级本科生中抽取学生人数为300×44+5+5+6=60【2014年天津卷(文10)】一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________3m.【答案】20π3【解析】 由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V =π×12×4+13π×22×2=20π3.【2014年天津卷(文11)】阅读如图的框图,运行相应的程序,输出S 的值为 .【答案】-4【解析】依题由框图知,第一次循环得到:S=﹣8,n=2;第二次循环得到:S=﹣4,n=1;退出循环,输出﹣4【2014年天津卷(文12)】函数f (x )=lgx 2的单调递减区间是 . 【答案】(﹣∞,0)【解析】 方法一:y=lgx 2=2lg|x|,∴当x >0时,f (x )=2lgx 在(0,+∞)上是增函数;当x <0时,f (x )=2lg (﹣x )在(﹣∞,0)上是减函数.∴函数f (x )=lgx 2的单调递减区间是(﹣∞,0).方法二:原函数是由复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt 在其定义域上为增函数,∴f (x )=lgx 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f (x )=lgx 2的单调递减区间是(﹣∞,0)【2014年天津卷(文13)】已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC ,DC 上,BC=3BE ,DC=λDF 、若•=1,则λ的值为 .【答案】2【解析】∵BC=3BE ,DC=λDF ,∴=,=, =+=+=+,=+=+=+,∵菱形ABCD的边长为2,∠BAD=120°,∴||=||=2,•=2×2×cos120°=﹣2,∵•=1,∴(+)•(+)=++(1+)•=1,即×4+×4﹣2(1+)=1,整理得,解得λ=2【2014年天津卷(文14)】已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为.【答案】(1,2)【解析】由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a=2时,此时y=a|x|与f(x)有三个交点,当a=1时,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.【2014年天津卷(文15)】(本小题满分13分)某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、(X,Z )、(Y,Z)共计15个结果.(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,故事件M发生的概率为=【2014年天津卷(文16)】(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=【2014年天津卷(文17)】(本小题满分13分)如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;(ii)求直线EF与平面PBC所成角的正弦值.解:(Ⅰ)证明:连结AC,AC∩BD=H,∵底面ABCD是平行四边形,∴H为BD中点,∵E是棱AD的中点.∴在△ABD中,EH∥AB,又∵AB⊂平面PAB,EH⊄平面PAD,∴EH∥平面PAB.同理可证,FH∥平面PAB.又∵EH∩FH=H,∴平面EFH∥平面PAB,∵EF⊂平面EFH,∴EF∥平面PAB;(Ⅱ)(i)如图,连结PE,BE.∵BA=BD=,AD=2,PA=PD=,∴BE=1,PE=2.又∵E为AD的中点,∴BE⊥AD,PE⊥AD,∴∠PEB即为二面角P﹣AD﹣B的平面角,即∠PEB=60°,∴PB=.∵△PBD中,BD2+PB2=PD2,∴PB⊥BD,同理PB⊥BA,∴PB⊥平面ABD,∵PB⊂平面PBC,∴平面PAB⊥平面ABCD;(ii)由(i)知,PB⊥BD,PB⊥BA,∵BA=BD=,AD=2,∴BD⊥BA,∴BD,BA,BP两两垂直,以B为坐标原点,分别以BD,BA,BP为X,Y,Z轴,建立如图所示的空间直角坐标系B﹣DAP,则有A(0,,0),B(0,0,0),C(,﹣,0),D(,0,0),P(0,0,),∴=(,﹣,0),=(0,0,),设平面PBC的法向量为,∵,∴,令x=1,则y=1,z=0,故=(1,1,0),∵E,F分别是棱AD,PC的中点,∴E(,,0),F(,﹣,),∴=(0,,),∴===﹣,即直线EF与平面PBC所成角的正弦值为【2014年天津卷(文18)】(本小题满分13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2,求椭圆的方程.解:(Ⅰ)依题意可知=•2c,∵b2=a2﹣c2,∴a2+b2=2a2﹣c2=3c2,∴a2=2c2,∴e==.(Ⅱ)由(Ⅰ)知a2=2c2,∴b2=a2﹣c2=c2,∴椭圆方程为+=1,B(0,c),F1(﹣c,0)设P点坐标(csinθ,ccosθ),圆心为O∵PB为直径,∴BF1⊥PF1,∴k•BF1k PF1=•=﹣1,求得sinθ=﹣或0(舍去),由椭圆对称性可知,P在x轴下方和上方结果相同,只看在x轴上方时,cosθ==∴P坐标为(﹣c,c),∴圆心坐标为(﹣c,c),∴r=|OB|==c,|OF2|==c,∵r2+|MF2|2=|OF2|2,∴+8=c2,∴c2=3,∴a2=6,b2=3,∴椭圆的方程为+=1【2014年天津卷(文19)】(本小题满分14分)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a的取值范围.解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),∵a>0,∴当x<0或x时,f′(x)<0,当时,f′(x)>0,f(x)单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:(1)当>2,即0<a<时,由f()=0可知,0∈A,而0∈B,∴A不是B的子集;(2)当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A ⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;(3)当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值范围是[]【2014年天津卷(文20)】(本小题满分14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t。
2014年高考安徽文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(文科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2014年安徽,文1,5分】设i 是虚数单位,复数32ii 1i+=+( )(A )i - (B )i (C )1- (D )1 【答案】D【解析】复数()()()32i 1i 2i 2i 2i i i 11i 1i 1i 2-++=-+=-+=++-,故选D . 【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题(2)【2014年安徽,文2,5分】题“2,0x R x x ∀∈+≥”的否定..是( ) (A )2,0x R x x ∀∈+<(B )2,0x R x x ∀∈+≤(C )2000,0x R x x ∃∈+<(D )2000,0x R x x ∃∈+≥ 【答案】C【解析】根据全称命题的否定是特称命题,则命题“2,0x R x x ∀∈+≥”的否定2000,0x R x x ∃∈+<,故选C . 【点评】本题主要考查含有量词的命题的否定,比较基础.(3)【2014年安徽,文3,5分】抛物线214y x =的准线方程是( )(A )1y =- (B )2y =- (C )1x =- (D )2x =-【答案】A【解析】抛物线214y x =的标准方程为24x y =,焦点在y 轴上,24p =,∴12p =,∴准线方程12py =-=-,故选A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置. (4)【2014年安徽,文4,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )34 (B )55 (C )78 (D )89 【答案】B【解析】第一次循环得2,1,2z x y ===;第二次循环得3,2,3z x y ===;第三次循环得5,3,5z x y ===;第四次循环得8,5,8z x y ===;第五次循环得13,8,13z x y ===;第六次循环得21,13,21z x y ===;第七次循环得34,21,34z x y ===;第八次循环得55,34,55z x y ===;退出循环,输出55,,故选B .【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题. (5)【2014年安徽,文5,5分】设3log 7a =, 3.32b =,0.8c =,则( )(A )b a c << (B )c a b << (C )c b a << (D )a c b << 【答案】B【解析】31log 72<<, 3.322b =>,0.81c =<,则c a b <<,故选B .【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.(6)【2014年安徽,文6,5分】过点()1P -的直线l 与圆221x y +=有公共点,则l 的倾斜角的取值范围是( )(A )0,6π⎛⎤ ⎥⎝⎦ (B )0,3π⎛⎤ ⎥⎝⎦ (C )0,6π⎡⎤⎢⎥⎣⎦ (D )0,3π⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意可得点()1P -在圆221x y +=的外部,故要求的直线的斜率一定存在,设为k ,则直线方程为(1y k x +=+,即10kx y -+-=.根据直线和圆有交点、圆心到直线的距离小于或等于半径1≤,即22311k k -+≤+,解得0k ≤≤,故直线l 的倾斜角的取值范围是0,3π⎡⎤⎢⎥⎣⎦,故选D . 【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题. (7)【2014年安徽,文7,5分】若将函数()sin 2cos 2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是( )(A )8π (B )4π (C)38π (D )54π【答案】C【解析】函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭图象向右平移ϕ的单位,图象是函数224y x πϕ⎛⎫=+- ⎪⎝⎭,图象关于y 轴对称,可得242k ππϕπ-=+,即28k ππϕ=--,当1k =-时,ϕ的最小正值是38π,故选C .【点评】本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题. (8)【2014年安徽,文8,5分】一个多面体的三视图如图所示,则该多面体的体积为( )(A )233 (B )476(C )6 (D )7【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:11232=2222111323V V -⨯⨯-⨯⨯⨯⨯⨯=正方形棱锥侧,故选A .【点评】本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状. (9)【2014年安徽,文9,5分】若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( )(A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 【答案】D【解析】12a -<-时,2a x <-,()123112af x x x a x a =----=--->-;12a x -≤≤-,()12112af x x x a x a =--++=+-≥-; 1x >-,()12312f x x x a x a a =+=+=++>-,132a∴-=或23a -=,8a ∴=或5a =,5a =,122a a -<-,故舍去;12a-≥-时,1x <-,()12312f x x x a x a a =----=--->-;12a x -≤≤-,()12112a f x x x a x a =+--=--+≥-+;2a x >-,()123112af x x x a x a =+++=++>-+,23a ∴-=或132a -+=,∴1a =-或4a =-,1a =-时,122aa -+<-,故舍去;综上,4a =-或8,故选D .【点评】本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.(10)【2014年安徽,文10,5分】设a ,b 为非零向量,||2||b a =,两组向量1234,,,x x x x ,和1234,,,y y y y 均由2个a 和2个b 排列 而成. 若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24||a ,则a 与b 的夹角为( )(A )23π (B )3π (C )6π(D )0 【答案】B【解析】由题意,设a 与b的夹角为α,分类讨论可得:①21122334410x y x y x y x y a a a a b b b b a ⋅+⋅+⋅+⋅=⋅+⋅+⋅+⋅= ,不满足; ②221122334454cos x y x y x y x y a a a b b a b b a a α⋅+⋅+⋅+⋅=⋅+⋅+⋅+⋅=+ ,不满足; ③221122334448cos 4x y x y x y x y a b a a α⋅+⋅+⋅+⋅=⋅== ,满足题意,此时1cos 2α=,∴a 与b 的夹角为3π,故选B .【点评】本题考查向量的数量积公式,考查学生的计算能力,属于中档题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年安徽,文11,5分】34331654+log log 8145-⎛⎫+= ⎪⎝⎭. 【答案】278【解析】334333165425427+log log log 81453458--⎛⎫⎛⎫⎛⎫+=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点评】本题考查分数指数幂的运算法则,对数的运算法则,考查计算能力. (12)【2014年安徽,文12,5分】如图,在等腰直角三角形ABC中,斜边BC =过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a = . 【答案】14【解析】∵等腰直角三角形ABC 中,斜边BC =1sin 45AA AB ∴︒==,即21a a =同理32a a =,43a a , 由归纳推理可得{}n a是公比q =12a =,则67124a =⋅=⎝⎭.【点评】本题主要考查归纳推理的应用,根据等腰直角三角形之间的关系,得到数列{}n a是公比q =的等比数列是解决本题的关键.(13)【2014年安徽,文13,5分】不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为 .【答案】4【解析】由不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩作平面区域如图,由图可知()2,0A ,()0,2C ,联立240320x y x y +-=⎧⎨+-=⎩,解得:()8,2B -.∴BC =.点A 到直线240x y +-=的距离为d =.11422BC S BC d ∆∴=⋅⋅=⨯=. 【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题. (14)【2014年安徽,文14,5分】若函数()()f x x ∈R 是周期为4的奇函数,且在[]0,2上的解析式为()()101sin 12x x x f x x x π⎧-≤≤⎪=⎨<≤⎪⎩,则294146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭. 【答案】516【解析】函数()()f x x ∈R 是周期为4的奇函数,且在[]0,2上的解析式为()()101sin 12x x x f x x x π⎧-≤≤⎪=⎨<≤⎪⎩,则29413737373375881sin 4646464644616f f f f f f f f π⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=-+-=-+-=--=---= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【点评】本题考查函数的值的求法,分段函数的应用,考查计算能力. (15)【2014年安徽,文15,5分】若直线l 与曲线C 满足下列两个条件:(ⅰ)直线l 在点()00,P x y 处与曲线C相切;(ⅱ)曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是_________(写出所有正确命题的编号)①直线:0l y =在点()0,0P 处“切过”曲线C :3y x =;②直线:1l x =-在点()1,0P -处“切过”曲线C :2(1)y x =+; ③直线:l y x =在点()0,0P 处“切过”曲线C :sin y x =; ④直线:l y x =在点()0,0P 处“切过”曲线C :tan y x =;⑤直线:1l y x =-在点()1,0P 处“切过”曲线C :ln y x =. 【答案】①③④ 【解析】对于①,由3y x =,得23y x '=,则00x y ='=,直线0y =是过点()0,0P 的曲线C 的切线,又当0x >时0y >,当0x <时0y <,满足曲线C 在()0,0P 附近位于直线0y =两侧,∴命题①正确;对于②,由()21y x =+,得()21y x '=+,则10x y =-'=,而直线l :1x =-的斜率不存在,在点()1,0P -处不与曲线C 相切,∴命题②错误;对于③,由s in y x =,得c os y x '=,则01x y ='=,直线y x =是过点()0,0P 的曲线的切线,又,02x π⎛⎫∈- ⎪⎝⎭时sin x x <,0,2x π⎛⎫∈ ⎪⎝⎭时sin x x >,满足曲线C 在()0,0P 附近位于直线y x =两侧,∴命题③正确;对于④,由t a n y x =,得21c o s y x '=,则01x y ='=,直线y x =是过点()0,0P 的曲线的切线,又,02x π⎛⎫∈- ⎪⎝⎭时tan x x <,0,2x π⎛⎫∈ ⎪⎝⎭时tan x x >,满足曲线C 在()0,0P 附近位于直线y x =两侧,∴命题④正确;对于⑤,由ln y x =,得1y x'=,则11x y ='=,曲线在()1,0P 处的切线为1y x =-,设()1ln g x x x =--,得()11g x x'=-,当()0,1x ∈时,()0g x '<,当()1,x ∈+∞时,()0g x '>.∴()g x 在()0,+∞上有极小值也是最小值,为()10g =.∴1y x =-恒在ln y x =的上方,不满足曲线在点P 附近位于直线l 的两侧,命题⑤错误.【点评】本题考查命题的真假判断与应用,考查了利用导数研究过曲线上某点处的切线方程,训练了利用导数求函数的最值,判断③④时应熟记当0,2x π⎛⎫∈ ⎪⎝⎭时,tan sin x x x >>,该题是中档题.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.(16)【2014年安徽,文16,12分】设ABC ∆的内角A ,B ,C 所对的边分别是a ,b ,c ,且3b =,1c =,ABC ∆cos A 与a 的值.解:由题可得131sin 2A ⋅⋅⋅=sin A =22sin cos 1A A +=,所以1cos 3A ==±。
2014年高考江西文科数学试题及答案(word解析版)

2014年⾼考江西⽂科数学试题及答案(word解析版)2014年普通⾼等学校招⽣全国统⼀考试(江西卷)数学(⽂科)第Ⅰ卷(选择题共40分)⼀、选择题:本⼤题共8⼩题,每⼩题5分,共40分,在每⼩题给出的四个选项中,只有⼀项符合题⽬要求.(1)【2014年江西,⽂1,5分】若复数z 满⾜(1i)2i z +=(i 为虚数单位),则||z =()(A )1 (B )2 (C (D 【答案】C【解析】解法⼀:∵若复数z 满⾜(1i)2i z +=,∴()()()21i 2i 1i 1i 1i 1i i z -===+++-,∴z ==,故选C .解法⼆:设i z a b =+,则()()i 1i 2i a b ++=,()()i 2i a b a b -++=,0a b -=,2a b +=,解得1a =,1b =,1i z =+,1i z =+C .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,求复数的模,属于基础题.(2)【2014年江西,⽂2,5分】设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B = ()(A )(3,0)- (B )(3,1)-- (C )(]3,1-- (D )(3,3)- 【答案】C【解析】{|33},{|15}A x x B x x =-<<=-<≤,所以{}()31R A C B x x =-<<- ,故选C .【点评】本题主要考查集合的表⽰⽅法、集合的补集,两个集合的交集的定义和求法,属于基础题.(3)【2014年江西,⽂3,5分】掷两颗均匀的骰⼦,则点数之和为5的概率等于()(A )118 (B )19(C )16 (D )112【答案】B【解析】点数之和为5的基本事件有:()1,4,()4,1,()2,3,()3,2,所以概率为41369=,故选B .【点评】本题是⼀个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰⼦,所得两颗骰⼦的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式nN是本题的重点,正确求出事件“抛掷两颗骰⼦,所得两颗骰⼦的点数之和为5”所包含的基本事件数是本题的难点.(4)【2014年江西,⽂4,5分】已知函数2,0()()2,0x x a x f x a R x -??≥=∈?,若[(1)]1f f -=,则a =()(A )14 (B )12(C )1 (D )2【答案】A【解析】(1)2f -=,(2)4f a =,所以[(1)]41f f a -==,解得14a =,故选A .【点评】本题主要考查了求函数值的问题,关键是分清需要代⼊到那⼀个解析式中,属于基础题.(5)【2014年江西,⽂5,5分】在ABC ?中,内⾓,,A B C 所对应的边分别为,,a b c ,若32a b =,则2222sin sin sin B AA -的值为()(A )19- (B )13(C )1 (D )72【答案】D【解析】222222222sin sin 2372121sin 22B A b a b A a a --==-=-= ? ?????,故选D .【点评】本题主要考查正弦定理的应⽤,⽐较基础.(6)【2014年江西,⽂6,5分】下列叙述中正确的是()(A )若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤(B )若,,a b c R ∈,则22""ab cb >的充要条件是""a c >(C )命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” (D )l 是⼀条直线,,αβ是两个不同的平⾯,若,l lαβ⊥⊥,则//αβ【答案】D 【解析】(1)对于选项A :若,,a b c R ∈,当2"0"ax bx c ++≥对于任意的x 恒成⽴时,则有:①当0a =时,0b =,0c ≥,此时240b ac -≤成⽴;②当0a >时,240b ac -≤.∴2"0"ax bx c ++≥是2"40"b ac -≤充分不必要条件,2"40"b ac -≤是2"0"ax bx c ++≥必要不充分条件.故A 不正确.(2)对于选项B :当22""ab cb >时,20b ≠,且a c >,∴22""ab cb >是""a c >的充分条件.反之,当a c >时,若0b =,则22ab cb =,不等式22ab cb >不成⽴.∴""a c >是22""ab cb >的必要不充分条件.故B 不正确.(3)对于选项C :结论要否定,注意考虑到全称量词“任意”,命题“对任意x R ∈,有20x ≥”的否定应该是“存在x R ∈,有20x <”.故选项C 不正确.(4)对于选项D :命题“l 是⼀条直线,,αβ是两个不同的平⾯,若,l l αβ⊥⊥,则//αβ.”是两个平⾯平⾏的⼀个判定定理,故选D .【点评】本题考查独⽴性检验的应⽤,考查学⽣的计算能⼒,属于中档题.(7)【2014年江西,⽂7,5分】某⼈研究中学⽣的性别与成绩、视⼒、智商、阅读量这4个变量之间的关系,随机抽查52名中学⽣,得到统计数据如表1⾄表4,则与性别有关联的可能性最⼤的变量是()(A )成绩(B )视⼒(C )智商(D )阅读量【答案】D【解析】表1:()225262210140.00916362032X ??-?=≈;表2:()22524201216 1.76916362032X ??-?=≈;表3:()2252824812 1.316362032X ??-?=≈;表4:()22521430616223.4816362032X ??-?=≈,∴阅读量与性别有关联的可能性最⼤,故选D .【点评】本题考查独⽴性检验的应⽤,考查学⽣的计算能⼒,属于中档题.(8)【2014年江西,⽂8,5分】阅读如下程序框图,运⾏相应的程序,则程序运⾏后输出的结果为()(A )7 (B )9 (C )10 (D )11 【答案】B【解析】由程序框图知:135i 0lg lg lg lg 357i 2S =++++++ 的值,∵1371lg lg lg lg 13599S =+++=>- ,⽽1391lg lg lg lg 1351111S =+++=<- ,∴跳出循环的i 值为9,∴输出i 9=,故选B .【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.(9)【2014年江西,⽂9,5分】过双曲线22221x y C a b-=:的右顶点作x 轴的垂线与C 的⼀条渐近线相交于A .若以C 的右焦点为圆⼼、半径为4的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的⽅程为()(A )221412x y -= (B )22179x y -= (C )22188x y -= (D )221124x y -=【答案】A 【解析】以C 的右焦点为圆⼼、半径为4的圆经过坐标原点O ,则4c =.且4CA =.设右顶点为(),0B a ,(),C a b ,ABC ? 为Rt ?222BA BC AC ∴+=,()22416a b ∴-+=,⼜22216a b c +== .得1680a -=,2a =,24a =,212b =,所以双曲线⽅程221412x y-=,故选A .【点评】本题考查双曲线的⽅程与性质,考查学⽣的计算能⼒,属于基础题.(10)【2014年江西,⽂10,5分】在同⼀直⾓坐标系中,函数22ay ax x =-+与()2322y a x ax x a a =-++∈R 的图像不可能的是()(A )(B )(C )(D )【答案】B【解析】当0a =时,函数22ay ax x =-+的图象是第⼆,四象限的⾓平分线,⽽函数2322y a x ax x a =-++的图象是第⼀,三象限的⾓平分线,故D 符合要求;当0a ≠时,函数22ay ax x =-+图象的对称轴⽅程为直线12x a =,由2322y a x ax x a =-++可得:22341y a x ax '=-+,令0y '=,则113x a =,21x a =,即113x a =和21x a =为函数2322y a x ax x a =-++的两个极值点,对称轴12x a =介于113x a =和21x a=两个极值点之间,故A 、C 符合要求,B 不符合,故选B .【点评】本题考查的知识点是函数的图象,其中熟练掌握⼆次函数的图象和性质,三次函数的极值点等知识点是解答的关键.⼆、填空题:本⼤题共5⼩题,每⼩题5分,共25分.(11)【2014年江西,⽂11,5分】若曲线ln y x x =上点P 处的切线平⾏于直线210x y -+=,则点P 的坐标是.【答案】(),e e【解析】11ln ln 1y x x x x=?+?=+,切线斜率2k =,则0ln 12x +=,0ln 1x =,0x e ∴= ()0f x e∴=,所以(),P e e .【点评】本题主要考查导数的⼏何意义,以及直线平⾏的性质,要求熟练掌握导数的⼏何意义.(12)【2014年江西,⽂12,5分】已知单位向量12,e e 的夹⾓为α,且1cos 3α=,若向量1232a e e =- ,则||a =.【答案】3【解析】()()()222221212123232129412cos 9a a e e e e e e α==-=+-?=+-=,解得3a =.【点评】本题主要考查两个向量的数量积的定义,求向量的模的⽅法,属于基础题.(13)【2014年江西,⽂13,5分】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S取最⼤值,则d 的取值范围.【答案】71,8?--【解析】因为170a =>,当且仅当8n =时n S 取最⼤值,可知0d <且同时满⾜890,0a a ><,所以,89770780a d a d =+>??=+18d -<<-.【点评】本题主要考查等差数列的前n 项和公式,解不等式⽅程组,属于中档题.(14)【2014年江西,⽂14,5分】设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,作2F 作x 轴的垂线与C交于A B ,两点,1F B 与y 轴交于点D ,若1AD F B ⊥,则椭圆C 的离⼼率等于.【解析】因为AB 为椭圆的通径,所以22b AB a=,则由椭圆的定义可知:212b AF a a =-,⼜因为1AD F B ⊥,则1AF AB =,即2222b b a a a =-,得2223b a =,⼜离⼼率ce a =,结合222a b c =+,得到:e =.【点评】本题主要考查椭圆离⼼率的求解,根据条件求出对应点的坐标,利⽤直线垂直于斜率之间的关系是解决本题的关键,运算量较⼤.为了⽅便,可以先确定⼀个参数的值.(15)【2014年江西,⽂15,5分】,x y R ∈,若112x y x y ++-+-≤,则x y +的取值范围为.【答案】[]0,2【解析】 11x x +-≥,11y y +-≥,要使112x x y y +-++-≤,只能112x x y y +-++-=,11x x +-=,11y y +-=,∴01x ≤≤,01y ≤≤,∴02x y ≤+≤.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.三、解答题:本⼤题共6题,共75分.解答应写出⽂字说明,演算步骤或证明过程.(16)【2014年江西,⽂16,12分】已知函数()()()22cos cos 2f x a x x θ=++为奇函数,且04f π??=,其中a ∈R ,()0,θπ∈.(1)求,a θ的值;(2)若245f α??=- ,,2παπ??∈,求sin 3πα?+的值.解:(1)()()1cos 1sin 042f a a ππθθ=++=-+= ? ?Q ()0θπ∈,,∴sin 0θ≠,∴10,1a a +=∴=- ………2分 Q 函数()()()22cos cos 2f x a x x θ=++为奇函数()()02cos cos 0f a θθ∴=+==……………4分 2πθ∴=. ……………5分(2)有(1)得()()2112cos cos 2cos 2sin 2sin 422f x x x x x x π??=-++=-=- ?g……………7分 Q 12sin 425f αα??=-=- ∴4s i n 5α=………8分 Q 2πθπ??∈,,3cos 5α∴=- ……………10分413sin sin cos cos sin 333525πππααα??∴+=+=?-=……………12分【点评】本题主要考查了同⾓三⾓函数关系,三⾓函数恒等变换的应⽤,函数奇偶性问题.综合运⽤了所学知识解决问题的能⼒.(17)【2014年江西,⽂17,12分】已知数列{}n a 的前n 项和232n n nS -=,*n N ∈.(1)求数列{}n a 的通项公式;(2)证明:对任意1n >,都有*m N ∈,使得1a ,n a ,m a 成等⽐数列.解:(1)当1n =时111a S ==,当2n ≥时,()22131133222n n n n n n n a S S n ---+-=-=-=-检验,当1n =时11a =,32n a n ∴=-.(2)使1a ,n a ,m a 成等⽐数列.则21n m a a a =,()23232n m ∴--=,即满⾜()2233229126m n n n =-+=-+,所以2342m n n =-+,所以对任意1n >,都有m N *∈,使得1n m a a a ,,成等⽐数列.【点评】本题考查了递推式的意义、等差数列与等⽐数列的通项公式、⼆次函数的单调性等基础知识与基本技能⽅法,考查了恒成⽴问题的等价转化⽅法,考查了反证法,考查了推理能⼒和计算能⼒,属于难题.(18)【2014年江西,⽂18,12分】已知函数22()(44f x x ax a =++,其中0a <.(1)当4a =-时,求()f x 的单调递增区间;(2)若()f x 在区间[1,4]上的最⼩值为8,求a 的值.解:(1)当4a =-时,()()()2422f x x x =--()f x 的定义域为[)0,+∞,()(2'242x f x x-=-252x x --,令()'0f x >得20,25x x ≤<>,所以当4a =-时,()f x 的单调递增区间为()20,2+5??∞和,.(2)()()2f x x a =+,()(2'221022x a x a x a f x x a +++=+=令()'0f x =,得12,210a a x x =-=-,0a ">,"所以,在区间,,,102a a --+∞ ? ?0上,()'0f x >, )(x f 的单调递增;在区间,102a a ??--上,()'0f x <,)(x f 的单调递减;⼜易知()()220f x x a =+,且02a f ??-=.①当12a-≤时,即20a -≤<时,)(x f 在区间]4,1[上的最⼩值为()1f ,由()21448f a a =++=,得2a =-±,均不符合题意.②当142a<-≤时,即82a -≤<-时,)(x f 在区间]4,1[上的最⼩值为02a f ??-= ,不符合题意.③当42a->时,即8a <-时,)(x f 在区间]4,1[上的最⼩值可能为1x =或4x =处取到,⽽()18f ≠,()242(6416)8f a a =++=,得10a =-或6a =-(舍去),当10a =-时,()f x 在区间[1,4]上单调递减,()f x 在区间[1,4]上的最⼩值()48f =符合题意.综上,10a =-.【点评】本题考查的是导数知识,重点是利⽤导数判断函数的单调性,难点是分类讨论.对学⽣的能⼒要求较⾼,属于难题.(19)【2014年江西,⽂19,12分】如图,三棱柱111ABC A B C -中,111,AA BC A B BB ⊥⊥.(1)求证:111AC CC ⊥;(2)若2,AB AC BC ==1AA 为何值时,三棱柱111ABC A B C -体积最⼤,并求此最⼤值.解:(1)三棱柱111ABC A B C -中,1AA BC ⊥,1BB BC ∴⊥,⼜11BB A B ⊥且1BC A B C = ,11BB BCA ∴⊥⾯,11BB CC ∥11CC BCA ∴⊥⾯,⼜11AC BCA ∴?⾯, 11AC CC ⊥.(4分)(2)设1AA x =,在Rt △11Rt A BB ?中,AB同理,1A 1ABC ?中1cos BAC ∠=222211112A B AC BC A B AC +-=1sin BAC ∠=(6分)所以11111sin BA C 2A BCS A B A C =∠= △(7分)从⽽三棱柱111ABC A B C -的体积11A BCV S l S AA =?=?=△8分),因10分)故当x1AA 时,体积V【点评】本题考查空间直线与平⾯垂直的判定与应⽤,⼏何体的体积的最值的求法,考查转化思想以及空间想象能⼒.(20)【2014年江西,⽂20,13分】如图,已知抛物线2:4C x y =,过点(0,2)M 任作⼀直线与C 相交于,A B 两点,过点B 作y 轴的平⾏线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意⼀条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值解:(1)根据题意可设AB ⽅程为2y kx =+,代⼊2=4x y ,得()242x kx =+,即2480x k x --=,设()11,A x y ,()22,B x y ,则有:128x x =-,(2分)直线AO 的⽅程为11y y x x =;BD 的⽅程为2x x =,解得交点D 的坐标为2121x x y x y x =??=(4分),注意到128x x =-及211=4x y ,则有1121211824y x x y y x y -===-,(5分)因此D 点在定直线y=-2上(2x ≠)(6分).(2)依据题设,切线l 的斜率存在且不等于0,设切线l 的⽅程为()0y ax b a =+≠,代⼊2=4x y 得2=4+x ax b (),即2440x ax b --=,由0?=得216160a b +=,化简整理得2b a =-(8分)故切线l 的可写为2y ax a =-.令2y =、2y =-得12,N N 坐标为12(,2)N a a +,22(,2)N a a-+-(11分)则222222122()4()8MN MN a a a a-=-+-+=,即2221MN MN -为定值8.(13分)【点评】本题考查抛物线的⽅程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能⼒、推理论证能⼒、运算求解能⼒,考查特殊与⼀般思想、数形结合思想、函数与⽅程思想,属于难题.(21)【2014年江西,⽂21,14分】将连续正整数1,2,,(*)n n N ∈从⼩到⼤排列构成⼀个数123n ,()F n 为这个数的位数(如12n =时,此数为123456789101112,共有15个数字,(12)15f =),现从这个数中随机取⼀个数字,()p n 为恰好取到0的概率.(1)求(100)p ;(2)当2014n ≤时,求()F n 的表达式.(3)令()g n 为这个数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,{|()1,100,*}S n h n n n N ==≤∈,求当n S ∈时()p n 的最⼤值.解:(1)当100n =时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为()11100192p =.(2分)(2)当19n ≤≤时,这个数有1位数组成,()9F n =,当1099n ≤≤时,这个数有9个1位数组成,9n -个两位数组成,则()29F n n =-,当100999n ≤≤时,这个数有9个1位数组成,90个两位数组成,99n -个三位数组成,()3108F n n =-,当10002014n ≤≤时,这个数有9个1位数组成,90个两位数组成,900个三位数组成,999n -个四位数组成,()41107F n n =-,所以,1929,1099()3108,10099941107,10002014n n n n F n n n n n ≤≤??-≤≤?=?-≤≤??-≤≤?(5分)(3)当n b =(+19N b b ≤≤∈,),()0g n =;当()1019,09,,n k b k b k N b N +=+≤≤≤≤∈∈时,()g n k =;100n =时()11g n =,即,0,19,(),n 10,19,09,,11,n 100n g n k k b k b k N b N +?≤≤?==+≤≤≤≤∈∈??=?(8分)同理有,0,18,,n 10,19,09,,()80,8998,20,n 99,100n k k b k b k N b N f n n n +≤≤??=+≤≤≤≤∈∈?=?-≤≤??=?(10分)由()()()1h n f n g n =-=h ,可知9,19,29,49,59,69,79,89,90n =,所以当n 100≤时,}{9,19,29,39,49,59,69,79,89,90S =(11分)当9n =时,()90p =,当90n =,()()()901909019g p F ==,当()10918,n k k k N +=+≤≤∈时, ()()()29209g n k k p n F n n k ===-+(13分)由209ky k =+关于k 单调递增,故当109n k =+(18k ≤≤,k N +∈)时,()p n 的最⼤值为()889169p =,⼜8116919<,所以最⼤植为119.(14分)【点评】本题为信息题,也是本卷的压轴题,考查学⽣认识问题、分析问题、解决问题的能⼒,本题的命题新颖,对学⽣能⼒要求较⾼,难度较⼤,解决本题的关键⾸先在于审清题意,搞清楚()F n 、()p n 的含义,这样就可以解决前两问,同时为第三问做好铺垫,第三问在前两问的基础上再加以深⼊,考查学⽣综合分析问题的能⼒.本题由易到难,层层深⼊,是⼀道难得的好题.。
2014高考真题汇编函数与导数(二)教师版

2014高考真题汇编函数与导数(二)1.[2014·山东卷] 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A. 2 2 B. 4 2 C. 2 D. 41.D [解析] 直线y =4x 与曲线y =x 3在第一象限的交点坐标是(2,8),所以两者围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝⎛⎪⎪⎭⎫2x 2-14x 420=4,故选D.2、[2014·福建卷] 如图1-4,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.图1-42.2e2 [解析] 因为函数y =ln x 的图像与函数y =e x 的图像关于正方形的对角线所在直线y =x 对称,则图中的两块阴影部分的面积为S =2⎠⎛1eln x d x =2(x ln x -x)|e1=2[(eln e -e )-(ln 1-1)]=2,故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率P =2e 2.3.[2014·江西卷] 若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .13.B [解析] ⎠⎛01f (x )d x =⎠⎛01⎣⎡⎦⎤x 2+2⎠⎛01f (x )d x d x =⎣⎡⎦⎤13x 3+⎝⎛⎭⎫2⎠⎛01f (x )d x x 10=13+2⎠⎛01f (x )d x ,得⎠⎛01f (x )d x =-13.4.[2014·湖南卷] 已知函数f (x )=sin(x -φ),且⎰320πf(x)d x =0,则函数f(x)的图像的一条对称轴是( )A .x =5π6 B .x =7π12 C .x =π3 D .x =π64.A [解析] 因为∫2π30f(x)d x =0,即∫2π30f(x)d x =-cos (x -φ)2π30=-cos ⎝⎛⎭⎫2π3-φ+cos φ=0,可取φ=π3,所以x =5π6是函数f(x)图像的一条对称轴.5.[2014·新课标全国卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞)C .(-∞,-2)D .(-∞,-1)5.C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a ,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意. 综上可知,实数a 的取值范围为(-∞,-2).6.[2014·湖北卷] 若函数f (x ),g (x )满足⎠⎛-11f(x)g(x)d x =0,则称f(x),g(x)为区间[-1,1]上的一组正交函数,给出三组函数: ①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A .0 B .1 C .2 D .36.C [解析] 由题意,要满足f(x),g(x)是区间[-1,1]上的正交函数,即需满足⎠⎛-11f(x)g(x)d x =0.①⎠⎛-11f(x)g(x)d x =⎠⎛-11sin 12x cos 12x d x = 12⎠⎛-11sin x d x =⎝⎛⎭⎫-12cos x 1-1=0,故第①组是区间[-1,1]上的正交函数; ②⎠⎛-11f(x)g(x)d x =⎠⎛-11(x +1)(x -1)d x =⎝⎛⎭⎫x 33-x 1-1=-43≠0,故第②组不是区间[-1,1]上的正交函数;③⎠⎛-11f(x)g(x)d x =⎠⎛-11x ·x 2d x =x 441-1=0,故第③组是区间[-1,1]上的正交函数. 综上,是区间[-1,1]上的正交函数的组数是2. 故选C 74.[2014·黄冈中学期末] 已知f (x )是定义在R 上以2为周期的偶函数,且当0≤x ≤1时,f (x )=log 12(1-x ),则f ⎝⎛⎭⎫-20114=( ) A .-2 B.12C .1D .27.D [解析] f -20114=f 20114=f 34=log 121-34=log 1214=2.8.[2014·青岛期中] 若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-15.B [解析] 由题意,要使函数f (x )在区间(-1,1)上存在一个零点,则有f (-1)f (1)<0,8.即(a +1)(-5a +1)<0,所以(a +1)(5a -1)>0,解得a >15或a <-1.9.[2014·内江模拟] 已知函数f (x )=13x 3-12x 2+cx +d 有极值,则c 的取值范围为( )A .c <14B .c ≤14C .c ≥14D .c >149.A [解析] 由题意得,f′(x)=x 2-x +c ,Δ=1-4c>0,解得c<1410.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 10.解:(1)函数y =f (x )的定义域为(0,+∞), f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞).因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e22.11.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.11.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x)=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1. (2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x-c >0,此时f (x )无极值. 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x=t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).12、[2014·湖南卷] 已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.(1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围.12.解:(1)f ′(x )=a1+ax -2(x +2)-2x (x +2)2=ax 2+4(a -1)(1+ax )(x +2)2.(*)当a ≥1时,f ′(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f ′(x )=0得x 1=21-a a ⎝ ⎛⎭⎪⎫x 2=-21-a a舍去.当x ∈(0,x 1)时,f ′(x )<0; 当x ∈(x 1,+∞)时,f ′(x )>0.故f (x )在区间(0,x 1)上单调递减, 在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增;当0<a <1时,f (x )在区间⎝⎛⎭⎪⎫0,21-a a 上单调递减,在区间⎝ ⎛⎭⎪⎫21-a a,+∞上单调递增.(2)由(*)式知,当a ≥1时,f ′(x )≥0,此时f (x )不存在极值点,因而要使得f (x )有两个极值点,必有0<a <1.又f (x )的极值点只可能是x 1=21-a a 和x 2=-21-aa,且由f (x )的定义可知,x >-1a且x ≠-2,所以-21-a a >-1a ,-21-a a ≠-2,解得a ≠12.此时,由(*)式易知,x 1,x 2分别是f (x )的极小值点和极大值点.而f (x 1)+f (x 2)=ln(1+ax 1)-2x 1x 1+2+ln(1+ax 2)-2x 2x 2+2=ln[1+a (x 1+x 2)+a 2x 1x 2]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2+22a -1-2.令2a -1=x .由0<a <1且a ≠12知,当0<a <121<x <0;当12<a <1时,0<x <1. 记g (x )=ln x 2+2x-2.(i)当-1<x <0时,g (x )=2ln(-x )+2x -2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(-1,0)上单调递减, 从而g (x )<g (-1)=-4<0.故当0<a <12时,f (x 1)+f (x 2)<0.(ii)当0<x <1时,g (x )=2ln x +2x-2,所以g ′(x )=2x -2x 2=2x -2x2<0,因此,g (x )在区间(0,1)上单调递减,从而g (x )>g (1)=0.故当12<a <1时,f (x 1)+f (x 2)>0.综上所述,满足条件的a 的取值范围为⎝⎛⎭⎫12,1.13、[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.10.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数, 因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.(ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ),则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2,因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.2.[2014·成都检测] 定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a ,b ∈R ,有f (a +b )=f (a )f (b ).(1)求证:f (0)=1;(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)若f (x )f (2x -x 2)>1,求x 的取值范围.2.解:(1)证明:令a =b =0,则有f (0)=[f (0)]2. ∵f (0)≠0,∴f (0)=1.(2)证明:令a =x ,b =-x ,则有f (0)=f (x )f (-x ),∴f (-x )=1f (x ).∵当x >0时,f (x )>1>0,∴当x <0时,-x >0,∴f (-x )>0,∴f (x )=1f (-x )>0.又当x =0时,f (0)=1>0, ∴对任意的x ∈R ,恒有f (x )>0.(3)任取x 2>x 1,则f (x 2)>0,f (x 1)>0,x 2-x 1>0, ∴f (x 2)f (x 1)=f (x 2)·f (-x 1)=f (x 2-x 1)>1, ∴f (x 2)>f (x 1),∴f (x )在R 上单调递增. 又f (x )·f (2x -x 2)=f [x +(2x -x 2)]=f (-x 2+3x ), 且f (0)=1,∴f (3x -x 2)>f (0),∴3x -x 2>0,解得0<x <3.4.[2014·广州调研] 设函数f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1.(1)若曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,求实数a ,b 的值;(2)当b =1-a2时,若函数h (x )=f (x )+g (x )在区间(-2,0)内恰有两个零点,求实数a 的取值范围;(3)当a =1,b =0时,求函数h (x )=f (x )+g (x )在区间[t ,t +3]内的最小值.4.解:(1)因为f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1,所以f ′(x )=x 2-a ,g ′(x )=2bx .因为曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线, 所以f (1)=g (1),且f ′(1)=g ′(1), 即13-a =b +2b -1,且1-a =2b , 解得a =13,b =13.(2)当b =1-a 2时,h (x )=13x 3+1-a 2x 2-ax -a (a >0),所以h ′(x )=x 2+(1-a )x -a =(x +1)(x -a ). 令h ′(x )=0,解得x 1=-1,x 2=a >0.当x 变化时,h ′(x ),h (x )的变化情况如下表:故h (x )在区间(-2,-1)上单调递增,在区间(-1,0)上单调递减. 又函数h (x )在区间(-2,0)内恰有两个零点,所以有⎩⎪⎨⎪⎧h (-2)<0,h (-1)>0,h (0)<0,即⎩⎨⎧-83+2(1-a )+2a -a <0,-13+1-a2+a -a >0,-a <0,解得0<a <13,所以实数a 的取值范围是0,13.(3)当a =1,b =0时,h (x )=13x 3-x -1,b =1-a 2,则由(2)可知,函数h (x )的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).因为h (-2)=-53,h (1)=-53,所以h (-2)=h (1).①当t +3<1,即t <-2时,[h (x )]min =h (t )=13t 3-t -1.②当-2≤t <1时,[h (x )]min =h (-2)=-53.③当t ≥1时,h (x )在区间[t ,t +3]上单调递增,[h (x )]min =h (t )=13t 3-t -1.综上可知,函数h (x )在区间[t ,t +3]上的最小值[h (x )]min =⎩⎨⎧133-t -1,t ∈(-∞,-2)∪[1,+∞),-53,t ∈[-2,1).。
高考数学分类汇编(高考真题 模拟新题)函数与导数 文

B 单元 函数与导数B1 函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=______.14.516 [解析] 由题易知f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 21.、、[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.21.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169. 又8169<119,所以当n ∈S 时,p (n )的最大值为119. 3.[2014·山东卷] 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)3.C [解析] 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2.B2 反函数5.[2014·全国卷] 函数y =ln(3x +1)(x >-1)的反函数是( ) A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R )5.D [解析] 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ).B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x+m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x=f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立.令 t =e x(x >0),则 t >1,所以 m ≤-t -1t -t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎥⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1e x +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e-12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x. 令 h ′(x )=0, 得x =e-1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e-1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.15.、、[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”;②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ; ④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎢⎡⎦⎥⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确21.、[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x-2ax -b ,所以g ′(x )=e x-2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.B4 函数的奇偶性与周期性4.[2014·重庆卷] 下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x4.D [解析] A 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x)=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x=f (x ),f (x )为偶函数.故选D.14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=______.14.516 [解析] 由题易知f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x-2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.15.[2014·湖南卷] 若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x+1)+ax ,∴2ax =-ln e 3x=-3x ,∴a =-32.19.、、、[2014·江苏卷] 已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x+m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x=f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立.令 t =e x(x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2 (t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13, 当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎥⎤-∞,-13. (3)令函数 g (x )=e x +1e - a (-x 3+3x ),则g ′ (x ) =e x -1e +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e-12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x. 令 h ′(x )=0, 得x =e-1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数.所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e-1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.12.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .112.D [解析] 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1.15.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.15.3 [解析] 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3.5.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数5.C [解析] 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )·g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 13.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.13.1 [解析] 由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1.B5 二次函数10.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.10.⎝ ⎛⎭⎪⎫-22,0 [解析] 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0, 解得⎩⎪⎨⎪⎧-22<m <22,-32<m <0,即m ∈⎝ ⎛⎭⎪⎫-22,0.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.B6 指数与指数函数5.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b5.B [解析] 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . 8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图12所示,则下列函数图像正确的是( )图12A BC D 图138.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x的取值范围是________.15.(-∞,8] [解析] 当x <1时,由ex -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.5.,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .x 3>y 3B .sin x >sin yC .ln(x 2+1)>ln(y 2+1)D.1x 2+1>1y 2+15.A [解析] 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. 7.[2014·陕西卷] 下列函数中,满足“f (x +y )= f (x )f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝ ⎛⎭⎪⎫12x为单调递减函数,所以排除选项D.12.[2014·陕西卷] 已知4a=2,lg x =a ,则x =________.12.10 [解析] 4a =2,即22a=2,可得a =12,所以lg x =12,所以x =1012=10.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d=10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ]9.B [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|PA |2+|PB |2=|AB |2=10,即|PA |+|PB |≥|AB |=10.又|PA |+|PB |=(|PA |+|PB |)2=|PA |2+2|PA ||PB |+|PB |2≤2(|PA |2+|PB |2)=2 5,所以|PA |+|PB |∈[10,2 5],故选B.4.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a4.C [解析] ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .B7 对数与对数函数12.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________.12.(-∞,0) [解析] 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).11.[2014·安徽卷] ⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.11.278 [解析] 原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 +log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3=278.8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D图128.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图12所示,则下列函数图像正确的是( )图12A BC D 图138.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b3.D [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图11所示,则下列结论成立的是( )图11A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.7.、[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c7.B [解析] 因为5d=10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B.9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3 C .6+4 3 D .7+4 39.D [解析] 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b≥7+24b a ·3ab=7+43,当且仅当4b a =3ab,即a =4+23,b =2 3+3时等号成立,故其最小值是7+4 3.B8 幂函数与函数的图像8.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图像可能是( )A BC D图128.D [解析] 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.8.,,[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图12所示,则下列函数图像正确的是( )图12A BC D 图138.B [解析] 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝ ⎛⎭⎪⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.15.[2014·湖北卷] 如图14所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.15.⎝ ⎛⎭⎪⎫0,16 [解析] “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝ ⎛⎭⎪⎫0,16.13.、[2014·江苏卷] 已知()是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝ ⎛⎭⎪⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝ ⎛⎭⎪⎫0,12.15.、[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e ,x <1,x 13,x ≥1,则使得f (x )≤2成立的x的取值范围是________.15.(-∞,8] [解析] 当x <1时,由ex -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8.6.,[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图11所示,则下列结论成立的是( )图11A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.B9 函数与方程6.[2014·北京卷] 已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)6.C [解析] 方法一:对于函数f (x )=6x-log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).7.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.C [解析] 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.10.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx-m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12 B.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,12 C.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,23 D.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,23 10.A [解析] 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)的图像恒过定点P (-1,0),由图易知有两交点的边界有四条,其中k PO =0,k PA =12,k PB =-2,第四条为过P 点的曲线y =1x +1-3的切线PC .将y =m (x +1)(m ≠0)代入y =1x +1-3,得mx 2+(2m +3)x +m +2=0,则由Δ=(2m +3)2-4m (m +2)=4m +9=0,得m =-94,即k PC =-94,所以由图可知满足条件的实数m 的取值范围是⎝ ⎛⎭⎪⎫-94,-2∪⎝ ⎛⎭⎪⎫0,12.15.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.15.2 [解析] 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2,即在区间(-∞,0)上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2.9.、[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}9.D [解析] 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 13.、[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝ ⎛⎭⎪⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝ ⎛⎭⎪⎫0,12.4.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧·2,≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a=( )A.14B.12C .1D .2 4.A [解析] 因为f (-1)=21=2,f (2)=a ·22=4a =1,所以a =14.15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.15. 2 [解析] 令t =f (a ),若f (t )=2,则t 2+2t +2=2 满足条件,此时t =0或t =-2,所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.21.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a,x 2=-1-1-aa.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).14.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4=0,解得a =1或a =9(舍去),∴当y =a |x |与y =f (x )的图像有四个交点时,有1<a <2.B10 函数模型及其应用 8.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图12记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图12A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟8.B [解析] 由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.10.[2014·陕西卷] 如图12所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图12A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .B11 导数及其运算21.、、[2014·陕西卷] 设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2, ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14⎝ ⎛⎭⎪⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.20.、[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.20.、[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎪⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0,设g (x )=4x 3-6x 2+t +3, 则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,(0)=+3是()的极大值,(1)=+1是()的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切.22.、[2014·福建卷] 已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x.22.解:方法一:(1)由f (x )=e x-ax ,得f ′(x )=e x-a .又f ′(0)=1-a =-1,得a =2.所以f (x )=e x -2x ,f ′(x )=e x-2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x-2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x.(3)证明:对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x.所以当x >x 0时,e x >x 2>1cx ,即x <c e x.因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x. 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c(k >0),要使不等式x <c e x 成立,只要e x>kx 成立.而要使e x>kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立.即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x.②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c,当x ∈(x 0,+∞)时,恒有x <c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x. 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x>2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x>2x >x ,即x <c e x.②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x-1. 令h ′(x )=0得x =ln 1c.当x >ln 1c时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝ ⎛⎭⎪⎫2c -ln 2c ,易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x.综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x.11.、[2014·广东卷] 曲线y =-5e x+3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.11.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.11.-3 [解析] 易知y ′=2ax -bx 2.根据题意有⎩⎪⎨⎪⎧-5=4a +b2,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,故a +b =-3.23.、[2014·江苏卷] 已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 B单元 函数与导数 B1 函数及其表示 14.、[2014·安徽卷] 若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为
f(x)=x(1-x),0≤x≤1,sin πx,1
14.516 [解析] 由题易知f294+f416=f-34+f-76=-f34-f76=-316+sin π6=516.
2.、[2014·北京卷] 下列函数中,定义域是R且为增函数的是( ) A.y=e-x B.y=x3 C.y=ln x D.y=|x| 2.B [解析] 由定义域为R,排除选项C,由函数单调递增,排除选项A,D. 21.、、[2014·江西卷] 将连续正整数1,2,„,n(n∈N*)从小到大排列构成一个数123„n,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率. (1)求p(100); (2)当n≤2014时,求F(n)的表达式; (3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值. 21.解:(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以
恰好取到0的概率为p(100)=11192.
(2)F(n)=n,1≤n≤9,2n-9,10≤n≤99,3n-108,100≤n≤999,4n-1107,1000≤n≤2014. (3)当n=b(1≤b≤9,b∈N*),g(n)=0; 当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k; 当n=100时,g(n)=11,即g(n)=
0,1≤n≤9,
k,n=10k+b,11,n=100.1≤k≤9,0≤b≤9,k∈N*,b∈N,
同理有f(n)=
0,1≤n≤8,
k,n=10k+b-1,1≤k≤8,0≤b≤9,k∈N*,b∈N,n-80,89≤n≤98,20,n=99,100. 由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90, 所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}. 当n=9时,p(9)=0. 当n=90时,p(90)=g(90)F(90)=9171=119. 当n=10k+9(1≤k≤8,k∈N*)时,p(n)=g(n)F(n)=k2n-9=k20k+9,由y=k20k+9关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=8169. 又8169<119,所以当n∈S时,p(n)的最大值为119. 3.[2014·山东卷] 函数f(x)=1log2x-1的定义域为( ) A.(0,2) B.(0,2] C.(2,+∞) D.[2,+∞) 3.C [解析] 若函数f(x)有意义,则log2x-1>0,∴log2x>1,∴x>2.
B2 反函数 5.[2014·全国卷] 函数y=ln(3x+1)(x>-1)的反函数是( ) A.y=(1-ex)3(x>-1) B.y=(ex-1)3(x>-1) C.y=(1-ex)3(x∈R) D.y=(ex-1)3(x∈R)
5.D [解析] 因为y=ln(3x+1),所以x=(ey-1)3.因为x>-1,所以y∈R,所以函数y=ln(3x+1)(x>-1)的反函数是y=(ex-1)3(x∈R). B3 函数的单调性与最值 2.、[2014·北京卷] 下列函数中,定义域是R且为增函数的是( ) A.y=e-x B.y=x3 C.y=ln x D.y=|x| 2.B [解析] 由定义域为R,排除选项C,由函数单调递增,排除选项A,D. 4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )
A.f(x)=1x2 B.f(x)=x2+1 C.f(x)=x3 D.f(x)=2-x 4.A [解析] 由偶函数的定义,可以排除C,D,又根据单调性,可得B不对. 19.、、、[2014·江苏卷] 已知函数f(x)=ex+e-x,其中e是自然对数的底数. (1)证明:f(x)是R上的偶函数. (2)若关于x的不等式mf(x)≤e-x +m-1在(0,+∞)上恒成立,求实数m的取值范围. (3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)ae-1的大小,并证明你的结论. 19.解: (1)证明:因为对任意 x∈R,都有f(-x)=e-x+e -(-x)=e-x+ex=f(x), 所以f(x)是R上的偶函数. (2)由条件知 m(ex+e-x-1)≤e-x-1在(0,+∞)上恒成立.
令 t=ex(x>0),则 t>1,所以 m≤-t-1t2-t+1= -1t-1+1t-1+ 1对任意 t>1成立. 因为t-1+1t-1+ 1≥2 (t-1)·1t - 1+1=3, 所以 -1t-1+1t-1+ 1≥-13, 当且仅当 t=2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是-∞,-13.
(3)令函数 g(x)=ex+1ex- a(-x3+3x),则g′ (x) =ex-1ex+3a(x2-1). 当 x≥1时,ex-1ex>0,x2-1≥0.又a>0,故 g′(x)>0,所以g(x)是[1,+∞)上的单调递增函数, 因此g(x)在[1,+∞)上的最小值是 g(1)= e+e-1-2a. 由于存在x0∈[1,+∞),使ex0+e-x0-a(-x30+ 3x0 )<0 成立, 当且仅当最小值g(1)<0,
故 e+e-1-2a<0, 即 a>e+e-12.
令函数h(x) = x -(e-1)ln x-1,则 h′(x)=1-e-1x. 令 h′(x)=0, 得x=e-1. 当x∈(0,e-1)时,h′(x)<0,故h(x)是(0,e-1)上的单调递减函数; 当x∈(e-1,+∞)时,h′(x)>0,故h(x)是(e-1,+∞)上的单调递增函数. 所以h(x)在(0,+∞)上的最小值是h(e-1). 注意到h(1)=h(e)=0,所以当x∈(1,e-1)⊆(0,e-1)时,h(e-1)≤h(x)当x∈(e-1,e)⊆(e-1,+∞)时, h(x)所以h(x)<0对任意的x∈(1,e)成立.
故①当a∈e+e-12,e⊆(1,e)时, h(a)<0, 即a-1<(e-1)ln a,从而ea-1②当a=e时,ea-1=ae-1; ③当a∈(e,+∞)⊆(e-1,+∞)时,h(a)>h(e)=0,即a-1>(e-1)ln a,故ea-1>ae-1.
综上所述,当a∈e+e-12,e时,ea-1时,ea-1>ae-1. 15.、、[2014·四川卷] 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”; ②若函数f(x)∈B,则f(x)有最大值和最小值; ③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∈/B;
④若函数f(x)=aln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B. 其中的真命题有________.(写出所有真命题的序号) 15.①③④ [解析] 若f(x)∈A,则函数f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确. 取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得函数f(x)的值域包含于[-M,M]=[-1,1],但此时函数f(x)没有最大值和最小值,故②错误. 当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(x)+f(a0)=b0-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确.
对于f(x)=aln(x+2)+xx2+1(x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使
得函数f(x)有最大值,只有a=0,此时f(x)=xx2+1(x>-2).易知f(x)∈-12,12,所以存在正数M=12,使得f(x)∈[-M,M],故④正确 21.、[2014·四川卷] 已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28„为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1. 21.解:(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a. 当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤12时,g′(x)≥0,所以g(x)在[0,1]上单调递增, 因此g(x)在[0,1]上的最小值是g(0)=1-b; 当a≥e2时,g′(x)≤0,所以g(x)在[0,1]上单调递减, 因此g(x)在[0,1]上的最小值是g(1)=e-2a-b; 当12<a<e2时,令g′(x)=0,得x=ln(2a)∈(0,1), 所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增, 于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤12时,g(x)在[0,1]上的最小值是g(0)=1-b;
当12<a<e2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b; 当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b. (2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知, f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减. 则g(x)不可能恒为正,也不可能恒为负. 故g(x)在区间(0,x0)内存在零点x1. 同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点.