运筹学期末考试试题及答案

合集下载

《运筹学》期末考试试卷A答案

《运筹学》期末考试试卷A答案

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。

2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。

3. 如果一个线性规划问题有可行解,那么它必有最优解。

4.对偶问题的对偶问题一定是原问题。

5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。

6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。

7. 度为0的点称为悬挂点。

8. 表上作业法实质上就是求解运输问题的单纯形法。

9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日;春夏季4000人日。

如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。

养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。

农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。

三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。

(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。

2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。

4、在图论中,称 无圈的 连通图为树。

5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。

由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

运筹学试期末试题及答案

运筹学试期末试题及答案

运筹学试期末试题及答案一、单项选择题(每题 2 分,共 10 题)1. 运筹学中,线性规划问题的目标函数是:A. 最小化B. 最大化C. 既不是最小化也不是最大化D. 以上都不是答案:B2. 以下哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 单纯形法C. 割平面法D. 动态规划法答案:D3. 在网络流问题中,以下哪个不是网络流算法?A. Ford-Fulkerson算法B. Edmonds-Karp算法C. Dijkstra算法D. 推重算法答案:C4. 动态规划的基本原理是:A. 贪心选择性质B. 递归C. 子结构和最优子结构D. 回溯答案:C5. 以下哪个算法不是用于解决旅行商问题(TSP)的?A. 动态规划B. 遗传算法C. 模拟退火D. 快速排序答案:D6. 以下哪个不是排队论中的基本概念?A. 到达率B. 服务率C. 优先级D. 利用率答案:C7. 在库存管理中,经济订货量(EOQ)模型不考虑以下哪个因素?A. 订货成本B. 持有成本C. 需求量D. 运输成本答案:D8. 以下哪个是多目标优化问题的特点?A. 只有一个目标函数B. 目标函数之间相互独立C. 目标函数之间存在冲突D. 只有一个可行解答案:C9. 以下哪个是敏感性分析的目的?A. 确定最优解B. 确定目标函数的系数C. 分析参数变化对最优解的影响D. 确定约束条件的数量答案:C10. 以下哪个是博弈论中的基本元素?A. 玩家B. 规则C. 策略D. 以上都是答案:D二、多项选择题(每题 2 分,共 10 题)1. 线性规划问题的标准形式包括以下哪些条件?A. 所有变量都是非负的B. 所有约束条件都是等式C. 目标函数是最大化D. 所有约束条件都是不等式答案:A, B2. 以下哪些是动态规划算法的特点?A. 需要子结构B. 需要最优子结构C. 需要递归D. 需要贪心选择性质答案:A, B3. 网络流问题中的流量必须满足以下哪些条件?A. 容量限制B. 流量守恒C. 流量非负D. 流量必须是整数答案:A, B, C4. 以下哪些是排队论中的主要性能指标?A. 等待时间B. 服务时间C. 利用率D. 队列长度答案:A, C, D5. 以下哪些因素会影响经济订货量(EOQ)?A. 订货成本B. 持有成本C. 需求量D. 运输成本答案:A, B, C6. 以下哪些是多目标优化问题的特点?A. 多个目标函数B. 目标函数之间相互独立C. 目标函数之间存在冲突D. 多个可行解答案:A, C, D7. 敏感性分析可以用来:A. 确定最优解B. 确定目标函数的系数C. 分析参数变化对最优解的影响D. 确定约束条件的数量答案:C8. 博弈论中的基本元素包括:A. 玩家B. 规则C. 策略D. 支付答案:A, C, D9. 以下哪些是整数规划问题的特点?A. 变量是整数B. 目标函数是线性的C. 约束条件是线性的D. 变量可以是实数答案:A, B, C10. 以下哪些算法可以用于解决旅行商问题(TSP)?A. 动态规划B. 遗传算法C. 模拟退火D. 快速排序答案:A, B, C三、判断题(每题 2 分,共 10 题)1. 线性规划问题一定有最优解。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
18
60
费销
用 地
B1
B2
B3

运筹期末考试试题及答案

运筹期末考试试题及答案### 运筹学期末考试试题及答案#### 一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量均为非负B. 目标函数为最大化C. 所有约束条件为等式D. 所有变量均为正数答案:A2. 单纯形法中,如果一个变量的系数在所有约束条件中都是负数,那么这个变量:A. 可以取任意值B. 必须取0C. 可以取正值D. 可以取负值答案:B3. 下列哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 动态规划D. 线性规划单纯形法答案:D4. 在网络流问题中,如果从源点到汇点存在多条路径,那么流量应该:A. 均匀分配到所有路径B. 只通过最短路径C. 只通过最长路径D. 可以自由选择路径答案:A5. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算目标函数值D. 确定初始状态答案:B#### 二、填空题(每题3分,共15分)1. 在线性规划中,如果目标函数的系数矩阵是正定的,则该线性规划问题有唯一最优解。

2. 运筹学中的“运筹”一词来源于中国古代的________,意为筹划、谋划。

3. 决策树是一种用于解决________问题的图形化工具。

4. 在排队理论中,M/M/1队列模型表示的是单服务器、________到达、________服务的排队系统。

5. 博弈论中的纳什均衡是指在非合作博弈中,每个参与者选择的策略都是对其他参与者策略的最优响应。

#### 三、简答题(每题10分,共30分)1. 描述单纯形法的基本步骤。

2. 解释什么是敏感性分析,并说明其在实际问题中的应用。

3. 简述动态规划的基本原理,并给出一个实际应用的例子。

#### 四、计算题(每题15分,共25分)1. 给定线性规划问题的标准形式,写出其对偶问题,并说明对偶问题的性质。

2. 考虑一个网络流问题,给定网络的节点和边,以及每条边的容量,求出从源点到汇点的最大流量,并说明使用的方法。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

运筹学期末试题及答案4套

《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。

三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为试画出该工程的网络图.(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。

三、(35分)设线性规划问题maxZ=2x1+x2+5x3+6x4的最优单纯形表为下表所示:利用该表求下列问题:(1)要使最优基保持不变,C3应控制在什么范围;(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;(3)当约束条件中x1的系数变为时,最优解有什么变化;(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。

四、(问指派哪个人去完成哪项工作,可使总的消耗时间最小?五、(20分)用图解法求解矩阵对象G=(S1,S2,A),其中六、(20分)已知资料如下表:(1)绘制网络图;(2)确定关键路线,求出完工工期。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学考试试卷 (A)卷
页脚内容
1
2011年运筹学期末考试试题及答案

(用于09级本科)
一、单项选择题(每题3分,共27分)
1. 使用人工变量法求解极大化的线性规划问题时,当所有的检验数

0j
,但在基变量中仍含有非零的人工变量,表明该线性规划问题( D )

A.有唯一的最优解 B.有无穷多最优解
C.为无界解 D.无可行解

2.对于线性规划
12

123
124
1234

max24..3451,,,0zxxstxxxxxxxxxx







如果取基1110B,则对于基B的基解为( B )

A.(0,0,4,1)TX B.(1,0,3,0)TX
C.(4,0,0,3)TX D.(23/8,3/8,0,0)TX
3.对偶单纯形法解最小化线性规划问题时,每次迭代要求单纯形表中
( C )
A.b列元素不小于零 B.检验数都大于零
C.检验数都不小于零 D.检验数都不大于零
4. 在n个产地、m个销地的产销平衡运输问题中,( D )是错误的。
A.运输问题是线性规划问题
B.基变量的个数是数字格的个数
C.非基变量的个数有1mnnm个
D.每一格在运输图中均有一闭合回路
福建农林大学考试试卷 (A)卷
页脚内容
2
5. 关于线性规划的原问题和对偶问题,下列说法正确的是( B )

A.若原问题为无界解,则对偶问题也为无界解
B.若原问题无可行解,其对偶问题具有无界解或无可行解
C.若原问题存在可行解,其对偶问题必存在可行解
D.若原问题存在可行解,其对偶问题无可行解
6.已知规范形式原问题(max问题)的最优表中的检验数为12(,,...,)n,
松弛变量的检验数为12(,,...,)nnnm,则对偶问题的最优解为( C )
A. 12(,,...,)n B. 12(,,...,)n
C.12(,,...,)nnnm D. 12(,,...,)nnnm
7.当线性规划的可行解集合非空时一定( D )
A.包含原点 B.有界 C.无界 D.是凸集

8.线性规划具有多重最优解是指( B )
A.目标函数系数与某约束系数对应成比例。
B.最优表中存在非基变量的检验数为零。
C.可行解集合无界。
D.存在基变量等于零。

9.线性规划的约束条件为12312412342224,,,0xxxxxxxxxx,则基可行解是( D )
A.(2,0,0,1) B.(-1,1,2,4) C.(2,2,-2,-4) D.(0,0,2,4)
二、填空题(每题3分,共15分)
1.线性规划问题中,如果在约束条件中没有单位矩阵作为初始可行基,
我们通常用增加 人工变量 的方法来产生初始可行基。
2.当原问题可行,对偶问题不可行时,常用的求解线性规划问题的方法
是 单纯形 法。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是 无约
福建农林大学考试试卷 (A)卷
页脚内容
3
束 变量。

4.运输问题中,当总供应量大于总需求量时,求解时需虚设一个_销__
地,此地的需求量为总供应量减去总需求量。
5. 约束121212264612420xxxxxx,及中至少有一个起作用,

引入0-1变量,把它表示成一般线性约束条件为1211221231231232646124202,,01xxMyxxMyxxMyyyyyyy或。
三.考虑线性规划问题
123
12
23
123
132

min343213317213,0,Zxxxxxxxxxxxxx









无约束

(1)把上面最小化的线性规划问题化为求最大化的标准型;(5分)
(2)写出上面问题的对偶问题。(5分)
解:
''
1223

''
1224
''
2235
''
1223
''
122345

max33432213317213,,,,,0Zxxxxxxxxxxxxxxxxxxxxxx














福建农林大学考试试卷 (A)卷

页脚内容
4
四. 用图解法求解下面的线性规划问题(8分)
12
12
12
12

max2131,0Zxxxxxxxx







解:最优解为:(0.5 ,0.5 )

五. 某厂准备生产A、B、C三种产品,它们都消耗劳动力和
材料,如下表:


建立能获得最大利润的产品生产计划的线性规划模型,并利用单
纯形法求解问题的最优解。(20分)
解:模型为:

A B C
资源

设备(台时/
件)
6 3 5 45

材料(kg/件)
3 4 5 30
利润(元/件) 3 1 4





福建农林大学考试试卷 (A)卷

页脚内容
5
标准化为:
123
1234
1235
123

max3146354534530,,0Zxxxxxxxxxxxxxx







单纯形为:

六、已经线性规划
1234
1234
1234
1234

max2342232023220,,0,Zxxxxxxxxxxxxxxxx






无约束

的对偶问题的最优解为(1.2,0.2)Y,利用对偶性质求原问题的最优解。
福建农林大学考试试卷 (A)卷
页脚内容
6
(10分)

解;其对偶问题为:

……………………… 5分
由12,0yy得

1234
1234

2232023220xxxxxxxx





……………………7分

把Y值代入原问题,知第一、二个约束为严格不等式,
故有120xx ………………………9分

解得*(0,0,4,4)TX ……………………10分

七、有某运费最少的运输问题,其运价表如表:
1
B
2B 3B 4
B

1
A
6 7 5 8 8

2
A
4 5 10 8 9

3
A
2 9 7 3 7

销量 8 6 5 5
求此运输问题的最优调运方案。(10分)




福建农林大学考试试卷 (A)卷

页脚内容
7
解:

相关文档
最新文档