2012-2013年湘教版九年级上学期数学期末试题及答案

合集下载

湘教版九年级数学上册期末考试题及答案【精选】

湘教版九年级数学上册期末考试题及答案【精选】

湘教版九年级数学上册期末考试题及答案【精选】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 3.如果a b -=22()2a b a b a a b+-⋅-的值为( ) AB.C.D.4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论 abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫---+÷= ⎪⎝⎭____________. 2.因式分解:x 3﹣4x=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、D5、B6、D7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+2)(x ﹣2)3、-124、﹣2<x <25、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、(1)2y x 2x 3=-++(2)(1,4)3、(1)略;(2)2.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)4元或6元;(2)九折.。

湘教版九年级数学上册期末试卷(附答案)

湘教版九年级数学上册期末试卷(附答案)

湘教版九年级数学上册期末试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共36分)1.一元二次方程x2+2x+2=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 只有一个实数根2.在Rt△ABC中,∠C=90°,AC=4,cosA的值等于,则AB的长度是()A. 3B. 4C. 5D.3.一元二次方程x(x﹣2)=2﹣x 的根是( )A. ﹣1B. ﹣1 和2C. 1 和2D. 24.已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,则sinA与sinA′的关系为( )A. sinA=2sinA′B. sinA=sin A′C. 2sinA=sinA′D. 不确定5.若两个相似三角形的面积比是9:16,则它们的相似比是()A. 9:16B. 16:9C. 81:256D. 3:46.如图所示双曲线y= 与分别位于第三象限和第二象限,A是y轴上任意一点,B是上的点,C是y= 上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为-3,则C点的坐标为(-3, );③k=4;④△ABC的面积为定值7.正确的有()A. I个B. 2个C. 3个D. 4个7.若正比例函数y=2kx与反比例函数y=(k≠0)的图象交于点A(m,1),则k的值是()A. -或B. -或C.D.8.下列各式3x﹣2,2m+n=1,a+b=b+a(a,b为已知数),y=0,x2﹣3x+2=0中,方程有()A. 1个B. 2个C. 3个D. 4个9.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A. 100(1+x)2=331B. 100+100×2x=331C. 100+100×3x=331D. 100[1+(1+x)+(1+x)2]=33110.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A. (160+x)(100+x)=160×100×2B. (160+2x)(100+2x)=160×100×2C. (160+x)(100+x)=160×100D. 2(160x+100x)=160×10011.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB= BC=1,则下列结论:①∠CAD=30°②BD= ③S平行四边形ABCD=AB•AC④OE= AD ⑤S△APO= ,正确的个数是()A. 2B. 3C. 4D. 512.如图,正方形ABCD中,点E在边BC上,且CE=2BE.连接BD、DE、AE,且AE交BD于F,OG为△BDE 的中位线.下列结论:①OG⊥CD;②AB=5OG;③ ;④BF=OF;⑤ ,其中正确结论的个数是()A. 2B. 3C. 4D. 5二、填空题(共6题;共12分)13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=________14.如图,是⊙的直径,,点是的中点,过点的直线与⊙交于、两点.若,则弦的长为________.15.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(4,8),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为________.16.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD 的面积为10,则AD的长为________.17.如图,AB∥CD, AD∥BC,点E、F分别是线段BC和CD上的动点,在两点运动到某一位置时,恰好使得∠AEF=∠AFE , 此时量得∠BAE=15°,∠FEC=12°,∠DAF=25°,则∠EFC=________°.18.将(n+1)个边长为1的正方形按如图所示的方式排列,点A、A1、A2、A3、…A n+1和点M、M1、M2、M3,…M n是正方形的顶点,连结AM1,A1M2,A2M3,…AM n,分别交正方形的边A1M,A2M1,A3M2,…A n M n﹣1于点N1,N2,N3,…,N n,四边形M1N1A1A2的面积为S1,四边形M2N2A2A3的面积是S2,…四边形M n N n A n A n+1的面积是S n,则S n= ________.三、解答题(共3题;共25分)19.(1)把二次函数y=2x2-8x+6代成y=a+k的形式.(2)写出抛物线的顶点坐标、对称轴和最值,并说明该抛物线是由哪一条形如y=a的抛物线经过怎样的变换得到的?(3)求该抛物线与坐标轴的交点坐标。

湘教版九年级数学上册期末考试及答案【完整版】

湘教版九年级数学上册期末考试及答案【完整版】

湘教版九年级数学上册期末考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .5 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .0 3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -=D .()136x x +=7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:x3﹣4xy2=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O 作DE ∥BC ,则△ADE 的周长等于__________.5.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.(1)计算:()201713302-⎛⎫--+︒ ⎪⎝⎭ (2)解方程:214111x x x ++=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB=12,BM=5,求DE 的长.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、C6、A7、B8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+2y )(x ﹣2y )3、30°或150°.4、135、2n ﹣1,06 三、解答题(本大题共6小题,共72分)1、(1)﹣2;(2)无解.2.3、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)4.95、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版九年级数学上册期末测试卷(及参考答案)

湘教版九年级数学上册期末测试卷(及参考答案)

湘教版九年级数学上册期末测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13 C .18 D .92.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k > C .0k > D .0k <3.如果23a b -=,那么代数式22()2a b ab a a b +-⋅-的值为( )A .3B .23C .33D .434.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是()A .50°B .60°C .80°D .100°8.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________.2.分解因式:2ab a-=_______.3.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于__________.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了 名学生,两幅统计图中的m = ,n = .(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A ”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、B7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)12、a (b +1)(b ﹣1).3、20284、140°5、x <1或x >36、﹣2.三、解答题(本大题共6小题,共72分)1、x=3.2、11m m +-,原式=.3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)略.5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23. 6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

【湘教版】九年级数学上期末试题带答案

【湘教版】九年级数学上期末试题带答案

一、选择题1.如图所示,反比例函数k y x =(0k ≠,0x ≥)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为等于8,则k 的值等于( )A .1B .2C .3D .4【答案】B【分析】 过D 作DE ⊥OA 于E ,设,k D a a ⎛⎫ ⎪⎝⎭,于是得到OA=2a ,2k OC a =,根据矩形的面积列方程即可得到结论.【详解】解:过D 作DE OA ⊥于点E ,如图,设,k D a a ⎛⎫ ⎪⎝⎭, ∴OE a =,k DE a=, ∵点D 是矩形OABC 的对角线AC 的中点, ∴2OA a =,2k OC a=, ∵矩形OABC 的面积为8,∴228k OA OC a a⋅=⨯=,解得2k =, 故选:B .【点睛】本题考查了反比例函数系数k 的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.2.如图,反比例函数(0)k y x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 交于点D ,E ,若四边形ODBE 的面积为6,则OAD △的面积为( )A .1B .2C .3D .4【答案】A【分析】 根据k 的几何意,用k 表示出COE 与OAD △的面积,据反比例函数过点M 用k 表示出矩形OABC 的面积,最后由四边形ODBE 的面积为6列关于k 的方程,可以求得k 的值,从而可以求得OAD △的面积,本题得以解决.【详解】解:设OA a =,OC b =,点M 矩形OABC 对角线的交点, ∴点,22a b M ⎛⎫ ⎪⎝⎭, 反比例函数(0)k y x x=>的图象经过点M 22b k a =,得4=ab k ,又四边形ODBE 的面积为6,COE 的面积与OAD △的面积都是2k , 6422k k ab k ∴++==, 解得,2k =,OAD ∴的面积是1,故选:A .【点睛】本题考查反比例函数系数k 的几何意义,属于中档题.其关键是运用k 的几何意义表示出相关图形面积.3.已知反比例函数6y x =-,下列结论中不正确的是( ) A .图象必经过点()3,2-B .图象位于第二、四象限C .若2x <-,则0<3y <D .在每一个象限内,y 随x 值的增大而减小【答案】D 【分析】利用反比例函数图象上点的坐标特征对A 进行判断;根据反比例函数的性质对B 、C 、D 进行判断.【详解】 解:A 、当x=-3时,y =−6x =2,所以点(-3,2)在函数y =−6x的图象上,所以A 选项的结论正确,不符合题意; B 、反比例函数y =−6x分布在第二、四象限,所以B 选项的结论正确,不符合题意; C 、若x <-2,则0<y <3,所以C 选项的结论正确,不符合题意; D 、在每一个象限内,y 随着x 的增大而增大,所以D 选项的结论不正确,符合题意. 故选:D .【点睛】本题考查了反比例函数的性质:反比例函数y=-k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.4.如图所示,该几何体的俯视图为( )A .B .C .D .5.如图是某零件的模型,则它的左视图为( )A .B .C .D . 6.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )A .B .C .D . 7.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:98.如图,▱ABCD 中,点E 是AD 的中点,EC 交对角线BD 于点F ,则DF BF=( )A .23B .2C .13D .129.下列各组长度的线段(单位:cm )中,成比例线段的是( )A .2,3,4,5B .1,3,4,10C .2,3,4,6D .1,5,3,12 10.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为( )A .13B .14C .15D .1611.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠ B .2a ≥-且0a ≠ C .2a ≥- D .0a ≠ 12.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形二、填空题13.如图,点A 是反比例函数(0)k y k x=>图象位于第一象限内的一支上的点,过点A 作AB x ⊥轴于点B ,过点B 作BC//OA 交双曲线于点C ,连接AC 并延长,交x 轴于点D ,则OB BD=______.14.已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y . (1)若120x x +=,则12y y +=__________;(2)若120x x +>时,120y y +>,则k __________0,b __________0.(填“>”,“=”或“<”)15.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为___________.16.如图,电灯P 在横杆AB 的上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是3m ,则P 到 AB 的距离是__________m .17.如图,一组平行线L 1、L 2、L 3截两相交直线L 4、L 5,则AO ED=____.18.把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率_____.19.方程(3)3(3)x x x -=-的解是___________.20.如下图,在平面直角坐标系中有一边长为l 的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形OB l B 2C 2,照此规律作下去,则点B 2020的纵坐标为_______.三、解答题21.已知反比例函数k y x=-和一次函数2(0)y kx k =+≠的图象只有一个公共点,求k 的值.22.在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DE EH =10.6,DE=0.3,EH=0.18,进而可求大树的影长AF ,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DE EH =10.6,DE =0.3, ∴EH =0.3×0.6=0.18,∵四边形DGFH 是平行四边形,∴FH =DG =0.2,∵AE =4.42,∴AF =AE +EH +FH =4.42+0.18+0.2=4.8, ∵AB AF =10.6, ∴AB =4.80.6=8(米). 答:树的高度为8米.(3)由(2)可知:AF =4.8(米), 答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.23.如图,已知O 为坐标原点,B ,C 两点坐标为(3,1) ,(2,1).(1)在y 轴的左侧以O 点为位似中心将OBC 放大到原来的2倍,画出放大后111O B C ;(2)写出11B C ,的坐标;(3)在(1)条件下,若OBC 内部有一点M 的坐标为(,)x y ,请直接写出M 的对应点1M 的坐标.24.在一个不透明的盒子里装有三个分别标有数字1,2,3的三个乒乓球,除所标数字外,乒乓球的形状、大小、质地、颜色等其它方面完全相同.从中先随机抽取一个乒乓球,记该乒乓球上的数字为x ;再从剩下的两个乒乓球中随机抽取一个乒乓球,记该乒乓球上的数为y .(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(,)x y 所有可能出现的结果;(2)求取出的两个乒乓球上的数字之和为偶数的概率P .25.网络购物已成为新的消费方式,催生了快递行业的高速发展.某快递公司2020年9月份与11月份投递的快递件数分别为10万件和14.4万件,假定每月投递的快递件数的增长率相同,求该快递公司投递的快递件数的月平均增长率.26.如图,矩形ABCD 中,12AB =,8BC =.将矩形ABCD 翻折,使点A 落在边CD 上的点E 处,折痕为MN .(1)若 AM =6,求 DE =________.(2)若13DE DC =,求AM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.D解析:D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选:D .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.6.C解析:C【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.【详解】从上面看这个物体,可得后排三个,前排一个在左边,故选:C .【点睛】本题考查了三视图,注意俯视图后排画在上边,前排画在下边.7.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB 之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可.【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3,∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D .本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.8.D解析:D【分析】根据四边形ABCD 是平行四边形,得到AD ∥BC ,AD=BC ,证得△DEF ∽△BCF ,由点E 是AD 的中点,得到1122DE AD BC ==,由此得到12DF DE BF BC ==. 【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△DEF ∽△BCF ,∵点E 是AD 的中点, ∴1122DE AD BC ==, ∴12DF DE BF BC ==, 故选:D .【点睛】此题考查平行四边形的性质,相似三角形的判定及性质,熟记平行四边形的性质证得△DEF ∽△BCF 是解题的关键.9.C解析:C【分析】判定四条线段是否成比例,计算前两条线段之比与后两条线段之比是否相等即可.【详解】解:A.2:3≠4:5,故四条线段不成比例,不合题意;B.1:3≠4:10,故四条线段不成比例,不符合题意;C.2:3=4:6,故四条线段成比例,符合题意;D.1:5≠3:12,故四条线段不成比例,不合题意;故选:C .【点睛】本题主要考查了成比例线段的定义,熟记概念并准确计算是解题的关键.10.D解析:D【分析】首先画树状图得出所有等可能结果,然后从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中恰为“天”、“空”的有2种结果,∴恰为“天”、“空”的概率为21126=, 故选:D .【点睛】 本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.B解析:B【分析】根据方程有实数根得到.【详解】由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠,解得2a ≥-且0a ≠,故选:B .【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键. 12.A解析:A【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.二、填空题13.【分析】首先利用两直线平行对应的一次函数的值相等求出直线的解析式将点坐标用含有点横坐标的形式表示出来求出AC 两点横坐标间的关系;再利用相似三角形的性质将转化为AC 两点横坐标的比值关系即可求解【详解】【分析】首先利用两直线平行对应的一次函数的k 值相等,求出直线BC 的解析式,将C 点坐标用含有A 点横坐标的形式表示出来求出A 、C 两点横坐标间的关系;再利用相似三角形的性质将OB BD转化为A 、C 两点横坐标的比值关系即可求解. 【详解】 解:∵A 点、C 点在(0)k y k x =>上, ∴设A 点坐标为(,)k m m ,C 点坐标为(,)k n n∵AB x ⊥轴于点B ,∴B 点的坐标为(,0)m∵直线OA 经过原点,∴直线OA 的解析式为2k y x m =, 设直线BC 的解析式为2y k x b =+∵BC//OA ∴22k k m = 将(,0)B m 及22k k m =代入2y k x b =+,解得 2k k m k b m ⎧=⎪⎪⎨⎪=-⎪⎩∴直线BC 的解析式为2k k y x m m =- 联立2k k y x m m =-与k y x=解得x =或x = ∵C 点在第一象限∴C点横坐标为(12m n =∵BC//OA ∴AOD CBD △∽△∴12kOD n m k BD m n+===∴1OD OB BD OB BD BD BD +==+=∴12OB BD =【点睛】 本题主要考查相似三角形的性质和反比例函数的性质,利用相似三角形的性质将OB BD 转化为OD BD即可求解,属于中等难度题型. 14.(1)(2)<>【分析】(1)联立两个函数解析式整理为:再由根与系数的关系求解从而得到:关于原点对称从而可得答案;(2)由(1)的结论结合可得:>由可得结合:可得>从而可得答案【详解】解:(1)由题解析:(1)0 (2)< >【分析】(1)联立两个函数解析式,整理为:()2300,kx bx k ++=≠再由根与系数的关系求解0,b = 从而得到:()11,A x y ,()22,B x y 关于原点对称,从而可得答案;(2)由(1)的结论,结合120x x +>,可得:b k->0,由1122,,y kx b y kx b =+=+可得()12122,y y k x x b b +=++=结合:120y y +>,可得b >0,从而可得答案.【详解】解:(1)由题意得:3y x y kx b⎧=-⎪⎨⎪=+⎩ ,且0,k ≠ 3,kx b x∴-=+ 230,kx bx ∴++=两函数的交点为:()11,A x y ,()22,B x y .12,b x x k∴+=-120x x +=,0,b k∴-= 0,b ∴= ∴ ()11,A x y ,()22,B x y 为3y x=-与()0y kx k =≠的交点, 由两函数的交点的性质可得:()11,A x y ,()22,B x y 关于原点对称,12,y y ∴互为相反数,120,y y ∴+=故答案为:0.(2)由(1)得:230,kx bx ++= 同理可得:12b x x k+=-, 1122,,y kx b y kx b =+=+()1212222,b y y k x x b k b b b b k ⎛⎫∴+=++=-+=-+= ⎪⎝⎭当120x x +>时,120y y +>,b k∴->0且b >0, k ∴<0.故答案为:<,>.【点睛】本题考查的是一次函数与反比例函数的交点问题,一次函数与反比例函数的图像与性质,同时考查了一元二次方程的根与系数的关系,不等式的性质,掌握以上知识是解题的关键.15.cm2【解析】根据三视图得到圆锥的底面圆的直径为6cm 即底面圆的半径为3cm 圆锥的高为4cm 所以圆锥的母线长==5所以这个圆锥的侧面积=π×3×5=15π(cm2)故答案为15πcm2解析:15πcm 2【解析】根据三视图得到圆锥的底面圆的直径为6cm ,即底面圆的半径为3cm ,圆锥的高为4cm ,所以圆锥的母线长,所以这个圆锥的侧面积=π×3×5=15π(cm 2). 故答案为15πcm 2.16.1【解析】试题分析:根据AB ∥CD 易得△PAB ∽△PCD 根据相似三角形对应高之比等于对应边之比列出方程求解即可考点:1相似三角形的应用2中心投影解析:1【解析】试题分析:根据AB ∥CD ,易得,△PAB ∽△PCD ,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.考点:1.相似三角形的应用.2.中心投影.17.【分析】根据L1//L2//L3证明△AOF ∽△EOB ∽△DOC 根据相似三角形的性质即可得到结论【详解】解:∵L1//L2//L3∴∠AFO=∠OCD ∠AOF=∠COD ∴△AOF ∽△DOC 同理△BO 解析:AF CD BE- 【分析】根据L 1//L 2//L 3,证明△AOF ∽△EOB ∽△DOC ,根据相似三角形的性质即可得到结论.【详解】解:∵L 1//L 2//L 3,∴∠AFO=∠OCD ,∠AOF=∠COD∴△AOF ∽△DOC ,同理,△BOE ∽△COD ,△AOF ∽△EOB , ∴AO AF OE BE =,即AO BE AF OE = ∴OE BE OD CD =, ∴OE BE OE ED CD=+ ∴OE CD BE OE BE ED ⋅=⋅+⋅ ∴()AO AF OE OE CD BE OE AF OE BE ED BE BE BE OE AF C CD BE B D E-=÷=⋅=-- 故答案为:AF CD BE - 【点睛】此题主要考查了相似三角形的判定与性质,熟练掌握相关定理是解答此题的关键. 18.【分析】先求出将长度为6的铁丝截成3段每段长度均为整数厘米共有几种情况再找出其中能构成三角形的情况最后根据概率公式计算即可【详解】因为将长度为6的铁丝截成3段每段长度均为整数厘米共有3种情况分别是1解析:13【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【详解】因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是13.故答案为13.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19.x1=x2=3【分析】先移项得到x(x﹣3)﹣3(x﹣3)=0然后利用因式法分解法解方程【详解】解:x(x﹣3)﹣3(x﹣3)=0(x﹣3)(x﹣3)=0x﹣3=0所以x1=x2=3故答案为:x1=解析:x1=x2=3.【分析】先移项得到x(x﹣3)﹣3(x﹣3)=0,然后利用因式法分解法解方程.【详解】解:x(x﹣3)﹣3(x﹣3)=0,(x﹣3)(x﹣3)=0,x﹣3=0,所以x1=x2=3.故答案为:x1=x2=3.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.20.【分析】首先求出B1B2B3B4B5B6B7B8B9的坐标找出这些坐标的之间的规律然后根据规律计算出点B2020的坐标【详解】解:∵正方形OABC边长为1∴OB=∵正方形OBB1C1是正方形OABC解析:10102【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2020的坐标.【详解】解:∵正方形OABC边长为1,∴,∵正方形OBB 1C 1是正方形OABC 的对角线OB 为边,∴OB 1=2,∴B 1点坐标为(0,2),同理可知OB 2,B 2点坐标为(-2,2),同理可知OB 3=4,B 3点坐标为(-4,0),B 4点坐标为(-4,-4),B 5点坐标为(0,-8),B 6(8,-8),B 7(16,0)B 8(16,16),B 9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形倍,∵2020÷8=252…4,∴B 2020的纵横坐标符号与点B 4的相同,横坐标为负值,纵坐标是负值,∴B 2020的坐标为(-21010,-21010).故答案为:10102-.【点睛】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变倍,此题难度较大.三、解答题21.1k =±【分析】解方程组得到kx 2+x+k=0,由反比例函数的图象与直线y=kx+2(k≠0)只有一个公共点,得到22240k ∆=-=,求得k=±1.【详解】解:由2y kx =+和k y x=-组成方程组, 2y kx k y x =+⎧⎪⎨=-⎪⎩, 消去y ,得220kx x k ++=, 反比例函数(0)k y k x=-≠和一次函数2y kx =+的图象只有一个公共点, ∴一元二次方程220kx x k ++=有两个相等的实根,22240k ∴∆=-=,1k ∴=±.【点睛】本题考查了反比例函数与一次函数的交点问题,一元二次方程根与系数的关系,知道反比例函数的图象与直线y=kx+2(k≠0)只有一个公共点时,△=0是解题的关键.22.无23.(1)见解析;(2)1(6,2)B -,1(4,2)C --;(3)1(2,2)M x y --.【分析】(1)先确定B ,C 的位置,再确定它们各自关于原点的对称点,最后把对称点的坐标各自扩大2倍即可;(2)点B 关于原点的对称点为(-3,1),扩大2倍,得到1B ;点C 关于原点的对称点为(-2,-1),扩大2倍,得到1C ;(3)利用原点对称原理计算,加上倍数即可.【详解】解:(1)如图,△111O B C 即为所求作.(2)∵点B (3,1)-,∴点B 关于原点的对称点为(-3,1),∴扩大2倍,得到1(6,2)B -;∵点C (2,1),∴点C 关于原点的对称点为(-2,-1),∴扩大2倍,得到1(4,2)C --.(3)∵点M (,)x y ,∴点M 关于原点的对称点为(,)x y --,∴扩大2倍,得到1(2,2)M x y --.【点睛】本题考查了位似的作图与计算问题,熟练将位似与原点的对称密切联系起来是解题的关键.24.(1)树状图见解析;(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)1 3【分析】(1)画出树状图即可列出所有可能;(2)根据两个乒乓球上的数字之和为偶数出现的次数求概率即可.【详解】解:(1)树状图如图所示.(,)x y所有可能出现的结果共有6种,分别为(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)由树状图知,在6种可能出现的结果中,取出的两个乒乓球上的数字之和为偶数的有两种,即(1,3),(3,1),所以所求概率2163 P==.【点睛】本题考查了列举法求概率,正确画出树状图是解题关键.25.该快递公司投递的快递件数的月平均增长率为20%.【分析】设该快递公司投递的快递件数的月平均增长率为x,根据该快递公司今年9月份及11月份投递的快递件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;【详解】解:设该快递公司投递的快递件数的月平均增长率为x,依题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该快递公司投递的快递件数的月平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(1)2;(2)5【分析】(1)根据矩形的性质和折叠性质可得ME=ME=6,∠D=9°,利用勾股定理即可求解;(2)求出DE长,同(1)中方法,设AM=ME=x,则DM=8﹣x,根据勾股定理列出方程,解之即可求解.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8,DC=AB=12,∠D=90°,由折叠性质得:ME=AM=6,∴MD=8﹣6=2,在Rt △MDE 中,由勾股定理得=故答案为:(2)由已知,DE=13DC=13×12=4, 设AM=ME=x ,则DM=8﹣x , 在Rt △MDE 中,由勾股定理得2224)8(x x -+=,解得:x=5,即AM=5.【点睛】本题考查了矩形的性质、折叠性质、勾股定理、解一元一次方程,熟练掌握矩形的性质和折叠性质是解答的关键.。

湘教版九年级数学上册期末考试题及答案【完美版】

湘教版九年级数学上册期末考试题及答案【完美版】

湘教版九年级数学上册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.若x 是3的相反数,|y|=4,则x-y 的值是( )A .-7B .1C .-1或7D .1或-74.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A.102B.112C.122D.928.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△=15,则CD的长为()ABDA.3 B.4 C.5 D.610.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.因式分解:x2y﹣9y=________.3.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.4.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=__________厘米.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、B6、C7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、y(x+3)(x﹣3)3、如果两个角是等角的补角,那么它们相等.4、35、40°6、-1三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42.3、(1)略(2)略4、(1)略;(2)1;(3)略.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

湘教版九年级数学上册期末考试及答案【完整】

湘教版九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A BCD2.已知3y =,则2xy 的值为( ) A .15-B .15C .152-D .1523.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x -=---有正整数解,则满足条件的整数a 的值之积为( ) A .28B .﹣4C .4D .﹣24.当1<a<2时,代数式|a -2|+|1-a|的值是( ) A .-1B .1C .3D .-35.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x=>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________. 2.因式分解:x 2y ﹣9y =________.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n=__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x . (1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、D6、B7、D8、A9、C 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、y (x+3)(x ﹣3)3、114、255.5、40°6、24三、解答题(本大题共6小题,共72分)1、3x =2、(1)k ﹥34;(2)k=2.3、(1)略(2)64、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165.5、(1)50,18;(2)选择的市民均来自甲区的概率为16.6、(1)100,50;(2)10.。

湘教版九年级数学上册期末试卷及答案【1套】

湘教版九年级数学上册期末试卷及答案【1套】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.B.C.D.8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:3x3﹣12x=_______.3.若n边形的内角和是它的外角和的2倍,则n=__________.4.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为__________.5.如图,在ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若ECF△的面积为1,则四边形ABCE的面积为________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:31 1(1)(2)xx x x-= --+2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,一次函数y=x+4的图象与反比例函数y=k x(k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (m 3)之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水40m 3(二月份用水量不超过25m 3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m 3?5.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、C5、A6、B7、C8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、3x(x+2)(x﹣2)3、64、5、36、三、解答题(本大题共6小题,共72分)1、原方程无解.2、13、(1)y=-3x(2)点P(﹣6,0)或(﹣2,0)4、(1)1.8(015)2.49(15)x xx x>≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m3、28m35、(1)50,18;(2)选择的市民均来自甲区的概率为16.6、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为70%.。

湘教版九年级数学上册期末考试题及答案【精编】

湘教版九年级数学上册期末考试题及答案【精编】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1364 的平方根为__________.2.分解因式:33a b ab -=___________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、C6、C7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±22、ab(a+b)(a﹣b).3、增大.4、56、.三、解答题(本大题共6小题,共72分)1、x=32、(1)k>-1;(2)13、(1)略;(2)37°4、(1)略;(2)1;(3)略.5、(1)90人,补全条形统计图见解析;.(2)48 ;(3)560人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

湘教版九年级上册数学期末考试题(附答案)

湘教版九年级上册数学期末考试题(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)3=0的一个根是x=1,则另一个根是( ) A .3 B .﹣1 C .﹣3 D .﹣22.如图,在△ABC 中,E、F 分别是AB 、AC 上的点,EF ∥BC ,且12=AE EB ,若△AEF 的面积为2,则四边形EBCF 的面积为( )A .4B .6C .16D .183.如图,点D 是△ABC 的边AC 的上一点,且∠ABD=∠C ;如果13AD CD =,那么BDBC =( )A .12B .13C .14D . 344.如图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( )m .A .8.8B .10C .12D .145.一元二次方程x 2﹣2x+m=0总有实数根,则m 应满足的条件是( ). A .m >1 B .m=1 C .m≤1 D .m <16.如图,边长为2的正方形ABCD 的顶点A 在y轴上,顶点D 在反比例函数y =kx (x>0)的图像上,已知点B 的坐标是(56,511),则k 的值为( )A .10B .8C .6D .4评卷人 得分二、填空题(题型注释)7.在等腰直角△ABC 中,∠C =90°,AC =6,D 为AC 上一点,若1tan DBC 3∠=,则AD =______。

8.如图,在 中, ,垂足为点 ,若 ,则 =___________.9.甲乙两人进行飞镖比赛,每人各投5次,其中甲所得环数的方差为15,乙所得环数的方差为12.5,那么成绩较稳定的是_______(填“甲”或“乙”).10.关于x 的一元二次方程x 2-3x +m =0有实数根α、β,且α2+β2=17,则m 的值是______.11.若点A (-1,a )在反比例函数y =-3x的图像上,则a 的值为_____________. 12.某校进行了一次数学成绩测试,甲、乙两班学生的成绩如下表所示(满分120分): 班级 平均分 众数 方差 甲 101 90 2.65 乙102872.38你认为哪一个班的成绩更好一些?并说明理由._______________________________. 评卷人 得分三、解答题(题型注释)A 处测得北偏东60°方向有一座小岛F ,继续向东航行80海里到达C 处,测得小岛F 此时在轮船的北偏西30°方向上.轮船在整个航行过程中,距离小岛F 最近是多少海里?(结果保留根号)14.如图,A 、B 为反比例函数(0)ky x x=>图像上的两点,A 、B 两点坐标分别为(,5m m -)、(,5n n -)(m <n ),连接AB 并延长交x 轴于点C.(1)求m n 的值;(2)若B 为AC 的中点,求k 的值;(3)过B 点作OA 的平行线交x 轴于(0x ,0),若m 为整数,求0x 值.15.如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB 为一边的“和谐三角形”;(2)如图2,在△ABC 中,∠C=90°,AB=7,BC=3,请你判断△ABC 是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD 的边长为1,动点M ,N 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点M 经过的路程为S ,当△AMN 为“和谐三角形”时,求S 的值.16.直线y=x+m 和双曲线y=kx相交于点A(1,2)和点B(n,-1). (1)求m 、k 、n 的值; (2)不等式x+m >kx的解集为答案1.C .2.C3.A.4.C .5.C .6.B .7.4试题分析:根据题意可得BC=6,根据tan ∠DBC=13可得CD=2,即AD=AC -CD=6-2=4. 8.3 9.乙10.-4【解析】10.一元二次方程x 2-3x+m=0有实数根,可得△=b 2-4ac=9-4m≥0,解得m≤94.根据根与系数的可得3,m αβαβ+== ,所以α2+β2=()22229217m αβαβαβ+=+-=-=,解得m=-4.11.3【解析】11.∵陈点A (-1,a )代入在反比例函数y =-3x中, ∴a=3;故答案是:3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 数 学 考试时量:120分钟 满分:120分 考生注意:请将解答写在答题卡上,答案写在本试卷上无效。

一、精心选一选,旗开得胜(每小题3分,共30分,每小题只有一个选

项是正确的) 1、若5x2=6x-8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是 A、5,6,-8 B、5,-6,-8 C、5,-6,8 D、6,5,-8 2、现有一个测试距离为5m的视力表(如图),根据这个视力表,小华想制作一

个测试距离为3m的视力表,则图中的ab的值为

A.32 B.23 C.35 D.53 3、经过调查研究,某工厂生产一种产品的总利润 L(元)与产量 X(件)的关系式为L=-x2+2000x-10000(0<x<1900),要使总利润达到99万元,则这种产品应生产 A.1000件 B.1200件 C. 2000件 D.10000件 4、下列命题中错误的命题是

A2)3(的平方根是3 B平行四边形是中心对称图形

C单项式yx25与25xy是同类项 D近似数31014.3有三个有效数字 5、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是

A.sinA= 32 B.tanA= 12

C.cosB= 32 D.tanB= 3 6、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅 均后随机地从中摸出一个球是绿球的概率是

A. B. C. D.

7、如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD, 使点B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为 A.1 B.3 C.6 D.12

a b

(第3题图) 2

8、已知抛物线y=x2﹣4x+3,则下列判断错误的是 A. 对称轴x=2 B. 最小值y=-1

C. 在对称轴左侧y随x的增加而减小 D. 顶点坐标(-2,-1) 9、已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是 A.没有实数根 B.可能有且只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根 10、如果两个相似三角形的相似比是,那么它们的面积比是

A B. C. D. 二、精心填一填,一锤定音(每小题4分,共32分)

11、 已知x = 1是关于x的一元二次方程2x2 + kx -1 = 0的一个根,则实数k的值是 。 12、命题:“两锐角互余的三角形是直角三角形”的逆命题是 。

13、若235abc(abc≠0),则abcabc= 。 14、计算:sin30°tan45°-cos30°tan30°+60tan45sin 。 15、请写出一个图象在第二、四象限的反比例函数关系式 。 16、将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移5个单位,则所得抛物线的解析式为 。

17、如图,AB∥CD,31CDAB,△COD的周 长为12cm,则△AOB的周长是 cm. 18、在0,1,2三个数中任取两个,组成两位数, 则在组成的两位数中是奇数的概率为 。

三、用心做一做,慧眼识金(每小题7分,共21分)

19、已知关于x的方程x2-2(k-3)x+k2-4k-1=0 (1)若这个方程有实数根,求k的取值范围; (2)若这个方程有一个根为1,求k的值。

20、如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).

A B

C D O

第17题图 3

21、已知二次函23(1)2(2)2ytxtx,在0x和2x时的函数值相等。 (1)求二次函数的解析式; (2)若一次函数6ykx的图象与二次函数的图象都经过点(3)Am,,求m和k的值;

四、综合运用,马到成功(本题8分)

22、据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率; (2)如果2012年仍保持相同的年平均增长率,请你计算2012年我国公民出境旅游总人数约多少万人次?

五、耐心解一解,再接再励(本题9分)

23、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段CD上一点,且∠AFE=∠B。 (1)求证△ADF∽△DEC;

(2)若AB=4,AD=33,AE=3,求AF的长. 4

六、探究试一试,超越自我(本大题2道题,每题10分,共20分) 24、关于x的一元二次方程x2-(m-1)x+2m-1=0,其根的判别式为16. (1)求m的值及该方程的根; (2)设该方程的两个实数根为x1,x2,且x12+x22=10,求m的值。

24、如图(1)所示:等边△ABC中,线段AD为其内角平分线,过D点的直线11BCAC于1C交AB的延长线于1B.

(1)请你探究:ACCDABDB,1111ACCDABDB是否成立? (2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,请问ACCDABDB一定成立吗?并证明你的判断.

(3)如图(2)所示Rt△ABC中,090ACB,8AC,403AB,E为AB

上一点且5AE,CE交其内角角平分线AD与F.试求DFFA的值.

A B C C1

B1 D

图(1) A E

F B

C D

图(2) 5

一、精心选一选,旗开得胜(每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10 答案 C D A C D C C D A B

二、精心填一填,一锤定音(每小题4分,共32分)

11.-1 12.如果三角形是直角三角形,那么它的两个锐角互余 13. 52 14. 62 15.答案不唯一,符合条件即可 16.y=2(x-1)2+2 17.4 18. 14 三、用心做一做,慧眼识金(每小题7分,共21分)

19.解:(1)因为关于x的方程x2-2(k-3)x+k2-4k-1=0有实数根, 则△≥0„„„„„1分 又△=(-2(k-3))2-4(k2-4k-1)=-8k+40≥0„„„„„3分 所以k≤5„„„„„4分 (2)因为关于x的方程x2-2(k-3)x+k2-4k-1=0有一个根为1,把x=1代入方程,得:12-2(k-3)×1+k2-4k-1=0„„„„„5分 整理得:k2-6k+6=0„„„„„6分

解得:k1=3- 3 k2=3+ 3„„„„„7分

20.解:∵在直角三角形ABC中,=tanα=,„„„„„1分 ∴BC=„„„„„2分 ∵在直角三角形ADB中, ∴=tan26.6°=0.50„„„„„3分 即:BD=2AB„„„„„4分 ∵BD﹣BC=CD=200

∴2AB﹣AB=200„„„„„5分 解得:AB=300米,„„„„„6分 答:小山岗的高度为300米.„„„„„7分

21.解:⑴ 由题意可知依二次函数图象的对称轴为1x,则22121tt。„„„„„2分

∴32t„„„„„„„„„„„„„„„4分 6

∴2322yxx1„„„„„„„„„„„„„„„5分 ⑵ ∵二次函数图象必经过A点, ∴21333622mׄ„„„„„„„„„„„„„„6分 又一次函数6ykx的图象经过A点 ∴366k,∴4k„„„„„„„„„„„„„„„7分

四、综合运用,马到成功(本题8分)

22.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得 5000(1+x)2 =7200.„„„„„„„„„„„„„„„3分 解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).„„„„„„„„„„5分 答:这两年我国公民出境旅游总人数的年平均增长率为20%„„„„„„„6分 (2)如果2012年仍保持相同的年平均增长率, 则2012年我国公民出境旅游总人数为 7200(1+x)=7200×120% =8640万人次.„„„„„„„„7分 答:预测2012年我国公民出境旅游总人数约8640万人次.„„„„„„„8分

五、耐心解一解,再接再励(本题9分)

23.解:(1)∵四边形ABCD 是平行四边形∴∠ADF=∠CED,∠C+∠B=180°。 „„„„„„„„„„„„„„„2分 又∠AFD+∠AFE=180°,∠AFE=∠B, ∴∠AFD=∠C,„„„„„„„„„„„„„„„3分 ∴△ADF∽△DEC。„„„„„„„„„„„„„„„5分

(2)∵AB=4,AD=33,AE=3, AE⊥BC,∴AE⊥AD,CD=AB=4。„„„„„6分 在Rt△ADE中,由勾股定理得:DE=6„„„„„„„„„„„„„„„7分

由△ADF∽△DEC,得ADAFEDCD,„„„„„„„„„„„„„„„8分

即3364AF,解得:AF=23„„„„„„„„„„„„„„„„„„9分 六、探究试一试,超越自我(本大题2道题,每题10分,共20分)

24.解:(1)关于x的一元二次方程x2-(m-1)x+2m-1=0 的判别式△=(-(m-1))2-4(2m-1) =m2-2m+1-8m+4, =m2-10m+5„„„„„„„„„„„„„„„„„„„„„2分 又△=16,∴m2-10m+5=16,即m2-10m-11=0„„„„„„„„„„3分 解得m1=-1,m2=11„„„„„„„„„„„„„„„„„„„„„4分

相关文档
最新文档