求概率的三种方法

合集下载

全概率公式的原理及应用

全概率公式的原理及应用

全概率公式的原理及应用1. 全概率公式的原理全概率公式是概率论中的一项基本原理,用于计算一个事件在若干个不相交试验中的概率。

全概率公式的全称为“全概率定理”,其核心思想是将待求事件分解为多个互不相交的事件,并利用这些事件之间的关系进行概率的计算。

全概率公式的数学表达为:P(A) = P(A | B1) * P(B1) + P(A | B2) * P(B2) + ... + P(A | Bn) * P(B n)其中,P(A)为待求事件A的概率,P(A | Bi)为事件A在条件Bi下发生的概率,P(Bi)为事件Bi发生的概率。

2. 全概率公式的应用2.1 案例1:工程项目投标某市政府计划进行一个市政工程项目的投标,共有A、B、C三家施工公司竞标。

现有以下信息: - 公司A中标的概率为0.2; - 公司B中标的概率为0.3; - 公司C中标的概率为0.5; - 如果公司A中标,成功完工的概率为0.8; - 如果公司B中标,成功完工的概率为0.6; - 如果公司C中标,成功完工的概率为0.7。

现在假设想要计算此项目最终成功完工的概率,可以运用全概率公式来解决。

设事件S为项目最终成功完工,将S分解为三种情况:A中标且成功完工、B中标且成功完工、C中标且成功完工,即S = (A且成功完工) ∪ (B且成功完工) ∪ (C且成功完工)。

根据全概率公式,可以得到计算公式如下:P(S) = P(S | A) * P(A) + P(S | B) * P(B) + P(S | C) * P(C)= 0.8 * 0.2 + 0.6 * 0.3 + 0.7 * 0.5= 0.16 + 0.18 + 0.35= 0.69因此,此项目最终成功完工的概率为0.69。

2.2 案例2:疾病的易感性某地发生了一种新的疾病,现有以下信息: - 5% 的人患有该疾病; - 疾病的标准检测方法的准确性为90%(即在已感染的人中有90%会被检测出来,而在未感染的人中有10%被检测错误地判断为感染); - 没有感染的人被误判为感染的概率为10%。

专题43概率-2023年高考数学一轮复习课件(全国通用)

专题43概率-2023年高考数学一轮复习课件(全国通用)

BCACB
, BCABC
, BCBAC
,∴甲赢的概率为 P M
1 2
4
7
1 2
5
9 32

由对称性可知,乙赢的概率和甲赢的概率相等,
∴丙赢的概率为 P N 1 2 9 7 .
32 16
(2019 全国 II 理 18)11 分制乒乓球比赛,每赢一球得 1 分,当某局打成 10:10 平后,每球交换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、 乙两位同学进行单打比赛,假设甲发球时甲得分的概率为 0.5,乙发球时 甲得分的概率为 0.4,各球的结果相互独立.在某局双方 10:10 平后, 甲先发球,两人又打了 X 个球该局比赛结束. (1)求 P(X=2); (2)求事件“X=4 且甲获胜”的概率.
2023年高考第一轮复习
专题43:概率
1.概率 (1)在相同条件下,大量重复进行同一试验时,随机事件 A 发生的频率会在某个 常数附近摆动,即随机事件 A 发生的频率具有稳定性.我们把这个常数叫做随机事件 A 的概率,记作 P(A). (2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确 定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为 随机事件概率的估计值.
n 64 16
57.(2018 全国Ⅱ理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世
界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的
和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和
等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
爻组成,爻分为阳爻“——”和阴爻“— —”,如图就

概率的基本概念与计算方法

概率的基本概念与计算方法

概率的基本概念与计算方法在我们的日常生活中,概率这个概念无处不在。

从预测明天是否会下雨,到购买彩票时中大奖的可能性,从玩游戏时获胜的几率,到评估投资的风险回报,概率都在其中发挥着重要的作用。

那么,究竟什么是概率?又该如何计算它呢?概率,简单来说,就是用来衡量某个事件发生的可能性大小的一个数值。

这个数值介于 0 到 1 之间。

如果一个事件发生的概率为 0,那就意味着这个事件几乎不可能发生;如果概率为 1,则表示这个事件肯定会发生;而如果概率在 0 和 1 之间,那么就表示这个事件有一定的发生可能性,数值越接近 1,发生的可能性就越大。

比如说,抛一枚均匀的硬币,正面朝上的概率就是 05。

因为硬币只有正反两面,而且质地均匀,所以出现正面和反面的可能性是相等的,各占一半。

再比如,从一副标准的扑克牌(不含大小王)中随机抽取一张,抽到红桃的概率是 1/4,因为扑克牌一共有 4 种花色,每种花色的牌数量相同,所以抽到红桃的可能性就是 1/4。

那么,如何计算概率呢?概率的计算方法主要有两种:古典概型和几何概型。

古典概型是指在试验中,所有可能的结果是有限的,并且每个结果出现的可能性相等。

在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件数/基本事件总数。

举个例子,一个袋子里装有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

基本事件总数就是 8(5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数是 5,所以取出红球的概率 P= 5/8。

几何概型则适用于试验中所有可能的结果是无限的、不可数的情况。

比如,在一个圆形区域内随机扔一个点,求这个点落在某个特定区域内的概率。

在几何概型中,事件 A 的概率可以通过以下公式计算:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

假设在一个半径为 1 的圆内,随机扔一个点,求这个点落在半径为05 的同心圆内的概率。

标准正态分布求概率

标准正态分布求概率

标准正态分布求概率标准正态分布是统计学中非常重要的一个概念,它在各个领域都有着广泛的应用。

在实际问题中,我们经常需要求解标准正态分布的概率,以便进行统计推断和决策分析。

本文将介绍如何通过标准正态分布表或计算方法来求解标准正态分布的概率。

首先,我们需要了解标准正态分布的概念。

标准正态分布是指均值为0,标准差为1的正态分布。

其概率密度函数为:\[f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\]其中,\(x\)为随机变量,\(e\)为自然对数的底。

标准正态分布的概率密度函数曲线呈钟形,且关于均值对称。

在实际应用中,我们通常将标准正态分布转化为标准正态分布表进行概率计算。

求解标准正态分布的概率通常涉及到以下几种类型的问题:1. 求解 \(P(X \leq x)\) 的概率;2. 求解 \(P(X \geq x)\) 的概率;3. 求解 \(P(x_1 \leq X \leq x_2)\) 的概率。

下面,我们将分别介绍如何通过标准正态分布表或计算方法来求解上述三种类型的概率。

1. 求解 \(P(X \leq x)\) 的概率。

对于这种类型的问题,我们可以通过标准正态分布表来查找相应的概率值。

标准正态分布表是根据标准正态分布的性质,将 \(P(X \leq x)\) 的概率值进行了预先计算,并列成表格形式。

我们只需要找到随机变量落在某个区间内的概率值即可。

如果需要求解的 \(x\) 值不在标准正态分布表中,我们可以通过标准化转化为\(P(X \leq x)\) 的概率值,再通过线性插值或其他方法来估算出相应的概率值。

2. 求解 \(P(X \geq x)\) 的概率。

对于这种类型的问题,我们可以利用标准正态分布的对称性质来求解。

即\(P(X \geq x) = 1 P(X \leq x)\)。

我们可以先求解 \(P(X \leq x)\) 的概率值,然后再通过对称性质得到 \(P(X \geq x)\) 的概率值。

概率知识讲解+习题集

概率知识讲解+习题集

中考内容中考要求ABC事件了解不可能事件、必然事件和随机事件的含义概率了解概率的意义;知道大量重复实验时,可以用频率估计概率会运用列举法(包括列表、画树状图)计算简单事件发生的概率⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩定义列表概率求法树状图用频率估算概率与频数的关系一、与概率有关的定义:1、必然事件:事先能肯定一定发生的事件称为必然事件.2、不可能事件:事先能肯定一定不发生的事件称为不可能事件.3、确定事件:事先能肯定它是否发生的事件称为确定事件,必然事件和不可能事件都是确定事件.4、不确定事件(随机事件):事先不能肯定它会不会发生的事件称为不确定事件.5、概率:随机事件A 发生的可能性的大小.记为()P A .设n 为事件A 包含的可能结果数,m 为所有可能结果总数,则()nP A m=. 对于任何一个事件A ,它的概率()P A 满足0()1P A ≤≤,必然事件的概率是1, 不可能事件的概率是0.7、(补充)乘法原理:若一件事情需分m 个步骤完成,而且每个步骤的概率分别为:12,,m p p p ,则,完成该事件的概率为:12m p p p p =⋅⋅⋅.加法原理:若一件事情需分m 种方法完成,而且每种方法的概率分别为:12,,m p p p ,则,完成该事件的概率为:12m p p p p =+++二、求概率的方法:知识精讲中考大纲概率知识网络图1、列表2、画树状图3、用频率估计概率 列举法求概率如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率为m n. 用树状图法求概率当一次试验涉及3个或更多因素(例如从3个口袋中取球)时,列举法就不方便了,可采用树状图法表示出所有可能的结果,再根据()mP A n=计算概率. 利用频率估计概率一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么这个常数p 就叫做事件A 的概率,记作()()()01P A p P A =≤≤三、概率与频率的关系←⎧⎪↓⎨⎪⎩频率用试验的方法频率与概率(试验次数很多)理论概率1、当一次试验涉及多个因素(对象)时,常用列表法或树状图法求出事件发出的所有等可能的结果,然后找出要求事件发生的结果数,根据概率的意义求其概率.2、当完成事件的层次较多或事件发生的可能性不相等时,求相关事件的概率是困难的,转换视角,从问题的对立面:反面求解,常能化简求值.3、游戏的公平性是通过概率来判断的,在得分相等的前提下,若对于参加游戏的每一个人获胜的概率相等,则游戏公平,否则不公平;在概率不等的前提下,可将概率乘相应得分,结果相等即公平,否则不公平.1、在审题时,看拿出来的东西是否放回.2、答题时需要注意步骤.易错点辨析解题方法技巧如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().(2014北京中考)A.16B.14C.13D.12题型一事件【例1】下列事件中必然发生的是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.掷一枚质地均匀的骰子,朝上一面的点数是3C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨【例2】下列成语所描述的事件是必然发生的是()A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖【例3】下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上【例4】下列事件是必然事件的是()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则0a课堂练习真题链接概率习题集题型二简单概率计算【例5】从1~12这十二个自然数中任取一个,取到的数恰好是4倍数的概率是().(2014石景山期末)A.112B.14C.13D.12【例6】在12的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为__________.(2014昌平期末)【例7】下列说法正确的是().(2014朝阳期末)A.“明天的降水概率为80%”,意味着明天有80%的时间降雨B.小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖D.掷一枚质地均匀的骰子,“点数为奇数”的概率等于“点数为偶数”的概率【例8】不透明的袋中装有3个分别标有数字1,2,3的小球,这些球除数字不同外,其它均相同.从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余2个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于20的概率为().(2014大兴期末)A.12B.13C.23D.16【例9】袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列是必然事件的是().(2014东城期末)A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【例10】小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数小于3的概率为().(2014房山期末)A.13B.12C.16D.23【例11】一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是().(2014丰台期末)A.12B.13C.23D.16【例12】一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是__________.(2014丰台期末)【例13】汶川大地震时,航空兵空投救灾物质到指定的区域(圆A)如图所示,若要使空投物质落在中心区域(圆B)的概率为12,则B与A的半径之比为.BA【例14】6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16B.13C.12D.23【例15】在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

用列举法求概率

用列举法求概率
54
3/4 3/4
5.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人 随机坐到其他三个座位上。求A与B不相邻而坐的概率为 .
3
A
6.如图,小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3 条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有 ________种
9
7.在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色, 另一个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便?
解:根据题意,我们可以画出如下的“树形图”: 这些结果出现的可能性相等。
例7.如图,是一个转盘,转盘被分成两个扇形,颜色分为红黄两种,红 色扇形的圆心角为120度,指针固定,转动转盘后任其自由停止,某个扇形 会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列 事件的概率。(1)指向红色;(2)指向黄色;
能否用不同 的方法来解?
解:红,红;
红,黑;
黑,红;
黑,黑.
画树状图
列表
枚举
第一次抽出一张 牌
红牌
黑牌
第牌可现概二能的率次产可都抽生能为出的性一结相张果等。共。各4个为第 出。每一 一。种即出次 张抽 牌
1
红牌 黑牌
14 4
红牌
红牌
黑牌 黑牌
第二次抽 出一张牌
红牌
黑牌
红牌
黑牌
9.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其 余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概 率为多少?
解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3, 4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种 结果,因此P

初中数学用列举法求概率(优质课件)

初中数学用列举法求概率(优质课件)

所有可 能结果
左左左 左左左 左直右
左左左 左左左 直直直 右右右 左直右 左直右
12
3
4
5
6 第1个
探索新知
解:由表可看出,同时投掷两个骰子,可能 出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子点数相同(记为事件A)的结果有6个
P( A) 6 1 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个
P(B) 4 1 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
P(三个辅音)= 2 1 12 6
用树形图列出的结果看 起来一目了然,当事件 要经过多次步骤(三步 以上)完成时,用这种 树形图的方法求时间的 概率很有效.
小结归纳
想一想,什么时候使用”列表法“方便,什么时候使用”树形图法“方 便?
当事件涉及两个元素,并且出现的结果数 目为了不重不漏列出所有可能的结果,用 列表法. 当事件要经过多个步骤完成时:三步以上, 用这种”树形图”的方法求事件的概率很 有效.
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等。
探索新知
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重
不漏地列出所有可能结果,通常采用 列表法 。
把两个骰子分别标记为第1个和第2个,列表如下:
第2个
6 1,6 2,6 3,6 4,6 5,6 6,6

求概率的常用方法

求概率的常用方法
初中数学概率介绍
朱峰
2006年11月
初中数学概率介绍:
第十四章
事件与可能性
第二十三章 概率的求法与应用
一、内容介绍
1.最基础的知识 (1)事件:确定事件(必然事件和不可能事件) 不确定事件——随机事件
(2)可能性——事件发生的可能性(即事件的概率)
一、内容介绍
2.最简单的事件 (1)掷一枚(或一次)均匀的硬币与正多体 (2)摸一个大小和质量相同的球
三、内容解读
3.求概率的方法 根据后三种定义,得到常用的求概率的方法。 (1)列举法 判断每个结果发生的可能性是否相等——如 果都相等,可进行第(2)步;如果不都相等,则 不能用列举法。 (2)几何法 所有可能发生的点(结果)不能一一列出— —通过计算区域的面积求面积比值。
三、内容解读
(3) 频率估计法 一个重复实验获得事件的一个频率值,就直 接用这个频率作为概率的估计值; 几个重复实验获得一组频率数据,就用频率 的平均值作为概率的估计值。

五、主要习题
1.了解概率含义及其相互关系的问题; 2.列出所有可能发生的结果的问题; 3.求事件的概率问题; 4.应用问题; 5.决策问题与游戏公平性的判断问题。
六、教学建议
1.重视阅读能力.信息加工能力的培养 2.经历实验(动手)与观察 3.其他建议见《教学参考书》
七、中考概率
概率的引进丰富了中考内容,概率的考察已 由考小题向考小题、大题相配合考察转变;由考 察概念、考记忆、考计算向考阅读、理解、考 实际应用、考说理转变。 考题类型: 1.考查对概率的意义的理解 2.考查列举法的运用 3.考查概率说理 4.考查概率实际应用(见例题)
(3)旋转一个(或一次)均匀等分的转盘
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
求概率的方法
在新课标实施以来,中考数学试题中加大了统计与概率局部的考察,表达了“学以致用〞这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:〔05济南〕如图1所示,打算了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;假设可以拼成
一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你
认为这个游戏对双方是公平的吗?假设不是,有利于谁? .
分析:这个游戏不公平,因为抽取两张纸片,全部时机均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为4
1
. 取出的一张纸片画有半圆、一张画有正方形的概率为
2
1
42=,
因为二者概率不等,所以游戏不公平. 说明: 此题采纳了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.此题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:〔06临安市〕不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都相同〕,其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12

〔1〕试求袋中蓝球的个数.
〔2〕第一次任意摸一个球〔不放回〕,第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
解析:⑴设蓝球个数为x 个,则由题意得
21
122=
++x , 1=x
答:蓝球有1个. 〔2〕树状图如下:
∴ 两次摸到都是白球的概率 =
6
1
122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是时机均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 此题是考查用树状图来求概率的方法,这种方法比拟直观,把全部可能的结果都一一排列出来,便于计算结果. 三、列表法 例3:〔06晋江市〕如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三局部,装置A 上的数字是3、6、8;
装置B 上的数字是4、5、7;这两个装置除了外表数字不同外,其他
构造均相同,小东和小明分别同时转动A 、B 两个转盘〔一人转一个〕,如果我们规定箭头停留在较大数字的一方获胜〔如:假设A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,假设箭头恰好停在分界
图1 5 4 B
7
6
8
A 3
图2
.
线上,则重新转一次〕,请用树状图或列表加以分析说明这个游戏公平吗? 解析:〔方法一〕画树状图: 由上图可知,全部等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为9
4
,所以游戏不公平.
由上表可知,全部等可能结果共有9种,小东获胜的概率为
95,小明获胜的概率为9
4
,所以游戏不公平.
说明:用树状图法或列表法列举出的结果一目了然,当事件要经过屡次步骤〔三步以上)完成时,用这两种方法求事件的概率很有效.
6
开始。

相关文档
最新文档