气相色谱理论基础
瓦里安GC介绍

–柱上进样(On Column) –快速气化(Flash-vaporization)
• 毛细管柱进样口
–分流/不分流进样 –分流 –分流进样规则 –不分流进样的规则
填充柱进样口
• 柱上进样(On Column)
• 快速气化(Flash-vaporization)
柱上进样(On column)
两个相邻峰的分离程度。 以两个组份保留值之差 与其平均半峰宽值的比 来表示:
R
2 ( t R 2 t R1 ) W2 W1
•当R=1 时,有5%的重叠;
•当R=1.5时,分离程度为99.7%,可视为基线分离 • 毛细管色谱柱比填充柱有更高的分辨率.
柱效能(Column Efficiency)
• 主要决定于气体流速
C. 传质阻力.
• 样品组分从气相到液相容易.
• 主要取决于气体的流速和固定相量的多少。
著名的范德母特(Van Deemter)方程
• 综合上述三个峰展宽的因数
• HEPT : 理论塔板高度 (Height equicalent to a theoretical Plate): 这里:
毛细管柱截面图
色谱柱参数
柱长、内径、涂膜厚度
色谱柱长度 – 柱长度只有大的变化才会影响分辨率。 – 填充柱一般为2-3 米. – 毛细管柱可以根据需要进行裁剪。 色谱柱内径 –填充柱固定为2 mm。 –毛细管柱的内径可从0.10 - 0.8 mm. –内径的大小将影响到色谱柱的效率、保留时间和柱 容量. –较小的内径有较小的流失和较小的柱容量
• 一些组分与固定相作用较强,故较慢流出色谱柱,从而得 以分离。
样品组分分离示意图
2. 气相色谱系统
第2章 气相色谱分析法

将两者混合起来进行色谱实验,如果发现有 新峰或在未知峰上有不规则的形状(例如峰略 有分叉等)出现,则表示两者并非同一物质; 如果混合后峰增高而半峰宽并不相应增加, 则表示两者很可能是同一物质. 3.多柱法:在一根色谱柱上用保留值鉴定组分有 时不一定可靠,因为不同物质有可能在同一色 谱柱上具有相同的保留值.所以应采用双柱或多 柱法进行定性分析.即采用两根或多根性质(极 性)不同的色谱柱进行分离,观察未知物和标 准试样的保留值是否始终重合.
§2.5 GC检测器 一、概述 1.作用:将经色谱柱分离后的各组分按其特性及含 量转换为相应的电讯号。 2.分类: 浓度型:测量的是载气中某组分浓度瞬间的变化, 即检测器的响应值和组分的浓度成正比。 热导TCD ; 电子捕获ECD; 质量型:测量的是载气中某组分进入检测器的速 度变化。即检测器响应值和组分的质量成正比。 氢焰FID; 火焰光度FPD;
二、根据色谱保留值进行定性 定性方法的可靠性与色谱柱的分离效率有密切的 关系,为了提高可靠性,应该采用重现性较好 和较少受到操作条件影响的保留值. 由于保留时间(或保留体积)受柱长、固定液 含量、载气流速等操作条件的影响比较大,因 此一般适宜采用仅与柱温有关,而不受操作条 件影响的相对保留值r21作为定性指标. 1.对于比较简单的多组分混合物,如果其中所有 待测组分均为已知,它们的色谱峰也能一一分 离,那么为了确定各个色谱峰所代表的物质, 可将各个保留值与各相应的标准试样在同一条 件下所测得的保留值进行对照比较,确定各个 组分.
§2.6 气相色谱定性方法
一、概述:各种物质在一定色谱条件下都有确定不 变的保留值,因此保留值可作为一种定性指标 . 现状:GC定性分析还存在一定问题.其应用仅限 于当未知物通过其它方面的考虑(如来源,其它 定性方法的结果等)后,已被确定可能为某几个 化合物或属于某种类型时作最后的确证;其可靠 性不足以鉴定完全未知的物质。 近年,GC/MS、GC/光谱联用技术的开发,计算机 的应用,打开了广阔的应用前景。
第2节 色谱理论基础

色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为: n=L/H 理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 ) = 16( ) n = 5.54( Y1/ 2 Wb
09:49:37
2.有效塔板数和有效塔板高度
• • • 单位柱长的塔板数越多,表明柱效越高。 用不同物质计算可得到不同的理论塔板数。 组分在 tM 时间内不参与柱内分配。需引入有
09:49:372Βιβλιοθήκη 5 (tm)45 49
mm
解:(1)
2 (t −t )
R1 2
R=
R2 1
Y +Y
=
( 49 − 45 ) 5
= 0 .8
n
eff
= 16(
t
' R
2
2 ) = 16 × (
49 − 5 5
2 ) ≈ 1239
Y
2
09:49:37
1 Sample 0 (2)
neff
2
5 (tm)
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论
09:49:37
例题2:
有一根1m长的色谱柱,分离1和2两个组分,得到如下图所 示的色谱图。横坐标为记录笔的走纸距离(mm),假设1和2 的峰底宽度相等,为5mm。 求 (i)1和2组分之间的分离度(R)及有效塔板数(neff) (ii)若欲得到Rs=1.2的分离度,有效塔板数应为多少? (iii)若想达到完全分离,色谱柱要加到多长? 1 Sample 0
仪器分析(第四版)第二章

3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM
推导:
组分和流动相通过长度为L的色谱柱,所需时间为:
理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500
结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化
气相色谱分析

保留时间(retention time)tR 被测样品从进样开始到柱后出现浓度最大值时所需的时间
调整保留时间(adjusted retention time)tR’ tR’=tR-tm
某组分由于溶解或吸附于固定相,比不溶解或不被吸
附的组分在色谱柱中多滞留的时间。
三、气相色谱分析的理论基础
1、基本原理
在一定温度下,组分在两相之间分配达到平衡时 的浓度(g·mL-1)比称为分配系数,以K表示。
待测组分在固定相和流动相之间发生的吸附,脱附 或溶解,挥发的过程叫做分配过程。
组分在固定相中的浓度 K 组分在流动相中的浓度 K Cs
Cm
(分配系数是色谱分析的依据)
气相色谱分析
2-1 气相色谱概述 2-2 气相色谱法的基本原理 2-3 色谱分离条件选择 2-4 固定相及其选择 2-5 气相色谱检测器 2-6 气相色谱定性分析 2-7 气相色谱定量方法 2-8 毛细管柱气相色谱法
§2-1 气相色谱法概述
色谱法是一种分离技术。 固定相:使混合物中各组分在两相间进行分配,其中
对于高沸点,不能气化和热不稳定的物质不能 用气相色谱法分离和测定。
§2-2 气相色谱法的基本原理
一、气相色谱流程:
1、高压钢瓶 2、减压阀 3、载气净化干燥管 4、针形阀 5、流量计 6、压力表 7、进样器 8、色谱柱 9、检测器 10、记录仪
图2.1 气相色谱流程图
二、气相色谱仪的组成及各部分的作用:
死体积(dead volume)Vm 指色谱柱在填完后柱管内固定相颗粒间所剩
余的空间,色谱仪中管路和连接头间的空间以及 检测器的空间的总和。当后两项很小,忽略不计 时,
[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第二节-色谱理论基础-2
![[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第二节-色谱理论基础-2](https://img.taocdn.com/s3/m/db94c80377232f60dccca155.png)
2. 速率理论 (P353)
➢ 速率理论充分考虑组分在两相间的扩散和传质
过程,以动力学理论研究了使色谱峰展宽从而影响
塔板高度的因素。
➢ 色谱峰的峰展宽是由于组分分子在色谱柱内无规
则运动的结果,这种随机过程导致组分分子在色谱
柱内呈正态分布。
➢ 速率理论充分考虑了组分在两相间的扩散和传
2020/6/17
塔板理论有如下基本假设
➢ ① 在色谱内一小段长度即一个塔板高度H内, 组分可以在两相中瞬间达到分配平衡。 ➢ ② 分配系数在各塔板内是常数。 ➢ ③ 流动相不是连续地而是间歇式地进入色谱柱 ,且每次只进入一个塔板体积。 ➢ ④ 试样在柱内的纵向扩散可以忽略。
2020/6/17
塔板理论-柱分离效能指标
2020/6/17
4.对称因子fs:
衡量色谱峰的对称性
fs W 0.05h / 2 A (A B) / 2A
➢ fs在0.95-1.05之间的
色谱峰为对称峰;小于 0.95者为前延峰;大于 1.05者为拖尾峰
2020/6/17
定量参数
峰高(peak height;h):组分在柱后出现浓 度极大时的检测信号,即色谱峰顶至基线的 距离。
相对保留值只与柱温和固定相性质有关,与其他 色谱操作条件无关,它表示了固定相对这两种组分 的选择性。
2020/6/17
柱效参数
1. 色谱峰区域宽度
是衡量柱效的重要参数之一,区域宽度越小柱效
越高
有三种表示方法:
(1)标准偏差():
即0.607倍峰高处色谱峰宽度的一半。
(2)半峰宽(Y1/2):
色谱峰高一半处的宽度 Y1/2 =2.354
色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为:
色谱理论基础知识

气相色谱实验技术
气相色谱仪
载气系统
分离系统
检测和 记录系统
进样系统
温控系统
(一)载气系统
载气系统
{
气源 净化干燥管 载气流速控制装臵 检测器
常用载气:氮气、氦气、氢气及氩气 载气选择依据
固体吸附剂应用
吸附剂 活性碳 石墨化炭 黑 硅胶 氧化铝 分子筛 主要成 分 C C Tmax 性质 度 300 500 非极性 非极性 氢键型 弱极性 极性 分离对象 永久气体,非极性烃 永久气体,高沸点化合 物 永久气体,非极性烃, 气体硫化物 烃,有机异构体 永久气体,惰性气体
SiO2· 2 400 XH O Al2O3 硅铝酸 盐 400 400
毛细管柱
毛细管柱又叫空心柱:
涂壁空心柱:将固定液均匀地涂在内径0.10.5毫米的毛细管内壁而成。 多孔层空心柱(PLOT):在管壁涂渍一层多 孔吸附剂颗粒,不涂固定液,实际上毛细 管气固色谱柱。
毛细管柱的优点:
毛细管内没有固体填料,气阻比填充柱小的多, 可以采用较长的柱管和较小的内径,以及较高的 载气流速,既没有涡流扩散,又减小了纵向扩散 造成的谱带展宽。较薄的液膜又在一定程度上抵 消了由于载气流速增大引起的传质阻力增大。
液相传质阻力
固定液粘度及液膜厚度越小 液相传质阻力越小
4) 流动相线速度对板高的影响
四 分离度
定义:
tr2, tr1: 组分2和组分1的保留时间 W2, W1: 组分2和组分1的峰底宽度
R=1.5 完全分离
五 基本色谱分离方程式
对于难分离相邻两组分:
色谱分析理论基础

d
2 p
Dg
容量因子
液相传质阻力项CL u
试样组分从固定相表面移动到固定相内部的过程中, 由于质量交换过程需要一定时间(即传质阻力)而使分 子有滞留倾向。在此过程中,部分组分分子先离开固定 相表面,发生分子超前,引起色谱峰扩展。
C L
2 3
k (1 k)2
d
2 f
DL
液膜厚度
液相扩 散系数
气相色谱中的速率方程
1 2
(Y1
Y2
)
R1/ 2
tR(2) tR(1)
1 2
(Y1/ 2(1)
Y1/ 2(2) )
R越大,说明两组分分离得越好。 由于该定义综合了色谱动力学和热力学因素,可作为色 谱柱的总分离效能指标。
(2) 色谱分离基本方程(Purnell方程)
公式推导
tR
L uS
,tM
L u
tM tR
• 分离度R与理论塔板数N的平方根成正比关系, 增加塔板数,有利于提高分离度。
• 增加柱长可增加N,改善分离,但分析时间将 大大延长,峰产生扩展。
• 减小塔板高度H:
– 根据速率方程的启示制备一根性能优良的色谱柱是 十分重要的。
– 根据速率方程选择合适的色谱条件同样有效。
K的影响,如何改变k?
• 分离度与容量因子有关,容量因子越大,分离越好。
• 优点:应用简便,不需要其他仪器。 • 缺点:定性结果的可信度不高。
➢ 提高可信度的方法:双柱、双体系定性
文献值对照定性分析 (GC)
• 实现方法
➢ 测定相对保留值ri,s ➢ 测定保留指数I
• 优点:无需纯物质;保留指数具有较好的重现 性和精密度;只与固定相和柱温有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱理论基础原理分类【情节1】食品添加剂的检测,一个学生进入自选超市,拿起一袋零食,包装袋上有各种成分的含量,这些含量是怎么检测出来的呢?通常由两种方法:一种是先将各组分分离开,然后对已分离的组分进行测定;另一种是不需将组分分离开,直接对感兴趣的组分进行测定.其中第一种分离、分析方法也就是常用的色谱法。
近代首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家茨维特.【知识点1】茨维特的经典实验1906年,俄国植物学家茨维特(M。
S.Tswett)在研究植物色素的过程中,做了一个经典的实验;在一根玻璃管的狭小一端塞上一小团棉花,在管中填充沉淀碳酸钙,这就形成了一个吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。
结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素;绿色层下面接着叶黄质;随着溶剂跑到吸附层最下层的是黄色的胡萝卜如此则吸附柱成了一个有规则的、与光谱相似的色层。
接着他用纯溶剂淋洗。
使柱中各层进一步展开,达到清晰的分析.然后把该潮湿的吸附柱从玻璃管中推出,依色层的位置用小刀切开,于是各种色素就得以分离。
再用醇为溶剂将它们分别溶下,即得到了各成分的纯溶液.【思考题1】俄国植物学家茨维特用于分离植物色素的色谱法属()色谱法。
【情节2】气相色谱法可比喻为一群运动员在一条泥泞的道路顺风赛跑,他们同时起跑后,因本身体力差异及道路、风力的影响,相互间的距离逐渐增大,最后于不同的时间到达终点。
若把欲分离的组分视为运动员,固定相与流动相各为道路上的泥泞与顺风,色谱柱为道路,那么可以将色谱法分离、分析的原理写成:利用组分在体系中固定相与流动相的分配有差异,当组分在两相中反复多次进行分配并随流动相向前移动,各组分沿色谱柱运动的速度就不同,分配系数小的组分较快地从色谱柱流出.【知识点2】分类和基本原理一气相色谱法是以惰性气体(又称载气)作为流动相,以固定液或固体吸附剂作为固定相的色谱法。
气相色谱法按不同的分类方式可分为不同的类别:(1)气相色谱法按使用固定相的类型分为气液色谱法和气固色谱以固相液(如聚甲基硅氧烷类、聚乙二醇类等固定液)作为固定相的色谱法称为气液色谱法,以固体吸附剂(如分子筛、硅胶、氧化铝、高分子小球等)作为固定相的色谱法称为气固色谱法。
在气液色谱法中,基于不同的组分在固定液中溶解度的差异实现组分的分离。
当载气携带被测样品进入色谱柱后,气相中的被测组分就溶解到固定液中.载气连续流经色谱柱,溶解在固定液中的组分会从固定液中挥发到气相中,随着载气的流动,挥发到气相中的组分又会溶解到前面的固定液中。
这样反复多次溶解、挥发、再溶解、再挥发,实现被测组分的分离。
由于各组分在固定液中的溶解度不同,溶解度大的组分较难挥发,停留在色谱柱中的时间就长些;而溶解度小的组分易挥发,停留在色谱柱中的时间就短些,经过一定时间后,各组分就彼此分离并依次流出色谱柱被检测器检测.在气固色谱法中,主要是基于不同的组分在固体吸附剂上吸附能力的差别实现组分的分离。
气固色谱中的固定相是一种具有多孔性及比表面积较大的吸附剂.样品由载气携带进入色谱柱时,立即被吸附剂所吸附.载气不断通过吸附剂,使吸附的被测组分被洗脱下来,洗脱的组分随载气流动,又被前面的吸附剂所吸附。
随着载气的流动,被测组分在气固吸附剂表面进行反复的吸附、解吸。
由于各被测组分在气固吸附剂表面吸附能力不同,吸附能力强的组分停留在色谱柱中的时间就长些;而吸附能力弱的组分停留在色谱柱中的时间就短些,经过一定时间后,各组分就彼此分离并依次流出色谱柱被检测器检测.被测组分在流动相与固定相之间的吸附、解吸和溶解、挥发的过程,称为分配过程.气相色谱分离的基本原理即是基于被测组分在色谱柱内流动相和固定相分配系数的不同而实现分离的。
当载气携带样品进入色谱柱后,样品中的各个组分就在两相间进行多次的分配,即使原来分配系数相差较小的组分也会在色谱分离过程中分离开来。
(2)按照使用的色谱柱的内径可分为填充柱色谱法、毛细管柱色谱法以及大口径柱色谱法。
填充柱色谱法一般采用内径为3mm或2mm的不锈钢柱或玻璃柱作为分离柱,填充柱色谱法有较好的柱容量,但柱效相对较低。
适用于较简单组分的分离测定;毛细管柱色谱法一般采用内径为0.2mm、0.25mm、0。
32mm的石英柱作为分离柱,现在也有采用0。
1mm内径的石英柱作为分离柱用于复杂组分的分析。
用于高温分析的色谱柱一般使用不锈钢柱。
在毛细管气相色谱柱中,使用的色谱柱柱长一般在15~30m,复杂的石油组分分析一般采用50m的柱长,有的色谱柱长达到100m。
毛细管柱色谱法有较高的柱效,但柱容量低.大口径柱一般为0。
53mm内径的毛细管柱,柱效和柱容量介于填充柱色谱法和毛细管柱色谱法之间,适用于复杂组分的分析.填充柱气液色谱法中,一般需要将固定液涂在化学惰性的固体微粒(此固体用来支持固定液,称为担体或载体)表面上,常用的载体包括硅藻土载体和非硅藻土载体,多数使用硅藻土载体。
硅藻土载体包括红色载体和白色载体,红色载体结合非极性固体液使用,白色载体结合极性固体液使用。
非硅藻土载体包括氟载体、玻璃微株及高分子小球等。
在填充柱气液色谱中,使用的固定液包括非极性的固定液(如聚甲基硅氧烷类固定液)、极性的固定液(如聚乙二醇类固定液)和用于手性化合物分离的环糊精类固定相等。
而气液毛细管色谱法则是直接涂一层高沸点邮寄化合物并形成一层均匀的液膜,涂柱的方式包括涂覆法、化学键合法和交联法,在填充柱气液色谱中使用的固定相也适用于气液毛细管色谱法中。
在气固色谱法中,一般使用固体吸附剂作为固定相,包括填充柱气固色谱法和毛细管PLOT柱(多孔层开管毛细管色谱柱)法。
对于填充柱气固色谱法,一般将固体吸附剂装填在玻璃或不锈钢柱内,常用的固体吸附剂包括分子筛(常用的有5A分子筛和13X分子筛)、硅胶、氧化铝、碳分子筛以及高分子小球等,高分子小球一般多用苯乙烯和二乙烯基苯的聚合物。
毛细管PLOT柱色谱法中,使用的固定相与填充柱气固色谱法使用的固定相类型一致。
由于活性(或极性)分子在吸附剂上的半永久性滞留(吸附—脱附过程为非线性的),导致色谱峰严重拖尾,气固色谱法的应用领域相对气液色谱法要窄,一般多用于较低分子量和低沸点气体组分或相对较简单组分的分析.【思考题2】气液色谱法的固定相是();气固色谱法的固定相是()。
【知识点3】基本原理二:实现色谱分离的先决条件是具备固定相和流动相。
色谱分离能够实现的内因是由于固定相与被分离的各组分发生的吸附(或分配)作用的差异。
组分间的距离是由组分在两相间的分配系数决定的.实现色谱分离的分离外因是由于流动相的不间断流动。
由于流动相的流动使被分离的组分与固定相发生反复多次的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离。
此外,色谱分析法具有物理分离方法的一般优点,即进行操作时不会损失混合物中的各个组分,不改变原有组分的存在形态也不生成新的物质.因此若用色谱法分理出某一物质,则此物质必存在于原始样品之中。
分配系数和吸附系数一定条件下,对样品中的某一组分来说:1)分配系数是针对气液色谱而言的.KP=Cs/Cm.式中:Cs为该组分在固定液中的浓度,Cm为该组分在流动相中的浓度。
2)吸附系数是针对气固色谱而言的。
KA=m/VM式中:m为1ml吸附剂中该组分的克数;VM为1ml流动相该组分的克数.3)分配比k,它是指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的物质的量比。
即:定义流动相与固定相的体积比较相比,用β表示 【思考题3】基本原理三:色谱分析法是( )分离方法?组分间的距离是由组分在两相间的( )决定的.【情节4】如果色谱柱比作是跑道,那么色谱图就是运动员比赛的成绩信息。
色谱图是以组分的流出时间(t)为横坐标,以检测器对各组分的电讯号响应值(mV )为纵坐标。
色谱图上可得到一组色谱峰,每个峰代表样品中的一个组分。
由每个色谱峰的峰位、峰高和峰面积、峰的宽窄及相邻峰间的距离都可获得色谱分析的重要信息.【知识点4】基本原理三:(1)保留时间与容量因子在整个色谱分离过程中,流动相始终是以一定的流速(或压力)在固定相中流动的,并将溶质带入色谱柱。
溶质因分配、吸附等相互作用,进入固定相后,即在固定相表面与功能层分子作用,从而在固定相中保留。
同时,溶质又被流动相洗脱下来,进入流动相。
与固定相作用越强的溶质在固定相中的保留时间就越长。
m s n n k ==量组分在流动相中物质的量组分在固定相中物质的βp K V c V c n n k m m s s m s =⨯⨯==:=s m V V β从色谱柱流出的溶液(柱流出物)进入检测器连续测定,得到如图7—1所示的色谱图,即柱流出物中溶质浓度随时间变化的曲线,直线部分是没有溶质流出时流动相的背景响应值,称作基线(base line)。
在基线平稳后,通常将基线响应值设定为零,再进样分析。
溶质开始流出至完全流出所对应的峰型部分称色谱峰(peak),基线与色谱峰组成了一个完整的色谱图(chromatogram).死时间(dead time): 在色谱柱中无保留的溶质从进样器随流动相到达检测器所需要的时间,通常用t0表示。
溶质保留时间(solute retention time):或称真实保留时间,是溶质因与固定相作用在色谱柱中所停留的时间,它不包含死时间,通常用ts表示。
保留时间(retention time):是t S与t0之和,通常用t R表示,即t R = t0 + t S容量因子(capacity factor): 对于有效的色谱分离,色谱柱必须具有保留溶质的能力,而且还能使不同溶质之间达到足够大的分离。
色谱柱的容量因子k’是溶质离子与色谱柱填料相互作用强度的直接量度,由下式定义:式中VR 和V0 分别为总保留体积和空保留体积.(2)色谱峰的对称性高斯(Gaussian)曲线: 在理想情况下,色谱峰的形状可以近似地用高斯曲线描述(图7—2)。
图中为标准偏差(拐点处的半峰宽),h 为最大峰高,w为峰宽.在任意给定位置x处的峰高y可以用下式描述:不对称因子(asymmetry):在实际的色谱过程中,溶质从色谱柱中流出时,很少符合高斯分布,而是具有一定的不对称性.我们可以定义一个不对称因子As来定量地表示色谱峰的不对称程度,如图7—3所示,将10%峰高处前半峰的宽度设为a,同高度处后半峰的宽度设为b,将b与a的比值定义为不对称因子As,即拖尾峰(tailing peak):当As大于1时,色谱峰的形状是前半部分信号增加快,后半部分信号减少慢。