脱氮工艺技术
污水处理工艺脱氮

污水处理工艺脱氮污水处理是一项重要的环境保护工作,其中脱氮是其中一个关键步骤。
本文将详细介绍污水处理工艺中的脱氮过程,包括脱氮原理、常用的脱氮方法以及相关的设备和操作要点。
一、脱氮原理脱氮是指将污水中的氮气化合物转化为氮气,从而减少氮气对环境的污染。
常见的氮气化合物包括氨氮(NH3-N)、亚硝酸盐氮(NO2-N)和硝酸盐氮(NO3-N)。
脱氮的主要原理是利用生物处理方法,通过微生物的作用将氮气化合物转化为氮气。
主要有硝化和反硝化两个过程。
硝化是将氨氮和亚硝酸盐氮转化为硝酸盐氮的过程,需要利用一种叫做硝化菌的微生物。
硝化菌在适宜的环境条件下,通过氧化氨氮和亚硝酸盐氮,将其转化为硝酸盐氮。
反硝化是将硝酸盐氮转化为氮气的过程,需要利用一种叫做反硝化菌的微生物。
反硝化菌在缺氧的环境下,通过还原硝酸盐氮,将其转化为氮气。
二、常用的脱氮方法1. 生物脱氮法生物脱氮法是目前应用较广泛的一种脱氮方法。
它利用生物反应器中的微生物,通过硝化和反硝化过程将氮气化合物转化为氮气。
生物脱氮法具有处理效果好、运行成本低等优点。
生物脱氮法主要包括传统的AO法(即硝化-反硝化法)和二级法。
- AO法是指在同一个生物反应器中,通过控制氧气供应和溶解氧浓度,使硝化和反硝化过程同时进行。
这种方法适合于氮气化合物浓度较高的情况。
- 二级法是指将硝化和反硝化过程分别进行,通过两个不同的生物反应器分别处理。
首先在硝化反应器中将氨氮转化为硝酸盐氮,然后将硝酸盐氮进一步转化为氮气的反硝化反应在反硝化反应器中进行。
这种方法适合于氮气化合物浓度较低的情况。
2. 化学脱氮法化学脱氮法是利用化学反应将氮气化合物转化为氮气的方法。
常用的化学脱氮方法包括硝化法、硝化-硝化法和硝化-还原法。
- 硝化法是通过加入化学药剂,如硫酸铜、硫酸亚铁等,将氨氮和亚硝酸盐氮转化为硝酸盐氮。
这种方法操作简单,但需要添加化学药剂,增加了处理成本。
- 硝化-硝化法是将硝酸盐氮转化为氮气的过程。
生物脱氮除磷原理及工艺

(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程
缺氧好氧组合工艺脱氮的工艺流程

缺氧好氧组合工艺脱氮的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!缺氧好氧组合工艺是一种有效的生化脱氮技术,通过在反应器中交替进行缺氧和好氧处理来实现氮素的去除。
厌氧氨氧化生物脱氮工艺研究进展

厌氧氨氧化生物脱氮工艺研究进展一、引言厌氧氨氧化生物脱氮工艺是一种利用厌氧氨氧化菌将氨氮氧化为氮气的技术。
该工艺可以有效地降低废水中的氮污染物浓度,从而减少对环境的影响。
近年来,随着环保意识的提高和废水处理技术的不断创新,厌氧氨氧化生物脱氮工艺在废水处理领域得到了广泛关注和研究。
本文将围绕厌氧氨氧化生物脱氮工艺的研究进展进行综述,以期为相关领域的研究和应用提供参考。
二、厌氧氨氧化生物脱氮工艺原理厌氧氨氧化生物脱氮工艺是一种新型的氨氮脱除技术,其原理是通过厌氧氨氧化菌将废水中的氨氮转化为氮气,从而实现氮污染物的去除。
厌氧氨氧化生物脱氮工艺是在缺氧条件下进行的,因此需要使用特定的厌氧氨氧化菌。
这些厌氧氨氧化菌能够在缺氧环境下利用底物氨氮进行氨氧化反应,生成亚硝酸盐和硝酸盐。
之后,通过反硝化作用,这些亚硝酸盐和硝酸盐可以被还原为氮气,实现氮的去除。
整个过程如下所示:NH4+ → NO2- → NO3- → N2厌氧氨氧化生物脱氮工艺的主要特点包括:能够在低温、低氧条件下运行;反应效率高、能耗低;不产生化学药剂和二氧化碳等副产品;对废水中的COD和SS等有机物去除效果也比较好。
厌氧氨氧化生物脱氮工艺的微生物学研究是该技术研究的关键之一。
目前,已经分离和鉴定了多种厌氧氨氧化菌,包括广泛存在于自然界中的广谱性厌氧氨氧化菌,以及一些针对特定废水中氨氮去除的特异性厌氧氨氧化菌。
这些菌株的研究为厌氧氨氧化生物脱氮工艺的应用提供了基础。
厌氧氨氧化生物脱氮工艺的工程应用研究主要包括工艺设计、系统优化和应用推广等方面。
研究人员通过对厌氧氨氧化生物脱氮工艺的工程化应用进行模拟和实验,不断改进工艺设计,提高系统的稳定性和去除效率。
还进行了不同规模和不同类型废水处理系统的试点推广,取得了一定的应用效果。
影响厌氧氨氧化生物脱氮工艺效果的因素包括废水的营养盐浓度、温度、pH值、氧气浓度等。
研究人员通过对这些影响因素进行系统的分析和研究,为提高厌氧氨氧化生物脱氮工艺的去除效率提供了理论基础和技术支持。
工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。
其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。
一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。
含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。
2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。
3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。
反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。
2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。
为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。
当DO值较低时,硝化反应过程将受到限制,甚至停止。
反硝化与硝化在溶解氧的需求方面是一个对立的过程。
传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。
同步脱氮除磷工艺

同步脱氮除磷工艺同步脱氮除磷工艺什么是同步脱氮除磷工艺?•同步脱氮除磷工艺是一种用于处理废水中的氮和磷的技术。
•它是一种同时去除废水中的氮和磷的方法,可以有效地减少废水对环境的污染。
同步脱氮除磷工艺的原理•通过添加特定的化学药剂,使废水中的氮和磷形成不溶性化合物。
•这些不溶性化合物可以沉淀下来,从而将氮和磷从废水中去除。
同步脱氮除磷工艺的优点•高效: 同步脱氮除磷工艺能够同时去除废水中的氮和磷,提高处理效率。
•简单: 该工艺相对简单易行,操作方便。
•环保: 应用同步脱氮除磷工艺可以减少废水对水体的污染,保护环境。
同步脱氮除磷工艺的应用领域•市政污水处理厂: 同步脱氮除磷工艺可以在市政污水处理厂中应用,减少废水对自然水体的污染。
•工业废水处理: 同步脱氮除磷工艺也可以应用于各种工业废水处理,如制药、电镀等。
同步脱氮除磷工艺的发展趋势•新型药剂研发: 目前,研究人员正在不断开发新型的化学药剂,以提高同步脱氮除磷工艺的效率和稳定性。
•技术改进: 同步脱氮除磷工艺的技术也在不断改进,以适应不同废水处理的需求。
结论同步脱氮除磷工艺是一种高效、简单且环保的废水处理技术。
随着新型药剂的开发和技术的不断改进,同步脱氮除磷工艺将在更广泛的领域得到应用,为保护环境和水资源做出更大的贡献。
注意事项和挑战•选择适当的药剂: 不同废水含有不同的氮磷化合物,选择适合的药剂可以提高工艺的效果。
•控制pH值和温度: 同步脱氮除磷工艺对pH值和温度的要求较高,需要精确控制。
•降低成本: 应用同步脱氮除磷工艺需要考虑成本因素,包括药剂成本和工艺运行成本。
案例分析1.上海市某污水处理厂的同步脱氮除磷工艺应用–该污水处理厂采用同步脱氮除磷工艺,减少废水中的氮和磷含量。
–通过严格的药剂投加计量和pH值调节,成功降低废水对环境的污染。
–工艺运行稳定,处理效果好。
2.XX制药厂的工业废水处理–XX制药厂采用同步脱氮除磷工艺处理工业废水,有效去除废水中的氮和磷。
污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱氮工艺技术
脱氮工艺技术是一种工业上常用的环境治理技术,主要用于减少氮氧化物污染物的排放。
氮氧化物主要来自燃煤、燃油和其他燃料的燃烧过程,对大气环境和生态系统造成严重危害。
下面将介绍一种常用的脱氮工艺技术——选择性催化还原脱氮技术。
选择性催化还原脱氮技术是通过在烟气中引入适量的还原剂(如氨气或尿素溶液),通过催化剂促使氨气与烟气中的氮氧化物发生催化剂还原反应,生成氮气和水蒸气。
这种技术具有高效、低成本、易于实施等优点,被广泛应用于电厂、钢铁厂、化工厂等工业领域。
选择性催化还原脱氮技术的主要工艺流程包括:氨气或尿素溶液的制备、烟气的净化和催化还原反应三个步骤。
其中,氨气或尿素溶液的制备通常通过氨气制造装置或尿素制造装置来完成,能够保证制备出高纯度的氨气或尿素溶液。
烟气的净化主要是通过布置在烟囱或烟气管道中的除尘设备,用来去除烟气中的灰尘颗粒,以保证催化剂的稳定性和反应效果。
催化还原反应是整个工艺的核心部分,也是脱氮的关键步骤。
在催化剂的催化下,烟气中的氮氧化物与氨气或尿素溶液中的氨基发生还原反应,生成氮气和水蒸气。
催化剂通常采用金属氧化物或贵金属催化剂,如V2O5-WO3/TiO2、V2O5-
WO3/TiO2-CeO2等。
催化剂的选择具有重要意义,它需要具
备高催化活性和抗毒性,并且能够耐受高温条件,以维持稳定的脱氮效果。
选择性催化还原脱氮技术除了具备高效率和低成本的优点外,还有其他一些特点。
首先,该工艺能够高效去除烟气中的氮氧化物,使其排放浓度达到国家标准。
其次,该技术所生成的反应产物主要是氮气和水蒸气,不会产生二氧化硫等其他污染物。
这样可以有效减少大气污染,改善环境质量。
此外,该技术操作简单,易于实施,并且在实际应用中已经得到了充分的验证和推广。
总之,选择性催化还原脱氮技术是一种有效的脱氮工艺技术。
通过引入适量的还原剂,在催化剂的催化下使氮氧化物与还原剂发生反应,能够高效、低成本地减少氮氧化物的排放。
这项技术在工业生产中有着广泛的应用前景,对于改善大气环境和保护生态环境具有重要意义。