射频基础知识及其主要指标
射频和无线电的知识点总结

射频和无线电的知识点总结一、基本概念1. 射频信号:射频信号是指频率在几十千赫兹到几千兆赫兹之间的电磁波信号,是一种无线通信中常用的信号类型。
射频信号可以通过调制解调技术传输数据和声音等信息。
2. 无线电信号:无线电信号是指通过无线电波传播的电信号,在通信、广播、遥控等方面有着广泛的应用。
无线电信号可以分为射频信号和微波信号两种类型。
3. 射频技术:射频技术是指在射频范围内进行信号处理和传输的技术,包括调制解调、频谱分析、功率放大等方面。
4. 无线电技术:无线电技术涉及到无线电信号的发射、接收、解调、解调等方面,是现代通信领域中的重要组成部分。
二、常用技术1. 调制解调技术:调制技术是指将数字信号或模拟信号转换成适合无线传输的射频信号的过程,而解调技术则是指将这些射频信号还原成原始信号的过程。
2. 天线设计:天线是用来发送和接收射频信号的设备,天线的设计可以影响信号的发送和接收效果,包括指向性天线、全向天线、定向天线等多种类型。
3. 频谱分析:频谱分析是对射频信号进行频率分析和功率分析的过程,用来确定信号的频率、占用带宽和信号强度等参数。
4. 功率放大:功率放大是指通过将信号经过放大器放大来增加信号的功率,常用于提高信号的传输距离和覆盖范围。
5. 射频链路设计:射频链路设计涉及到传输介质、信号传输距离、覆盖范围、抗干扰能力等多个方面,是无线通信系统设计中重要的一环。
6. 无线电频谱管理:无线电频谱管理是指对无线电频谱的合理规划、分配和监管,以确保不同无线设备之间的信号不干扰以及频谱资源的有效利用。
三、应用1. 无线通信系统:无线通信系统是利用无线电波进行通信的系统,包括蜂窝网络、无线局域网、蓝牙、Zigbee等多种技术。
2. 无线电广播:无线电广播是利用无线电波进行广播传输的技术,包括调频广播、中波广播、短波广播等多种广播方式。
3. 无线电遥控:无线电遥控是通过无线电信号控制设备或机器的技术,包括无人机、遥控车、遥控船等多种应用场景。
手机射频基础知识

4
射频基础知识
射频= Radio Frequency (RF) → 无线
中波广播 短波广播 RFID 调频广播 (无线)电视 遥控模型 个人移动通信 WLAN, Bluetooth(ISM Band)
530-1700 kHz 5.9-26.1 MHz 13 MHz 88-108 MHz 54-88, 174-220 MHz 72 MHz 900MHz, 1.8, 1.9, 2 GHz 2.4-2.5GHz, 5-6GHz
DCS1800 手机发:1710~1785MHz;手机收:1805~1880MHz。
• GSM的调制方式是BT=0.3的GMSK,调制速率为 270.833千波特,0.3表示了高斯滤波器的带宽和比特率 之间的关系。 • 在GSM中,数据的比特率被选择为正好是频偏的4倍, 这可以减小频谱的扩散,增加信道的有效性。
7
传输线
• 同轴线或同轴电缆(coaxial cable) • 平行双线(twin-lead, two wire) • 微带线(microstrip)
8
波动方程和特性阻抗
9
元器件和寄生参数
– 分立无源元件的高频模型 电阻、电容和电感的阻抗在高频时往往与它们的标称值有很大的 偏差,这时寄生元件造成的,它们降低了元件的品质因数和自谐 振频率 – 自谐振频率 频率高到一定的程度,元件的阻 抗会由原来的感性变成容性或由 容性变成感性,这说明寄生效应 已经占据主导地位,元件无法再 工作。例如右图中一个电感电抗 随频率的变化。
1 复帧 = 26 TDMA帧(120ms) 0 1 24 25 0
1 复帧 = 51 TDMA帧(3060/13ms) 1 49 50
1 TDMA帧 = 8 时隙(120/26 = 4.615ms) 0 1 2 3 4 5 6 7
射频测试基本知识

第一章.射频同轴电缆和连接器
分类与选择
半刚性:外导体用铝管或铜管,泄露小于-120db 半柔性:半刚性替代品,稳定性不足 柔性:编织电缆,测试级电缆,成本高 波纹铜管电缆:用于天馈系统。外导体为波纹导管
隔离度和插入损耗的失配效应
功率容量的限制
应用
1.同频大功率合成:
2.用于异频功率合成: 3.接收机的抗干扰性测试 4.功率计校准 5.蜂窝手机杂散测试
第三章.功率分配/合成器/定向耦合
器
定向耦合器
--无源和可逆网络。 --输入端,输出端,耦合端,隔离端 --可以由同轴、波导、微带和带状线电路组成。用于信号取样以进行 测量和监测,信号分配及合成。 测试仪器的正向和发射信号的取样。
第一章.射频同轴电缆和连接器
1.2射频同轴连接器
射频连接器的无源互调PIM 特性
产生非线性特性原因:导体的接触不良 连接器的配接力矩不足,表面镀层不均匀,金属表面氧化, 触点表面有杂质和表面腐蚀等
射频连接器的寿命
射频电缆组件的寿命取决于三个因素: 电缆本身的抗弯曲性能 电缆和连接头之间的良好连接及其防折弯性能 连接器的寿命,实际使用中力矩远小于规定 N型 力矩 07~1.1N.m
衰减器的应用
1.改善信号发生器或频谱分析仪的失配损耗 2.改善网络分析仪的插入损耗测量精度 3.在大功率测试中的应用
第二章.衰减器和负载
2.2负载
一种单端口无源器件,当功率输入到负载时,被传输线末端的一端有 耗传输线吸收。负载是纯阻性的,不能存在电抗分量。也称匹配负载。 只有一个s参数 s11
射频基础知识

保证信号的质量 三
Smith圆图
201z3h-1a0o-1z8x054:4137:
保证信号的质量 四
要使信号源传送到负载的功率最大,信号
源阻抗必须等于负载的共轭阻抗,即:
Test Parameters for Single Tone Desensitization
201z3h-1a0o-1z8x054:4137:
Sar
Specific Absorption Rate的简称,中文通常
称为特殊吸收比率,它衡量多少能量被单
freq (1.805GHz to 1.880GHz)
保证信号的质量 六
仿真 PCB原始数据 器件特性 Smith原图数据
Байду номын сангаас
201z3h-1a0o-1z8x054:4137:
EMC
电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁 环 何 因 指 的 面境设此设电是中备,备磁指E符产在干器M合生正扰具C包要 无 常 不 对括求 法 运 能 所两运 忍 行 超 在个行 受 过 过 环201方并 的 程 一 境z3h-1a0o-面不 电 中 定 中1z8x054:4的1磁 的对 对 存37:-5t2h要干 限其 所 在uPnMdCe求扰 值环在的SrsToft:的;境环电.com一能另中境磁方力一的产干面。方任生扰是 具有一定程度的抗扰度,即电磁敏感性。
什么是射频 九
Directionality(方向性系数)
天线辐射方向性参数。天线据此可分全向
(G天考EGafafo线天iiinnmc=增线i(neinD益之-增dcir定比yie益r(ce义。tc)i效to为ion率na规lai)lt定)y 2方×和01z3h-向1a定E0o-1zf8x的f向05i4:4c137天i:(-5te2huPn线nMddcCeiySrr辐sTeoftc射.ctoimo强n度al)和。参
射频知识

射频知识———基本概念和术语一、基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
5、驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB)21 19 17.6 16.6 15.6 14.06、三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。
即M3 =10lg P3/P1 (dBc)7、噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
8、耦合度:耦合端口与输入端口的功率比, 单位用dB。
9、隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
10、天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E0211、天线方向图:是天线辐射出的电磁波在自由空间存在的范围。
方向图宽度一般是指主瓣宽度即从最大值下降一半时两点所张的夹角。
射频基础知识

输入/输出驻波比( 输入 输出驻波比(Input/Output VSWR) 输出驻波比 / ) 传输线上的电压波或电流波通常都是由入射波和反射波叠 加而成的,当它们相位相同时,该处的电压波或电流波的 振幅最大,称波腹点;当它们的相位相差π时,该处的电 压波或电流波的振幅最小,称波节点。传输线上电压波 (或电流波)最大值与最小值之比称为驻波比,又称为驻 波系数。在输入、输出端测得的驻波比分别成为输入、输 出驻波比。
AMPS
SMR
IDEN (800)
CDMA2000 1X EVDO
CDMA2000 MX
CDMA2000的过渡路径 CDMA2000的过渡路径
标准 IS-95A IS-95A IS-95B IS-95B CDMA2000第 CDMA2000第1阶段 9600 bit/s或14.4kbit/s bit/s或14. 主要是前向链路上的话音和数据,改进的切换以及64/56 kbit/s 主要是前向链路上的话音和数据,改进的切换以及64/ SR1(1.2288Mchip/s) SR1 2288Mchip/s) 话音和数据(经由孤立信道的分组数据) 128Walsh码 128Walsh码 具有2倍的IS-95容量 具有2倍的IS-95容量 达到144kbit/s(使用SR1T 1XRTT方式) 达到144kbit/s(使用SR1T 1XRTT方式) CDMA2000第 CDMA2000第2阶段 SR3(3.6864Mchip/s) SR3 6864Mchip/s) 定向于分组数据 具有更高的数据率 达到144kbit/s:移动车载用户 达到144kbit/s:移动车载用户 384kbit/s:移动步行用户 384kbit/s:移动步行用户 2Mbit/s:固定的用户 2Mbit/s:固定的用户 256Walsh码 256Walsh码 突出要求
射频仿真基础知识

射频仿真基础知识射频仿真是指利用计算机软件模拟和分析射频电路或系统的工作原理和性能的过程。
它是射频电子领域中不可或缺的一部分,广泛应用于无线通信、雷达、卫星通信、射频识别等领域。
本文将介绍射频仿真的基础知识,包括射频电路、射频信号、射频组件和仿真软件等方面。
一、射频电路射频电路是指工作频率在几十千赫兹到几百兆赫兹范围内的电路。
射频电路的特点是信号频率高、电路尺寸小、传输损耗大。
常见的射频电路包括放大器、混频器、滤波器等。
在射频仿真中,需要对这些电路进行建模,并通过仿真软件进行性能分析,以评估电路的工作情况。
二、射频信号射频信号是指频率在几十千赫兹到几百兆赫兹范围内的电信号。
射频信号具有高频、高速、高能量的特点。
在射频仿真中,需要对射频信号的频率、幅值、相位等参数进行设置,并将其作为输入信号进行仿真分析。
三、射频组件射频组件是指用于射频电路中的各种元器件。
常见的射频组件包括电容器、电感器、变压器等。
在射频仿真中,需要对这些组件进行建模,并根据其特性参数进行仿真分析,以评估组件在射频电路中的性能。
四、仿真软件射频仿真软件是进行射频电路或系统仿真分析的工具。
常见的射频仿真软件包括ADS、CST、HFSS等。
这些软件能够提供强大的仿真功能,可以对射频电路进行电磁场分析、功率分析、噪声分析等,并提供详细的仿真结果和性能评估。
在进行射频仿真时,需要注意以下几点:1. 确定仿真目标:在进行射频仿真前,需要明确仿真的目标,例如评估电路的增益、带宽、稳定性等性能指标。
2. 建立合理的模型:射频电路的仿真需要建立合理的电路模型和组件模型,并设置合适的参数。
3. 选择适当的仿真软件:根据仿真需求和复杂程度,选择合适的射频仿真软件进行仿真分析。
4. 进行仿真分析:通过设置输入信号和参数,进行仿真分析,并获取仿真结果。
5. 评估仿真结果:根据仿真结果,对电路的性能进行评估和优化。
射频仿真是射频电子工程师不可或缺的工具之一,它能够提供有效的仿真分析手段,帮助工程师在设计和优化射频电路时提高效率和准确性。
射频的频偏指标-概述说明以及解释

射频的频偏指标-概述说明以及解释1.引言1.1 概述射频技术在现代通信领域中起着至关重要的作用,它涉及到无线信号的传输和接收。
而频偏作为射频技术中的一个重要指标,直接影响着通信系统的性能和稳定性。
频偏指的是信号的实际频率与其预期或参考频率之间的差距,频偏会导致信号失真、接收误差以及数据丢失等问题。
因此,研究和分析频偏指标对于提高通信系统的性能至关重要。
本文将重点探讨频偏的概念、种类、意义以及对通信系统的影响,旨在为读者提供更深入的了解和认识。
1.2 文章结构文章结构部分主要包括引言、正文和结论三个部分。
在引言部分,我们将介绍射频技术以及频偏在射频通信领域中的重要性,为读者提供背景知识和引起兴趣。
在正文部分中,我们将分为三个小节进行阐述:射频技术简介、频偏的定义和重要性以及频偏指标的种类及意义。
通过这些内容的讲解,读者可以了解射频技术的基本概念和频偏在通信中的具体表现及影响。
最后,在结论部分,我们将总结频偏指标对通信系统性能的影响,提出应对频偏的措施,并展望未来射频技术发展的方向。
通过这一部分,读者可以获得对频偏指标及其应对方法的全面认识,为未来的学习和研究提供参考。
1.3 目的:本文旨在深入探讨射频技术中频偏指标的作用和重要性,帮助读者更加深入地理解频偏在通信系统中的影响。
通过对频偏的定义、种类及意义进行详细的剖析,旨在帮助读者更好地了解如何评估和控制频偏,从而提高通信系统的性能和稳定性。
最终目的是为读者提供对频偏指标的全面理解,为日后在实际应用中更好地应对和解决频偏问题提供有力支持。
2.正文2.1 射频技术简介射频技术是指在无线通信和雷达系统中使用的一种电子技术,用于处理无线信号的传输和接收。
射频技术涉及到频率范围在3kHz至300GHz 之间的无线电频段,主要用于无线通信系统中的信号传输和接收。
射频技术在现代通信领域中扮演着重要的角色,尤其在移动通信、卫星通信和无线网络等领域中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射频基础知识及其主要指标
射频(Radio Frequency)是指在射频范围内发送、接收和处理电磁波的技术。
射频技术在电子通信、无线网络、雷达系统、遥控器、医疗设备和安全系统等领域广泛应用。
了解射频基础知识及其主要指标对于理解射频技术的原理和应用至关重要。
射频技术基础知识包括频率、波长、功率、带宽、增益、灵敏度和失真等。
频率是指电磁波振荡的次数,以赫兹(Hz)表示,常用的射频频率范围是3kHz到300GHz。
不同频率的射频波有不同的特性和应用,例如低频射频波可以穿透墙壁,适用于室内通信,而高频射频波有更短的波长和更高的传输速度,适用于无线通信。
波长是指电磁波一个完整周期的长度。
波长和频率之间有一个基本关系,即波长等于光速除以频率。
例如,频率为1MHz的射频波,其波长为300米。
波长越长,频率越低,穿透力越强。
功率是指射频信号的电磁能量大小,以瓦特(W)表示。
在射频技术中,功率可以用于衡量发送端或接收端的信号功率。
发送端的功率越大,信号传输距离越远;接收端的功率越大,接收到的信号质量越好。
带宽是指射频信号的频率范围。
在通信系统中,信号一般需要特定的频带宽度来传输和接收数据。
带宽越宽,信号传输速度越快。
增益是指射频信号在其中一设备或系统中的放大程度。
增益通常用分贝(dB)表示。
增益可以是发送端的输出功率增益,也可以是接收端的输入信号增益。
增益越大,信号强度越强,传输距离越远。
灵敏度是指接收端设备能够捕捉到的最小信号强度。
灵敏度越高,接
收端可以接收到更弱的信号,提高信号质量和传输距离。
失真是指信号在传输过程中发生形状、幅度或频率上的变化。
失真会
导致信号质量下降和数据错误。
射频系统中的常见失真包括失真、非线性
失真、混叠等。
除了上述基础知识,还有一些射频技术中常见的指标也值得关注。
例如,动态范围是指射频系统可以容忍的最大信号强度和最小信号强度之间
的差异。
该指标用于衡量系统的灵敏度和抗干扰能力。
总结起来,射频技术的基础知识包括频率、波长、功率、带宽、增益、灵敏度和失真等。
这些指标对于理解射频技术的原理和应用至关重要。
通
过掌握这些知识,可以更好地理解射频设备和系统的性能,并进行射频系
统的设计和优化。