5.二元合金相图
二元合金及其相图

显微组织:
借助于各种不同放大倍数的金相显微镜所观 察到的金属和合金中的晶粒形状、大小及各 组成相的分布形态等形貌,称为显微组织或 金相组织(简称金相)。
第二十五页,共40页
图3-22 由相所构成的不同组织的示意图
固溶体:α、β; 金属化合物:θ、η
第二十六页,共40页
5、杠杆定律的应用
1) 计算(f、g)成分范围内,任 意成分二元合金室温下相组成物 的相对量(重量百分数) 。
置换固溶体的晶格畸变
对间隙固溶体 : 溶质原子直径越小,溶解度越大。
(3)电负性因素: 电负性因素: 是指元素的原子从其它原子夺取电子而转变为负
离子的能力。
溶质、溶剂的电负性越接近溶解度越大。越有利于形成无
限固溶体。当元素间的电负性的差别大到一定程度后,就难于 形成固溶体,而倾向于形成化合物。
第八页,共40页
当溶质含量>溶解度时,将出现新相
化合物——合金组元间发生相互作用而形成的一种新相。
化合物分类
金属化合物——具有一定程度金属键,
有金属特性
非金属化合物——具有离子键,无金属特性
第九页,共40页
二、 金属化合物
金属化合物: 具有相当程度的金属键并具有一定程度的金 属性质的化合物。
(一)、金属化合物晶体结构特点
图中 I 合金室温下为α、β两相应用
杠杆定律可得:
xg 100%
fg
1 fx 100%
fg
第二十七页,共40页
5、杠杆定律的应用
2)计算亚共晶合金(或过共晶合金) 室温下组织组成物的相对量(重量百分 数)。
该合金室温时的组织组成物为:
α初+ βII +(α+β)
第六章二元相图

2、多相平衡的公切线原理
若G = mAxA+ mBxB,且mi与i 组元含量有关,则可导出:在任意一相的 G - x曲线上,每一点的切线,其两端分别与纵坐标相截,与每一组元的 截距表示该组元在固溶体成分为切点成分时的化学势
说明:
冷却速度越慢,越接近平衡条件,测量结果越准确 纯金属在恒温下结晶,冷却曲线应有一段水平线
其它测定相图的方法:
热膨胀法:利用材料在发生转变时伴随有体积变化的特性,通
过测量试样长度随温度的变化得到临界点,从而作出相图
电阻法:利用材料电阻率随温度的变化来建立相图的 这两种方法适用于测定材料在固态下发生的转变
自由能 ~ 成分关系
(假设A、B组元原子半径相同,晶体结构相同,且无限互溶,则两组元混合前后体积不变; 只考虑最近邻原子间的键能;只考虑两组元不同排列方式的混合熵,不考虑振动熵) xA、xB — A、B组元的摩尔分数,
— 相互作用参数, N A z e AB
x A xB 1
i n i T , P ,r
G
(代表体系内物质传输的驱动力; 等温、等压及其它组元数量不变 的情况下,每增加单位摩尔i 组 元,体系自由能的变化)
组元i 的化学势: (偏摩尔自由能)
ji
如果某组元在各相中的化学势相同,就没有物质的传输,体系处于平衡状态
若体系包含有a,b,……相,对每个相自由能的微分式可写成:
材料组成的层次
组元
加一点盐 完全溶解
二元相图(匀晶,共晶)(精)

三)固溶体的非平衡凝固
不平衡结晶的过程分析 假定:不平衡结晶时,液相成分借助扩散、对流或搅拌等 作用完全均匀化,固相内却来不及扩散。
三)固溶体的非平衡凝固
① 将各温度下固溶体和液相的平均成分点连接成线,得 到固溶体和液相的平均成分线。
② 不平衡凝固时,液固相在各温度时的相平衡成分仍然 在平衡凝固时的液固相线上,只是其平均成分线偏离 了平衡凝固时的液固相线。
四、杠杆定律
在二元合金相图的两相区内,温度一定时,两相的重量比是一定的。 合金成分为C0,总重量为1, 在T 温度时,由液相和固相组成,液 相的成分为CL,重量为WL,固 相成份为Cα,重量为Wα。
1 = WL +Wa
1 C0 WL CL W C
WL = Ca - C0 Wa C0 - CL
固溶体凝固与纯金属凝固的比较
固溶体的凝固与纯金属的凝固相比有两个显著特点:
⑴ 固溶体合金凝固时结晶出来的固相成分与原液相成分不 同。结晶出的晶体与母相化学成分不同的结晶称为异分结晶 (又称选择结晶);纯金属凝固结晶时结晶出的晶体与母相化 学成分完全一样称为同分结晶。
固溶体的结晶属于异分结晶,在结晶时的溶质原子必然要在 液相和固相之间重新分配。
的相图上有极小点;
在Pb-Tl、Al-Mn等合金的相图上 有极大点。
二)固溶体的平衡凝固
平衡凝固:从液态无限缓慢冷却,在相变过程中充分进行组元间互相 扩散,达到平衡相的均匀成分,这种凝固过程叫平衡凝固。
x合金凝固过程及组织
冷至T1时
开始凝固出α1成分的固相 α1中的含Ni量比x合金高, α1旁的液体中含Ni量降 低,扩散平衡后液体成分 为L1
一、 二元系相图的表示法
二元系物质有成分的变化,在反映它的 状态随成分、温度和压力变化时,必须用一 个坐标轴的三维立体相图。由于二元合金的 凝固是在一个大气压下进行,所以二元系相 图的表示多用一个温度坐标和一个成分坐标 表示,即用一个二维平面表示。
二元合金相图及其应用

固溶体区,两条线之间为两相共存的两相区(L+ )。
以Cu-Ni合金
为例迚行分析。
Cu-Ni合金相图
二元匀晶相图
⑴ 合金的结晶过程
除纯组元外,其它成分合金结晶过程相似,以Ⅰ
合金为例说明。
当液态金属自高温 冷却到 t1温度时,
L
开始结晶出成分为
二元合金相图的建立
相图的基本知识 相图:
表示合金系中合金的状态与温度、成 分之间关系的图解。我们经常见到的相图 是平衡相图。
二元合金相图的建立
Gibbs相律: 表示在平衡条件下,系统的自由度数、组元 数和相数之间的关系。 f=c-p+2 其中系统的自由度数是指在保持合金系的相 的数目不变的情况下,合金系中可以独立改变的、 影响合金状态的内部及外部因素的数目。 当系统的压力为常数时, f=c-p+1
距离越大
给定成分合金的液相线 与固相线的垂直距离 力学性能
偏析相对越严重
可使原子充 分扩散,使 成分均匀
对合金性 能的影响
耐腐蚀性能 加工性能
解决方法
将铸件加热到固相线以下100-200℃长时间 保温来消除枝晶偏析,称为扩散退火
二元匀晶相图
消除枝晶偏析的办法
生产上常将铸件加热到 固相线以下100-200℃长时 间保温,以使原子充分扩散、 成分均匀,消除枝晶偏析, 这种热处理工艺称作扩散退 火。
A
B
称作共晶转变或共晶反应。
二元共晶相图
共晶反应的产物,即 两相的机械混合物称共晶 体或共晶组织。发生共晶 反应的温度称共晶温度。 代表共晶温度和共晶成分
的点称共晶点。
Pb原子 扩散 Sn原子 扩散
二元合金相图

二元合金相图一、实验目的1.用热分析法测绘Pb—Sn二元金属相图。
2.了解热分析法的测量技术。
二、实验原理相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,途中能反映出相平衡情况(相的数目及性质等),故称为相图。
二元或多元体系的想吐常以组成为自变量,其物理性质则大多去温度。
由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变,都要用到相图。
热分析法所观察的物理性质是被研究体系的温度。
将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间度体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线。
从相图的定义可知,用热分析法测绘相图的要点如下:(1)、被测体系必须时时处于或非常接近于相平衡状态。
因此,体系冷却时,冷却速度必须足够慢,以保证上述条件近与实现。
若体系中的几个相都是固相,这条件通常非常难以实现(因固相与固相间相互转化时的相变热较小),此时测绘相图,常用其他方法(如差热分析法)。
(2)、测定时被测体系的组成值必须与原来配制样品时的组成值一致。
如果测定过程中样品各处不均匀,或样品发生氧化变质,这一要求就不能实现。
(3)、测得的温度值必须能真正反映体系在所测时间时的温度值。
因此,测温仪器的热容必须足够小,它与被测体系的热传导必须足够良好,测温探头必须深入到被测体系足够深处。
本实验测定铅、锡二元金属体系的相图,用SWKY数字控温仪,通过KWL-08可控升降温电炉来控制体系的加热和冷却速度。
三、仪器和药品1.仪器SWKY型数字控温仪一台;KWL-08型可控升降温电炉一台;样品管一只。
2.药品铅;锡。
四、实验步骤1、连接SWKY数字控温仪与KWL-08可控升降温电炉。
将KWL-08可控升降温电炉冷风量调节逆时针旋转到底,加热量调节顺时针旋转到底,接通电源,“内控”、“外控”开关置于“外控”,电源开关“开”、“关”置于“开”。
第四章 二元合金相图与合金凝固参考答案

第四章二元合金相图与合金凝固一、本章主要内容:相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律;二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼;二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面;共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶;二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变二元相图总结及分析方法二元相图实例:Fe-Fe3C亚稳平衡相图,相图与合金性能的关系相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图二、1.填空1 相律表达式为___f=C-P+2 ___。
2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。
3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。
4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。
5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。
6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。
7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶__。
二元合金相图(1)
第二章二元合金相图纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。
合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。
合金相图正是研究这些规律的有效工具。
一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。
其中组成合金的独立的、最基本的单元叫做组元。
组元可以是金属、非金属元素或稳定化合物。
由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
二元以上的合金称多元合金。
合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。
合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。
利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。
掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。
在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。
本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。
2.1 合金中的相及相图的建立在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。
液态物质为液相,固态物质为固相。
相与相之间的转变称为相变。
在固态下,物质可以是单相的,也可以是由多相组成的。
由数量、形态、大小和分布方式不同的各种相组成合金的组织。
组织是指用肉眼或显微镜所观察到的材料的微观形貌。
由不同组织构成的材料具有不同的性能。
二元合金的相图
+ Ⅱ
组织组成物
Ⅱ
冷却曲线
t
组织中,由一定的相构成 的,具有一定形态特征的 组成部分。
X2合金结晶过程分析 (共晶合金)
T,C
L
T,C
L
(+ )
183
L+
M
L
E
L
L+
N
L(+ ) 共晶体
(+ )
+
Pb Sn X2
冷却曲线
t
(+ )
铅锡共晶合金的显微组织
液固相线距离愈小, 结晶温度范围愈小,则流 动性好,不易形成分散缩 孔,铸造性能好。 共晶成分的合金铸造 性能最好。
锻造、轧制性能:
单相固溶体合金, 变形抗力小,变形均匀, 不易开裂,锻造、轧制性 能最好。
T,C
T,C L
1
L L+(+ )+
L+
183
L+
M
E
+
L+ N
2
(+ )+
(+ )+ + Ⅱ
Sn
Pb
X3
t
亚共晶合金的平衡结晶过程
(+ )+ + Ⅱ
β II
α
α+β
WSn50%的Pb-Sn合金的显微组织
(+ )+ + Ⅱ
L
T,C
3 F 4 X1
L+
M
c
LEL+ 来自L L+
e
N
二元合金与相图课件PPT
2021/3/10
4
1. 固溶体的分类
(1)按溶质原子在溶剂晶格中的位置分固溶体可分为置换 固溶体与间隙固溶体两种。
置换固溶体中溶质原子代换了溶剂晶格某些结点上的原子
形成置换固溶体时,溶质原子在溶剂晶格中的溶解度主要取 决于两者的晶格类型、原子直径及它们在周期表中的位置。
2021/3/10
5
间隙固溶体中溶质原子进入溶剂晶格的间隙之中。
电子化合物主要以金属键结合, 具有明显的金属特性, 可 以导电。它们的熔点和硬度较高,塑性较差,在许多有色金属 中为重要的强化相。
2021/3/10
11
3. 间隙化合物 由过渡族金属元素与碳、氮、氢、硼等原 子半径较小的非金属元素形成的化合物为间隙化合物。尺寸较 大的过渡族元素原子占据晶格的结点位置,尺寸较小的非金属 原子则有规则地嵌入晶格的间隙之中。根据结构特点,间隙化 合物分间隙相和复杂结构的间隙化合物两种。
提高的现象称为固溶强化。
固溶体引起的晶格畸变
2021/3/10
8
固溶强化是金属强化的一种重要形式。在溶质含量适当
时,可显著提高材料的强度和硬度,而塑性和韧性没有明显降
低。例如:纯铜的σb为220 MPa, 硬度为40 HB, 断面收缩率 ψ为70%。当加入1%的镍形成单相固溶体后, 强度升高到390
第三章 二元合金相图 概述
纯金属具有良好的导电导热性,但机械性能差,而且提炼 困难,价格昂贵,故工业上广泛应用的是合金材料。
合金 一种金属元素同另一种或几种其它元素, 通过熔化 或其它方法结合在一起所形成的具有金属特性的物质。
例如:钢(铁和碳的合金) 黄铜(铜和锌的合金) 组元 组成合金的独立的、最基本的单元叫做组元。组元可以 是金属、非金属元素或稳定化合物。
二元合金相图及相变基础知识
第3章 二元合金相图及相变基础知识
相图的概念
二、 冷却曲线
在液态合金的冷却过程中,可以用热
分析法测定其温度随时间的变化规律,即 冷却曲线。纯金属的冷却曲线上有一个平 台[图3.2(a)、(f)],说明结晶是在恒温下进 行的。这是因为纯金属在结晶过程中放出 大量的结晶潜热,补偿了向外散失的热量, 达到了热平衡。与纯金属相比,合金结晶 过程中放出的结晶潜热,一般情况下只能 抵消部分散失的热量,结晶是在一定的温 度范围内进行的[图3.2(b)、(c)、(e)],在冷 却曲线上表现为两个临界点,一个是结晶 开始温度,另一个是结晶终了温度。
以图3.2Pb-Sn合金相图为例,ED线表示Sn在固溶体中的溶解度极限,又 称固溶线,随着温度的降低,Sn在固溶体中的溶解度不断地减少,过剩的Sn 则以固溶体的形式析出,为了区别直接从液相中结晶出的固溶体(称为初生 相),这种从固溶体中析出的固溶体称为二次相或次生相(用Ⅱ表示);同 理FG线表示Pb在固溶体中溶解度极 限,随着温度的降低,Pb在固溶体中
2. 两组元液态下完全互溶固态下部分互溶 多数合金尽管在液态下能无限互溶,固态下一个组元在另一组元中却存在
一定的溶解度,它们可以构成共晶相图或包晶相图。 如果当合金组元的含量超出固溶体的溶解度时,合金从液态冷却到某一温
度会同时结晶出两种不同的固相,形成机械混合物,即能发生共晶转变,这类 合金系的相图就称为共晶相图。具有共晶相图的合金系有Pb-Sn、Al-Cu、AlSi等。
LC αP
β 1186℃ D
D点是包晶点。包晶转变终了时,成分为D点的合金组织中原来的L、 相全部转变成相。但成分在PD之间的合金还有相过剩,DC之间的合金 则有L相剩余。
3. 两组元液态完全互溶固态互不溶解 有些合金组元在液态下能够完全互溶,但在固态下彼此互不溶解,这